
Dyna, year 79, Nro. 176, pp. 56-63. Medellin, December, 2012. ISSN 0012-7353

AN ENVIRONMENT BASED ON PRE-CONCEPTUAL SCHEMAS
FOR AUTOMATICALLY GENERATING SOURCE CODE UNDER

THE MVC PATTERN

UN ENTORNO PARA LA GENERACIÓN AUTOMÁTICA DE
CÓDIGO BAJO EL PATRÓN MVC A PARTIR DE ESQUEMAS

PRECONCEPTUALES

CARLOS MARIO ZAPATA
Ph.D., Facultad de Minas, Universidad Nacional de Colombia, Sede Medellín, cmzapata@unal.edu.co

JOHN JAIRO CHAVERRA
M.Sc., Facultad de Minas, Universidad Nacional de Colombia, Sede Medellín, jjchaver@unal.edu.co

Received for review November 11 th, 2011, accepted June 6th, 2012, final version July, 17 th, 2012

ABSTRACT: Computer-aided software engineering (CASE) tools are intended to support several phases of the software development
lifecycle. At the present, it is almost impossible to develop software applications without them. One of the most desired features of CASE
tools is its automated source code generation. Nowadays, several CASE and metaCASE tools attempted to do such generation, but they
share two main problems: they use, as a starting point, technical languages which are not suitable for stakeholder validation, and they
generate an incomplete and non-patterned source code. This is why in this paper we propose a CASE tool for automatically generating a
PHP source code under the model view controller (MVC) programming pattern. We use pre-conceptual schemas as a starting point. We aim
to generate a complete source code and to ease stakeholder validation.

KEYWORDS: CASE, MetaCASE, GEF, MOFScript, EMF, MVC, PHP

RESUMEN: Las herramientas CASE (computer-aided software engineering) apoyan las diferentes fases del desarrollo de software, a tal
punto que hoy en día es casi imposible pensar en un desarrollo de software sin el apoyo de una de ellas. Una de las características más
deseadas de estas herramientas es la generación automática de código. Actualmente, existen herramientas CASE y metaCASE que realizan
esta función, pero con dos problemas principales: parten de lenguajes técnicos que no permiten la validación de los interesados y se genera
código incompleto y sin un patrón arquitectónico definido. Por ello, en este artículo se propone una herramienta CASE para generar
automáticamente código ejecutable bajo el patrón de programación MVC (model view controller), en el lenguaje de programación PHP, a
partir de los esquemas preconceptuales. Se busca hacer más completo el código resultante y permitir la validación de los interesados en el
proceso.

PALABRAS CLAVE: CASE, MetaCASE, GEF, MOFScript, EMF, MVC, PHP

1. INTRODUCTION

CASE tools are increasingly used for almost every phase
of the software development lifecycle. Automated code
generation is one of the most desired features of CASE
tools, but a vast majority of these tools are still far
from having a fully-automated source code generation
process. As a matter of fact, these tools do not generate
a fully functional code, but a “template” (mainly
containing classes, attributes, and method headers) to
be completed by the programmer. Some of these tools
are: Together™ [1], Rose™ [2], and Fujaba® [3].

Also, CASE tools are based on technical languages
(for example UML diagrams), distant from stakeholder
understanding. In the software development lifecycle,
the stakeholder must interact with the analyst to
validate the information during the first phases, and
such interaction is difficult when we use technical
artifacts in the communication process.

MetaCASE tools try to overcome the main constraints
of CASE tools, because they have devices for creating
modeling patterns and checking syntactical rules
[1]. However, these tools are still based on technical

Dyna 176, 2012 57

languages and the process of code generation must be
explicitly defined inside the MetaCASE tool.

Chaverra [5] proposes a set of rules in order to automatically
obtain the source code under the MVC programming pattern.
Pre-conceptual schemas are used as pre-conditions of such
rules. This proposal is still unincorporated inside well-
known CASE tools. Therefore we develop, in this paper,
an environment based on Eclipse® Modeling Framework
(EMF), Graphical Modeling Framework (GMF), Object
Constraint Language (OCL), and MOFScript in order to
represent pre-conceptual schemas and then to translate them
into the PHP source code under the MVC pattern.

The rest of this paper is organized as follows: in Section 2
we define the domain concepts belonging to the theoretical
framework; in Section 3 we summarize some work on
CASE and metaCASE tools for automatically generating
a source code; Section 4 is devoted to the elements of
the EMF-based implementation environment; in Section
5, the case study for illustrating the use of the proposed
CASE tool is developed. Conclusions and future work are
presented in Sections 6 and 7, respectively.

2. THEORETICAL FRAMEWORK

The proposal given in this paper requires some
understanding of the theoretical foundations related to
the modeling language (pre-conceptual schemas), the
paradigm for creating the solution (meta-modeling),
and the environment for assembling the solution. We
describe such elements in this section.

2.1. Pre-conceptual Schemas

According to Zapata et al. [6], pre-conceptual schemas
are diagrams for representing the terminology
belonging to a certain domain. They are commonly
used for obtaining several conceptual schemas (mostly
UML diagrams). The main pre-conceptual schema
elements are shown in Fig. 1. The description of such
elements is the following [6,7]:

Figure 1. Main pre-conceptual schema elements [6]

•	 Concept: is either a noun or a noun phrase of the
stakeholder discourse.

•	 Note: is used for listing the several values which
can be assigned to concepts.

•	 Structural relationship: is understood to be a
permanent relationship between concepts. Both the
verbs “to be” and “to have” are allowed to be used
inside this kind of relationship.

•	 Dynamic relationship: is associated with action
verbs.

•	 Conditional: is understood to be the pre-condition
a dynamic relationship must accomplish before its
execution.

•	 Implication: establishes a cause-and-effect
relationship between two dynamic relationships or
between a conditional and a dynamic relationship.

•	 Connection: is used to link concepts to (structural
or dynamic) relationships. Also, a special kind of
connection is used for linking concepts and notes.

2.2. Meta-modeling

Meta models are useful for describing model
components in a formal way [1]. In other words,
with meta-models it is possible to formally define
modeling languages. The Object Management Group
(OMG) proposes a modeling architecture for grouping
concepts by abstraction levels. So there are four levels
in decreasing order of abstraction:

•	 The meta-meta-model level (M3). This is the highest
level of abstraction. Meta object facility (MOF) is
located at this level [1]. Concrete meta-models (e.g.,
UML models) can be defined by means of MOF.

•	 The meta-model level (M2). The unified modeling
language (UML) is located at this level. Some
concepts on the M2 level are: class, attribute, and
association.

•	 The system model level (M1). Data models are
elements at this level, for example entities like
“Person” and “Animal”, attributes like “name”, and
relationships between entities.

•	 The instance level (M0). The actual system is
modeled at this level. Data examples are elements

Zapata & Chaverra58

at this level, e.g., “John Jairo” (name) and “Cr 72b
No 90-10” (address).

2.3. The MVC pattern and the PHP language

Reenskaug [8] creates the Model-View-Controller
pattern as a multiperspective-based solution to the
organization of software applications. Since its
inception in the design of software applications, such
a pattern has been widely used by software designers.
According to Reenskaug, the model represents the
knowledge, the views are visual representations of the
model, and the controllers are links between the users
and the software application. The MVC pattern is useful
for representing several types of applications; e.g., the
work of Paredes et al. [9].

The hypertext preprocessor (PHP) was selected in this
paper as the generated language for the source code due
to several reasons: it has possibilities for connection
to databases; it is scalable and portable; it is an open-
source language; and it is useful for creating dynamic
web applications.

2.4. Eclipse-based environment

The proposal in this paper is supported by the CASE
tool Eclipse® and the following elements:

•	 The Eclipse® Modeling Framework (EMF) is
a modeling structure for easing code generation
processes. Also, EMF is used for building tools
and software applications. EMF is based on a
structured data model encoded into an XMI model
specification [10].

•	 The Graphical Modeling Framework (GMF) is an
Eclipse® plug-in for developing graphical editors,
which can be jointly used with other plug-ins.
Meta-model instances are expressed in GMF. As
a graphical editor, GMF interoperates with a wide
range of applications, such as single text processors,
completely standardized or customized diagram
(UML or any other modeling language) editors,
graphical user interfaces (GUI), and so on.

•	 The Graphical Editing Framework (GEF) is the
framework for creating views and graphical editors.

•	 The Object Constraint Language (OCL) is a

language for describing UML model constraints.
OCL expressions are used for checking the syntax
of meta-model derived languages [11].

•	 MOFScript is an Eclipse® plug-in for defining
rule sets, which, in turn, are used for transforming
a structured model to text. Either EMF-supported
plug-ins or customized models can be used as input
models [10]. In the context of this paper, MOFScript
will be used for defining rules related to the pre-
conceptual-schema-to-PHP-code transformation.

3. PREVIOUS WORK

MetaCASE tools have been developed with the
intention of speeding up and improving the software
development process. Most of these tools are based on a
graphical modeling language for defining meta-models;
for example, class diagrams and entity-relationship
diagrams. Some of the most common metaCASE
tools are:

•	 The Domain Modeling Environment (DOME®)
is based on the ProtoDOME graphical modeling
language, a class-diagram-based language for
defining meta-model elements [12].

•	 A Tool for Multi-Formalism Modeling and Meta-
Modeling (AToM3®) is used for describing any
conceptual schema. Meta-models are created and
edited employing an entity-relationship-based
graphical formalism [1].

•	 The Generic Modeling Environment (GME) uses
UML as a modeling pattern. As suggested by the
UML superstructure specification, OCL constraint
management is included on this metaCASE tool
[11].

CASE tools like Together™ [1], Rose™ [2], and
Fujaba® [3] are suitable for generating the basic
structure of the source code (commonly, they only
generate classes and attributes). Some of them also try
to complement the source code with object behavioral
features. For example, Together™ uses the sequence
diagram and Fujaba® uses story diagrams (mixing
activity and communication diagrams). In Table 1, we
include an analysis of previous research.

Dyna 176, 2012 59

Table 1. Analysis of previous research

As a summary, the previous projects commonly employ
technical modeling languages which are beyond stakeholder
comprehension. As a consequence, stakeholders can barely
validate the information in the software development
lifecycle. Also, these projects only generate a portion of
the source code. By doing so, the solutions provided are
highly programmer-dependent. The above reasons lead
us to propose a CASE tool for incorporating some code
generation rules defined by Chaverra [5] oriented towards
the PHP programming language under the MVC pattern,
using pre-conceptual schemas as a starting point.

4. A PROPOSAL FOR A CODE-GENERATION
ENVIRONMENT

Chaverra [5] proposes a set of heuristic rules for
transforming a pre-conceptual schema-based domain
description into source code under the MVC pattern.
Pre-conceptual schemas use a graphical notation
with similarities with the natural language. Also,
they are useful for expressing several elements of a
stakeholder’s discourse. The proximity with the natural
language structure leads the stakeholder to constantly
validate such schemas with no need for additional
training. In this paper, we propose the environment
of a CASE tool for applying the transformation rules
defined by Chaverra [5].

4.1. Meta-model definition

A meta-model, in the EMF environment, is specified
by class diagrams. By using such notation, in Fig. 2
we define the pre-conceptual schema meta-model.
Every meta-model class can be assigned to a graphical
representation.

Figure 2. Pre-conceptual schema meta-model

Zapata & Chaverra60

Inside structural relationships, only the verbs “to be”
and “to have” are allowed. For dynamic relationships,
any other kind of verb is allowed. Node and link are the
central classes of the meta-model, because they gather
the elements for drawing the pre-conceptual schema.
The type enumeration is defined in the meta-model, but
is intended to be used in the transformation to languages
other than PHP (Java, for example.)

4.2. Definition of the graphical elements of pre-
conceptual schemas

By default, GMF represents every element of the meta-
model as a rectangle. However, the user is allowed to
change this representation by using several figures, like
ellipses, rounded-corner rectangles, and customized
figures. In Fig. 3, the image for the dynamic relationship
is defined as a rounded rectangle with a name.

Figure 3. Definition of the graphic elements from pre-

conceptual schema

4.3. OCL-based pre-conceptual schema validation

We use OCL in the context of this paper for validating
the syntax of the pre-conceptual schema. With OCL,
it is possible to define connection constraints among
the artifacts. Figure 4 shows an example of OCL inside
EMF for defining the one-to-one connection between
a concept and a note. The overall validation rules are
defined in the same way.

Figure 4. Definition of OCL rules on GEF

4.4. MOFScript implementation of the validation rules

MOFScript is used for automatically obtaining PHP
source code from the pre-conceptual schema. The
rules defined by Chaverra [5] are programmed inside
MOFScript. Be advised that the MVC pattern emerges
at this point because the rules are intended to generate
the model, the views, and the controllers. In order to
complete this task, we must design the pre-conceptual
schema in GEF, and then MOFScript must follow the
conceptual hierarchy of the XMI file belonging to
the schema (as exemplified in Fig. 5, in the case of
filling in the information of a concept with its name.)
Once the hierarchy is recognized, we must apply the
transformation rules. In Fig. 5, the attribute id is not
present in the pre-conceptual schema because it is only
used for identifying the concepts in the database (and,
in such a case, it is a default attribute.)

5. CASE STUDY

A case study (based on the sale record of a supermarket)
is proposed for the sake of exemplifying the heuristic
rules defined by Chaverra [5].

Figure 5. MOFScript code for storing all the node

information

“A supermarket wants to register daily sales. This
task is performed by a cashier. The supermarket has
products and, for each one, the number, the sale price,
the real price, the description, and the amount are
registered. When the client selects a product, the cashier
registers the sale, which includes a code, a total, and a
detail (i.e., detailed information about each product),
expressed in terms of the quantity, the subtotal, and the
product. Both the client and the cashier have an i.d., a
name, a phone number, and an address.”

Figure 6 contains the obtained pre-conceptual schema,
as a representation of the domain in this case study.

Dyna 176, 2012 61

Figure 6. Pre-conceptual schema obtained for the case study

The following subsections detail the results—in the PHP
programming language—for applying the rules of Chaverra
[5] to the pre-conceptual schema of Fig. 6. We summarize
the results for the model, the view, and the controller (the
aforementioned MVC pattern). Due to space restrictions,
we only show the results of the “sale” concept. For the sake
of clarity, we must remark that the interface belonging to
an object includes all the attributes of the object. In other
words, there is no possibility for a specific stakeholder to
fill in some part of the information while the rest is filled by
another stakeholder. The current project has no additional
rules for covering such differences among stakeholders.

The automation level of the process releases the
analyst responsibilities in applying the heuristic rules.
The resulting code is completely functional and it
preserves traceability in the names associated to every
concept, a highly desirable feature in an automatically-
generated code. Be advised that the heuristic rules act
as “templates” in which we take the elements belonging
to the pre-conceptual schema and we map them onto
the source code by filling in the blanks of the heuristic
rules. By doing so, we are guaranteeing the usage of
the concepts and relationships from the pre-conceptual
schema in generating the PHP source code.

5.1. Model

When we register a sale (see Fig. 7) according to the
pre-conceptual schema, we must fill in the information
of the code, the total, and the client i.d. for the sale. If we
want to fill the information of the details directly, we must
put another dynamic relationship in the pre-conceptual
schema. The SQL sentences belonging to this model are
also generated by using the rules of Chaverra [5].

Figure 7. Model for the case study

5.2. View

In the case of the view (see Fig. 8,) the information about
the detail is provided in the graphical user interface. “Rice”
and “salt” are product description values which have arisen
from the information we previously put in the database.
Hence, if we have more values for product description in
the database, they will be displayed in this interface.

Figure 8. View for the case study

Zapata & Chaverra62

5.3. Controller

The controller for registering sales (see Fig. 9) has some
information missing from the pre-conceptual schema:
the client i.d. and the product i.d. are internal numbers
in the database for identifying the records belonging
to clients and products, respectively.

Figure 9. Controller for the case study

6. CONCLUSIONS

In this paper, we proposed a CASE tool based on
the EMF environment and using GML, OCL, and
MOFScript. For this environment, the domain
representation is accomplished by using pre-conceptual
schemas. This environment is also capable of
generating a PHP source code under the MVC pattern
by applying the rules defined by Chaverra [5]. The main
contributions of this proposal are:

•	 An automated process—with no intervention
of both analysts and programmers—is defined,
improving code quality and avoiding human errors
in applying the rules.

•	 Traceability is maintained along the entire software
development process.

•	 A fully-functional prototype is quickly obtained.
Early validation of code is possible for stakeholders
without any technical knowledge on programming
languages.

•	 Communication among stakeholders and analysts
is improved.

7. FUTURE WORK

Some of the issues to be covered by future projects are:

•	 The aforementioned specialization of user interfaces
by roles.

•	 The inclusion of data types inside the pre-conceptual
schema as a way to prepare the conversion to other
languages like Java and C#.

•	 The automated generation of highly-complex
artifacts of documentation. The detailed use case
specification is one possible example.

8. ACKNOWLEDGMENTS

This work is partially funded by the Vicerrectoría
de Investigación de la Universidad Nacional de
Colombia, through the research project Transformación
semiautomática de los esquemas conceptuales, generados
en unc-diagramador, en prototipos funcionales.

REFERENCES

[1] Borland Software Corporation. Borland Together
Architect. Available: http://www.borland.com/us/products/
together/index.html [cited september 2012].

[2] IBM Corporation. Rational Rose Architect™. Available:
http://www.306.ibm.com/software/awdtools/architect/
swarchitect/index.html [cited september 2012].

[3] Geiger, L. and Zündorf, A., TOOL modeling with fujaba.
Electronic Notes in Theoretical Computer Science, (148),
pp. 173–186, 2006.

[4] De Lara, J. and Vangheluwe, H., AToM3: A tool for multi-
formalism and meta-modeling. European Joint Conference
on Theory and Practice of Software (ETAPS), Fundamental
Approaches to Software Engineering (FASE). Grenoble,
France, pp. 174–188, April 2002.

[5] Chaverra, J., Generación automática de prototipos
funcionales a partir de esquemas preconceptuales [M.Sc.
Thesis]. Medellín, Colombia: Universidad Nacional de
Colombia, 2011.

[6] Zapata, C. M., Gelbukh, A. and Arango, F., Pre-
conceptual Schemas: A Conceptual-Graph-Like Knowledge

Dyna 176, 2012 63

Representation for Requirements Elicitation. Lecture Notes
in Computer Sciences, 4293, pp. 17–27, 2006.

[7] Zapata, C. M., Gelbukh, A. and Arango, F., UN–Lencep:
Obtención Automática de Diagramas UML a partir de un
Lenguaje Controlado. Arturo Hernández, José L. Zechinelli
(Eds.) Avances en la Ciencia de la Computación, pp.
254–259, 2006.

[8] Reenskaug, T., Models-Views-Controllers. Technical
Note. Palo Alto, CA: USA. Xerox PARC, December 1979.

[9] Paredes, M., Villamizar, J., Bautista, L. and Rodríguez,
D., The structure of the computational signal algebra and
its application in digital image processing. Dyna, 78(166),
pp. 118–132, 2011.

[10] Moore, B., Dean, D., Gerber, A., Wangenknecht, G. and
Vanderheyden, P., Eclipse Development using the Graphical
Editing Framework and the Eclipse Modeling Framework.
IBM International Technical Support Organization
Redbooks, New York, 2004.

[11] Object Management Group (OMG). Unified modeling
language specification. Version 2.1.1. Available: http://www.
omg.org/uml/ [cited september 2012].

[12] DOME Users Guide. Available: http://www.htc.
honeywell.com/dome/support.html#documentation. [Cited
june 2010].

