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Abstract 

Differences exist between engineering and liberal arts students because of their 
educational backgrounds. Therefore, they solve problems differently. This study 
examined the brain activation of these two groups of students when they responded 
to 12 questions of verbal, numerical, or spatial intelligence. A total of 25 engineering 
and 25 liberal arts students in Taiwan participated in the experiment. The results were 
as follows. (i) During verbal intelligence tasks, differences between the two groups 
were observed in the information flows of verbal message comprehension and 
contextual familiarity detection in the problem-identifying phase, whereas no 
significant differences were found in the resolution-reaching phase. (ii) During 
numerical intelligence tasks, differences between the two groups were observed in the 
information flows of mental calculation and message comprehension in the problem-
identifying phase and those of verbal perception and analogical reasoning in the 
resolution-reaching phase. (iii) During spatial intelligence tasks, differences between 
the two groups were observed in the information flows of spatial relation integration 
and spatial context memory retrieval in the problem-identifying phase and those of 
spatial attention and contextual relation integration in the resolution-reaching phase. 

Keywords: electroencephalography, engineering students, liberal-arts students, problem-
solving processes 
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Resumen 

Existen diferencias entre los estudiantes de ingeniería y de artes liberales debido a sus 
trasfondos educativos. Por lo tanto, resuelven sus problemas de forma diferente. Este 
estudio examina la activación cerebral de estos dos grupos de estudiantes cuando 
respondieron a 12 preguntas de inteligencia verbal, numérica o espacial. Un total de 
25 estudiantes de ingeniería y 25 estudiantes de artes liberales en Taiwán participaron 
en el experimento. Los resultados fueron los siguientes. (i) Durante las tareas de 
inteligencia verbal, se observaron diferencias entre los dos grupos en los flujos de 
información de la comprensión de mensajes verbales y en la detección de familiaridad 
contextual en la fase de identificación de problemas, mientras que no se encontraron 
diferencias significativas en la fase de resolución. (ii) Durante las tareas de 
inteligencia numérica, se observaron diferencias en los flujos de información de 
cálculo mental y comprensión del mensaje en la fase de identificación de problemas 
y en aquellos de percepción verbal y razonamiento analógico en la fase de resolución. 
(iii) Durante las tareas de inteligencia espacial, se observaron diferencias entre los dos 
grupos en los flujos de información de la integración de la relación espacial y de la 
recuperación de memoria en el contexto espacial en la fase de identificación de 
problemas y en aquellos de atención espacial y de integración de la relación contextual 
en la fase de resolución. 

Palabras clave: electroencefalografía, estudiantes de ingeniería, estudiantes de artes 
liberales, procesos de resolución de problemas
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ifferences exist between students who majored in engineering and 
those who majored in liberal arts. Liberal arts students favour the 
general aspects of their work, whereas engineering students tend to 

focus on the specific aspects of their jobs (Neumann, 1983); this difference 
results from their educational backgrounds. Engineering education aims to 
introduce students to a wide range of technical subjects, form cross-
disciplinary networks of engineering specialities, prepare students to 
effectively manage increasingly cross-disciplinary activities, and help 
students gain the ability to address the rapid changes to human lives caused 
by technological development. By contrast, liberal arts education enables 
students to acquire communication skills required for efficiently interacting 
with citizens from diverse societies and cultures, helps students to gain an 
appreciation and knowledge regarding the history of fine arts, and introduces 
students to the basic mathematics and science required to m manage financial 
affairs and everyday life (Jenkins, 2014). Therefore, liberal arts students 
address problems differently from engineering students (Bordoloi & 
Winebrake, 2015). 

Intelligence quotient (IQ) tests are generally designed to assess an 
individual’s problem-solving ability, capture performance differences across 
cognitive tasks, and the results can be used to predict real-world outcomes 
(Gläscher et al., 2010). Cognitive neuroscientists have attempted to 
understand the organising principles that govern human intelligence, with new 
research providing novel insights into brain-based biomarkers, particularly the 
neural architecture of goal-directed, intelligent behaviour (Barbey et al., 2012; 
Miller & Phelps, 2010). In the past 20 years, extensive functional 
neuroimaging evidence has indicated that the prefrontal cortex plays a central 
role in cognitive control and the flexibility of human intelligence (Bishop, 
Fossella, Croucher, & Duncan, 2008; Duncan et al., 2000; Miller & Cohen, 
2001). 

Neuroscientists still debate whether human intelligence reflects the 
combined performance of brain systems involved in IQ tasks or draws on 
specific systems mediating their interactions (Gläscher et al., 2010). The 
central question is whether prefrontal networks and distributed cortical 
regions are computationally necessary for the core features of human 
intelligence (Barbey et al., 2012; Deary, Penke, & Johnson, 2010). According 

D 
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to an alternative framework, human intelligence depends on various cognitive 
processes that are mediated by functionally specialised brain regions, 
including the (i) temporal and occipital regions for processing sensory 
information, (ii) parietal regions for sensory integration and abstraction, (iii) 
frontal regions for reasoning and problem-solving, and (iv) anterior cingulate 
for response selection and automatic response inhibition (Barbey et al., 2012; 
Barbey & Sloman, 2007; Gläscher et al., 2010). Accordingly, studies have 
indicated that education and cognitive activity was significantly correlated 
with both general cognitive ability and specific skills (Ritchie, Bates, & 
Deary, 2015) and that the interaction of education and cognitive activity 
significantly affected episodic memory but not executive functioning 
(Lachman, Agrigoroaei, Murphy, & Tun, 2010). 

IQ tests contain three major question types. Each type examines different 
abilities, namely verbal, numerical, and spatial problem-solving (Carter & 
Russell, 2008; Spearman, 1904), and demands different information 
processing, thus predicting different aspects of human performance (Oakhill, 
Yuill, & Garnham, 2011). The language processing network, which comprises 
the medial frontal cortex, left temporal cortex, left dorsal and ventral frontal 
regions, and posterior cingulate, has long been considered crucial for the 
development of verbal intelligence (Basagni et al., 2017; Liu, Chang, Yang, 
& Liang, 2018). In addition, the frontoparietal network, which comprises the 
dorsolateral prefrontal cortex and intraparietal sulcus, is identified as the 
primary system for the development of numerical intelligence (Cohen 
Kadoshsend, Soskic, Iuculano, Kanai, & Walsh, 2010; Kanjliaa, Lanea, 
Feigensona, & Bedny, 2016). Finally, the spatial processing network, 
primarily comprising the right superior temporal and posterior parietal 
cortices, is considered crucial for the development of spatial intelligence 
(Ivanitskii et al., 2015; Liang et al., 2017; Yao, Lin, King, Liu, & Liang, 
2017). 

Although cognitive neuroscience has progressed remarkably towards 
understanding human intelligence, relative contributions supporting high-
level cognition and predicting performance remain poorly characterised (Paul 
et al., 2016), particularly between different professional disciplines. Based on 
the aforementioned findings, the present neurocognitive study was conducted 
to characterise the brain activities exhibited by university students when they 
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responded to various verbal, numerical, and spatial intelligence tasks. 
Particularly, electroencephalography (EEG) was used to assess the brain 
activities of students majoring in engineering and liberal arts. We recorded the 
EEG data of each participant in two phases of each experimental IQ task: the 
problem-identifying and resolution-reaching phases. This study investigated 
differences in the brain activations of engineering and liberal arts students 
when engaging in the problem-identifying and resolution-reaching phases of 
experimental tasks corresponding to verbal, numerical, and spatial 
intelligence. The outcomes can contribute to the design of interdisciplinary 
talent development programmes as well as identification of useful avenues of 
inquiry for future research.  
 

Methods 
 

Participants 
 

A total of 25 engineering and 25 liberal arts students in Taiwan participated 
in the EEG experiment. The engineering students were majoring in either 
electrical or computer engineering, whereas the liberal arts students were 
majoring in either Chinese or foreign language. All the participants were 
Taiwanese second-year or third-year undergraduates who had normal or 
corrected-to-normal vision and no history of drug or alcohol abuse or 
cardiovascular or vestibular disorders. Because of signal malfunction or 
dropouts during the course of the study, the EEG data of only 19 engineering 
students (8 women and 11 men; aged 20–22 years) and 17 liberal arts students 
(10 women and 7 men; aged 20–23 years) were acquired for further analyses.   
 
Materials 
 
On the basis of the Taiwanese version of the Stanford–Binet Intelligence 
Scale, a comprehensive IQ test used globally to diagnose intellectual 
deficiencies in young people, we developed 12 items (four items each for 
verbal, numerical, and spatial intelligences). Verbal intelligence items 
comprised synonyms or antonyms, analogical relationships, word-building 
tests, and practical knowledge and understanding of social rules and concepts. 
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An example of a verbal intelligence item is ‘Which of the following is not like 
the others: (1) handsome, (2) flirtatious, (3) graceful, or (4) pretty?’ Numerical 
intelligence items consisted of mathematical operations involving simple 
arithmetic (e.g. percentages, powers, and fractions), figures and thinking, and 
estimations and more global judgments. An example of a numerical 
intelligence item is: ‘Which of the following is an illogical number followed 
by 111, 339, and 5525: (1) 8869, (2) 6645, (3) 9976, and (4) 7749?’ Spatial 
intelligence included items that prompted mental generation and rotation of 
visual images, solving spatial navigation problems, and visualising objects 
from different angles (e.g. thinking about objects in three dimensions to draw 
conclusions from limited information). An example of a spatial intelligence 
item is ‘Which cannot made by folding this labelled cardboard  

 
 
: (1) (2) (3) (4) ?’ 

 
 
Experimental Equipment and Procedure 
 
The participants received a detailed explanation of the experiment and were 
asked to sign consent forms after they arrived at the laboratory. Their brain 
responses were recorded using a 32-channel inflatable wireless K32S EEG 
headset with a sampling rate of 250 Hz and 16-bit quantisation. A single 
reference electrode was placed on the mastoid behind the ear, and electrode 
impedance was minimised (≤5 KΩ). This headset employed comb-like 
sensors that mitigated interference from hair and made unobstructed contact 
with the scalp for precise brain activity detection. The headset with spring-
loaded dry electrodes and a soft cap maximised contact between all sensors 
and all parts of the scalp to ensure accuracy and quick placement. Scalp 
markers were placed in accordance with the international 10–20 system and 
aligned with underlying cerebral structures. 

The experiment began after the participants had donned the headset and 
steady EEG signals were being received. The participants were asked to watch 
a prerecorded presentation on a computer screen and minimise their 
movements. We first recorded their brain responses for 30 s during resting 
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periods to serve as a baseline, ensuring that an observed response was not 
present before the introduction of experimental tasks. The participants then 
worked mentally to determine which number belonged in the space with the 
question mark of each IQ test item. During the experiment, they were not 
permitted to use a pencil or paper or ask questions. We did not record the 
participants’ answers, because the central focus of this research was problem-
solving processes rather than correctness. 

Short breaks were scheduled between items as intertrial intervals to prevent 
overlapping brain responses from being recorded. In other words, separate 
EEG data for problem-solving processes were acquired for each question. The 
experiment was completed in approximately 25 minutes, including 
experiment description and EEG headset testing. The process was identical 
for all the participants to ensure consistency in the experiment. On average, 
the engineering students spent approximately 10 s on each verbal question 
(mean [M] = 10.06 s, standard deviation [SD] = 3.08 s), 26 s on each numerical 
question (M = 26.22 s, SD = 5.62 s), and 22 s on each spatial question (M = 
21.78 s, SD = 4.12 s), whereas the liberal arts students spent approximately 
10 s on each verbal question (M = 9.84 s, SD = 2.92 s), 28 s on each numerical 
question (M = 28.16 s, SD = 7.14 s), and 25 s on one spatial question (M = 
24.90 s, SD = 6.32 s). 
 
Data Analysis 
 
All collected data were carefully examined, and noise signals, including line 
noise, systematic noise, oculomotor activities, and muscle movements, were 
removed using a finite–infinite response filter with cut-off frequencies of 1 
and 50 Hz. Abnormal trends and extreme values of signals were detected using 
kurtosis with a five z-score threshold and removed manually. The removed 
channels were replaced with averages of the data of the corresponding 
(engineering or liberal arts) group. After removing noise and abnormal and 
extreme channels, filtered EEG signals were split into two phases; from the 
beginning of second 2 to the end of the second 3 (problem-identifying phase) 
and the final second (named as the resolution-reaching phase) (Hanson & 
Bunzl, 2010). To generalise filtered EEG data, we averaged them respectively 
within the verbal, numerical, and spatial categories for each participant. The 
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workflow is presented in Figure 1. All the aforementioned processes were 
performed using the EEGLAB toolbox (Delorme & Makeig, 2004) either 
through native or plug-in routines. 
 

Figure 1. Work-flow of EEG data preparation 
 

In this study, independent component analysis was performed with the 
infomax algorithm (Jung, Makeig, Mckeown, Bell, Lee, & Sejnowski, 2001) 
to process filtered EEG data into separate quasi-independent signal sources. 
The pseudolocations of all quasi-independent signal sources, known as dipole 
locations, were estimated using DIPFIT (version 2.3) with the single 
equivalent current dipole model (Delorme, Palmer, Onton, Oostenveld, & 
Makeig, 2012), a plug-in routine in EEGLAB. According to probe locations 
F3, F4, P3, and P4 of the 10–20 system, estimated diploes were divided among 
seven brain areas: the left frontal region (K1), right frontal region (K2), left 
temporal region (K3), frontoparietal region (K4), right temporal region (K5), 
left parieto-occipital region (K6), and right parieto-occipital region (K7) 
(Figure 2). Corresponding independent components (ICs) to partitioned 
dipoles were averaged by these areas. Averaged ICs were used to represent 
the signal for each brain area. The workflow of dipole partition is shown in 
Figure 3. 
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Figure 2. Montage of dipole partition 

 

 
Figure 3. Work-flow of dipole partition processes 

 
A multivariate vector autoregressive (MVAR) model has been widely used 

to analyse neural activity data and brain connectivity (Bressler & Seth, 2011; 
Friston, Bastos, Oswal, van Wijk, Richter, & Litvak, 2014; Lin et al., 2016) 
and is the commonest operational model of Granger causality (Granger, 
1969). In this study, we adopted the multivariate Granger causality (MVGC) 
toolbox (Barnett & Seth, 2014) to implement the MVAR model to investigate 
brain activity networks in a time domain. Compared with other tools (Delorme 
& Makeig, 2004), MVGC improves computational efficiency and accuracy 



IJEP – International Journal of Educational Psychology, 9(2)   113 
 

 

through asymptotical equivalent methods, namely ordinary least squares 
(OLS) and Durbin recursion, for maximal likelihood estimation. Additionally, 
MVGC improves statistical inference processes. Granger causality clarifies 
that if the past of a variable x1 helps to predict the future of a variable x2 , then 
the general expression of the MVAR model and a pth order MVAR are 
expressed as Equation 1. Let X consist of random variables {x1, x2, …, xT}; T 
is the total time points, xt is an n-dimensional column vector with elements x1t, 
x2t, …, xnt, and t is an index of the time point. In this equation, p is the model 
order that can be determined through order selection. 

 
x! = ∑ 𝑨"

#
"$% ∙ x!&" + 𝜺! (Equation 1) 

 
The Bayesian information criterion was used for order selection in this 

study; Σ is the residual (εt) covariance matrix with white assumption. For the 
stationary assumption, Σ does not depend on time t. For valid Granger 
causality analysis, MVAR coefficients in Equation 1 must be summable and 
stable. In this study, the OLS algorithm was used for parameter estimation. 
The whiteness, consistency, and stationarity of fitted models were confirmed 
(Barnett & Seth, 2014; Ding, Bressler, Yang, & Liang, 2000). The Granger 
causality matrix F was determined by the log-likelihood ratio of reduced and 
full regression. Each element, fji, in F directionally represented the strength of 
variable xi to variable xj, where i ≠ j. A two-sample t test was used to examine 
estimated differences in the brain networks of the engineering and liberal arts 
students. The workflow of the brain connectivity analysis is shown in Figure 
4. 

 
Figure 4. Work-flow of brain connectivity analysis 
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Results and Discussion 
 
The following three sections discuss verbal, numerical, and spatial 
intelligence. In each section, we first present and describe our results from 
Granger causality analysis; that is, the estimated brain connectivity in both the 
problem-identifying and resolution-reaching phases; and subsequently 
discuss their academic and practical implications.  
 

Verbal intelligence. In this study, a two-sample t test with α = 0.05 was 
applied to examine the mean difference in estimated Granger causality f 
values between the engineering and liberal arts students. Higher f values 
indicated stronger effects. The findings of the brain connectivity analysis 
revealed that K4 played a key role in the problem-identifying phase during 
verbal intelligence tasks. The mean f values of the links K4 to K3, K3 to K4, 
and K4 to K7 were significantly higher for the engineering students than for 
the liberal arts students. The analysis also indicated that the hub was located 
in K4 (the frontoparietal region), with bidirectional information transfer to K3 
(the left temporal region) and unidirectional information transfer to K7 (the 
right parieto-occipital region). In addition, the mean f value of the link with 
unidirectional information transfer from K5 (the right temporal region) to K4 
was significantly higher for the liberal arts students than for the engineering 
students. The results of the two-sample t test are listed in Table 1. However, 
no significant differences in brain connectivity were observed between the 
engineering and liberal arts students in the resolution-reaching phase. 
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Figure 5. Estimated brain connectivity in the problem-identifying phase for 
verbal intelligence tasks. 
Note: Arrows represent causality directions (green arrow: engineering > liberal 
arts; red arrow: liberal arts > engineering). 

 
Table 1 
Two-sample t test during PI in the VI task. 
 

 K1 K2 K3 K4 K5 K6 K7 
K1 NaN 0.7393 -0.5646 0.2326 -0.9916 0.2398 0.8537 
K2 0.3481 NaN -0.1144 -1.039 -1.1664 -1.1799 -0.6748 
K3 -0.3301 0.9148 NaN 2.8719** -0.5921 1.3983 0.4331 
K4 1.5698 1.1403 2.5467* NaN -2.2611* -1.1825 1.3321 
K5 -1.0079 0.9141 -0.0767 -0.6772 NaN -1.4027 -0.989 
K6 -0.5792 1.3377 -1.0649 -1.8395 -1.3714 NaN -1.0216 
K7 0.8445 1.4084 -0.4992 2.2682* -0.7534 0.9183 NaN 

Notes: *p < 0.05 **p < 0.01 ***p < .0.001.  
PI refers to the problem-identifying phase; VI refers to the verbal intelligence 

task. 
 
Regarding brain activation during verbal intelligence tasks, Banich and 

Compton (2018) indicated that the right hemisphere recognises the forms of 
verbal messages before the left hemisphere constructs abstract representations 
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of these messages for comprehension. Generally, all the participants in this 
study followed this pattern in which the right temporal region plays a critical 
role in recognising words, the frontoparietal region helps to detect mnemonic 
conflicts, and the left temporal region decodes words. We found that the 
frontoparietal region (K4), the core of the anterior cingulate cortex (ACC), 
served as a hub for rapidly transferring information in the problem-identifying 
phase. The ACC typically controls mechanisms that monitor differential 
familiarity (Bunge, Burrows, & Wagner, 2004). Verbal intelligence often 
involves understanding relationships in statements and drawing conclusions 
from them or completing an argument; these tasks explain the ACC’s role as 
the hub. 

Our EEG analysis continually revealed that compared with the liberal arts 
students, the engineering students demonstrated more activity in the circulated 
process between verbal recognition and message comprehension in the 
problem-identifying phase. By contrast, compared with the engineering 
students, the liberal arts students spent more cognitive resources in 
recognising (which might include appreciating) verbal forms and detecting 
familiarity in that phase. These results suggest that frequently practicing text 
feature identification and verbal message comprehension can enhance the 
verbal problem-solving ability of engineering students, whereas continually 
evoking relevant word families can improve this same type of ability among 
liberal arts students. 

 
Numerical intelligence. In the problem-identifying phase of numerical 

intelligence tasks (Figure 6), EEG data revealed that the mean f value of the 
link with unidirectional information transfer from K5 (the right temporal 
region) to K3 (the left temporal region) was significantly higher among the 
engineering students than among the liberal arts students. In addition, the 
mean f value of the link with unidirectional information transfer from K6 (the 
left parieto-occipital region) to K2 (the right frontal region) was significantly 
higher among the liberal arts students than among the engineering 
participants. The results of the two-sample t test are listed in Table 2. 
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Figure 6. Estimated brain connectivity in the problem-identifying phase for 
numerical intelligence tasks. 
Note: Arrows represent causality directions (green arrow: engineering > liberal 
arts; red arrow: liberal arts > engineering). 

 
Table 2 
Two-sample t test during PI in the NI task. 
 

 K1 K2 K3 K4 K5 K6 K7 

K1 NaN 0.8613 -1.1419 -0.0525 -0.78 -1.0423 -0.0787 

K2 -0.7671 NaN 0.1246 0.102 -1.3734 -2.9398* -1.8396 

K3 0.3222 1.1892 NaN -0.3952 2.2055* 1.1689 0.2103 

K4 1.2449 0.743 -1.2299 NaN -0.1271 -1.8574 0.7677 

K5 -1.0309 -1.2693 0.4234 1.4348 NaN 1.0058 -1.2959 

K6 0.9496 -1.1074 0.2424 0.9608 -0.5243 NaN 1.3423 

K7 0.0365 -1.4683 -0.2 -0.6376 1.1758 1.2864 NaN 
Notes: *p < 0.05 **p < 0.01 ***p < .0.001.  
PI refers to the problem-identifying phase; NI refers to the numerical intelligence 

task. 
 
Regarding brain activation during numerical intelligence tasks, recent 

studies have suggested that the extent of numerical processing depends on the 
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frontal and parietal regions of both hemispheres (Ansari, 2007; Cohen 
Kadoshsend et al., 2010; Kanjliaa et al., 2016). Generally, the frontoparietal 
network (including the prefrontal cortex) of all the participants in this study 
was activated during numerical intelligence tasks. We found that the ACC in 
the frontoparietal region (K4) still acts as a core for promptly transferring 
information in the problem-identifying phase. Numerical intelligence often 
involves figures and thinking, quantity discrimination, and identification of 
odd alphanumeric characters, highlighting the functions of cost calculation 
and error monitoring, which are controlled by the ACC (Apps, Rushworth, & 
Chang, 2016; Bunge et al., 2004). 

EGG analysis revealed that compared with the liberal arts students, the 
engineering students used more cognitive resources for transferring 
information from number recognition and nonverbal communication (the right 
temporal region) (Banich & Compton, 2018; Wisniewski, Wendling, 
Manning, & Steinhoff, 2012) to verbal comprehension and calculation ability 
(the left temporal region) (Banich & Compton, 2018; Takeuchi et al., 2011) 
in the problem-identifying phase. By contrast, the liberal arts students used 
more cognitive resources for transferring information from verbal perception 
(the left parieto-occipital region) (Boccia, Piccardi, Palermo, Nori, & 
Palmiero, 2015) to emotion regulation and thought (the right frontal region) 
(Dennis & Solomon, 2010; Gallup & Platek, 2002) in the same phase. These 
results indicate that the engineering students in this study devoted their efforts 
to calculation directly, whereas the liberal arts students exhibited more 
activity with question reading and understanding. Practicing mathematical 
skills and improving them through daily life tasks and personal reflections 
have proven effective in developing students’ confidence and awareness of 
their numerical competence (Attridge & Inglis, 2013; Shelton, 2016). 

In the resolution-reaching phase (Figure 7), the mean f value of the link 
with unidirectional information transfer from K3 (the left temporal region) to 
K6 (the left parieto-occipital region) was significantly higher among the 
engineering students than among the liberal arts students. Moreover, the mean 
f value of the link with unidirectional information transfer from K5 (the right 
temporal region) to K1 (the left frontal region) was significantly higher among 
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the engineering students than among the liberal arts students. The results of 
the two-sample t test are listed in Table 3. 

 
Figure 7. Estimated brain connectivity in the resolution-reaching phase for 
numerical intelligence tasks. 
Note: Arrows represent causality directions (green arrow: engineering > liberal 
arts; red arrow: liberal arts > engineering). 

 
Table 3 
Two-sample t test during RR in the NI task. 
 

 K1 K2 K3 K4 K5 K6 K7 
K1 NaN 1.4316 1.5772 -0.9515 -3.1065** -1.0458 1.298 
K2 0.7258 NaN 1.4791 -0.687 0.3406 -0.1347 -0.4229 
K3 -0.3053 1.9333 NaN 1.3013 0.7441 0.7465 1.1244 
K4 -1.4704 -0.8596 -1.1851 NaN -0.0273 1.1527 -1.5855 
K5 -0.7932 0.5625 -0.3509 1.1693 NaN 0.8198 -1.7789 
K6 -0.7253 0.9124 2.9045** 0.6578 0.8425 NaN -0.2845 
K7 1.2404 -0.585 0.4952 0.8784 -1.315 1.0403 NaN 

Notes: *p < 0.05 **p < 0.01 ***p < .0.001.  
RR refers to the resolution-reaching phase; NI refers to the numerical 

intelligence task. 
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Compared with their counterparts, the engineering students used more 
cognitive resources for transferring information from verbal comprehension 
and calculation ability (the left temporal region) to verbal perception (the left 
parieto-occipital region) in the resolution-reaching phase. By contrast, the 
liberal arts students used more cognitive resources for transferring 
information from number recognition and nonverbal communication (the right 
temporal region) to mathematical cognition and analogical reasoning (the left 
frontal region) (Aichelburg et al., 2016; Arsalidou & Taylor, 2011) in the same 
phase. These results suggest that the engineering students shifted their focus 
to answer selection, whereas the liberal arts students still focused on logical 
thinking in this phase. 
 

Spatial intelligence. In the problem-identifying phase of spatial 
intelligence tasks (Figure 8), the mean f value of the link with unidirectional 
information transfer from K2 (the right frontal region) to K6 (the left parieto-
occipital region) was significantly higher among the engineering students than 
among the liberal arts students. In addition, the mean f value of the link with 
unidirectional information transfer from K3 (the left temporal region) to K1 
(the left frontal region) was significantly higher among the liberal arts students 
than among the engineering students. The results of the two-sample t test are 
listed in Table 4. 
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Figure 8. Estimated brain connectivity in the problem-identifying phase for spatial 
intelligence tasks. 
Note: Arrows represent causality directions (green arrow: engineering > liberal 
arts; red arrow: liberal arts > engineering). 
 
Table 4 
Two-sample t test during PI in the SI task. 
 

 K1 K2 K3 K4 K5 K6 K7 
K1 NaN 0.181 -2.4434* 2.0338 0.0689 0.4458 0.3108 
K2 -0.9914 NaN -1.4304 1.0794 0.7705 -0.4572 -0.9455 
K3 -0.7294 -0.2413 NaN -1.4627 0.4938 1.1515 1.2212 
K4 0.8548 0.0122 -1.7075 NaN -0.0071 0.1523 -0.2069 
K5 0.4456 1.6171 -0.1733 0.1819 NaN 0.1688 0.6987 
K6 0.034 2.2739* 0.9924 0.3756 1.1798 NaN 0.2915 
K7 0.4022 -1.5419 1.1718 1.8707 -0.5287 2.0504 NaN 

Notes: *p < 0.05 **p < 0.01  ***p < .0.001.  
PI refers to the problem-identifying phase; SI refers to the spatial intelligence 

task. 
 
Regarding brain activation during spatial intelligence tasks, Burgess 

(2008) indicated that to construct spatial cognitions, the hippocampus and 
medial temporal lobe provide allocentric environmental representations, the 
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parietal lobe provides egocentric representations, and the retrosplenial cortex 
and parieto-occipital sulcus enable the representations to interact. Generally, 
the spatial processing network of all participants in this study was activated 
during the experiment. 

Compared with their their counterparts, the engineering students used 
more cognitive resources transferring information from spatial relation 
integration and emotional thought (the right frontal region) to verbal 
perception (the left parieto-occipital region) in the problem-identifying phase. 
By contrast, the liberal arts students used more cognitive resources for 
transferring information from verbal comprehension (questions) (the left 
temporal region) to analogical reasoning (the left frontal region) in the same 
phase. These results indicate that the engineering students in this study 
resolved verbal-form questions based on spatial relation integration (Han, 
Cao, Cao, Gao, & Li, 2016), whereas the liberal arts students attempted to 
retrieve spatial context memory by comprehending questions in verbal form 
(Slotnick, Moo, Segal, & Hart, 2003). Increasing evidence suggests that 
playing with spatially oriented toys (e.g. puzzles and blocks) correlates with 
spatial development (e.g. Jirout & Newcombe, 2015), and innovative 
technologies, such as virtual and augmented reality, add promising 
possibilities to improve spatial problem-solving ability (Dominguez, Martin-
Gutierrez, Gonzalez, & Corredeaguas, 2012).  

Analysis of the resolution-reaching phase (Figure 9) revealed critical roles 
of K5 and K7. The mean f values of the links K5 to K7, K5 to K2, and K3 to 
K7 were significantly higher among the engineering students than among the 
liberal arts students. We found that the hub was located in K5 (the right 
temporal region) with unidirectional information transfer to K2 (the right 
frontal region) and K7 (the right parieto-occipital region). In addition, K7 was 
observed to play a critical role with unidirectional information transfer from 
K3 (the left temporal region) and K5. Furthermore, the mean f value of the 
link with unidirectional information transfer from K1 (the left frontal region) 
to K2 was significantly higher among the liberal arts students than among the 
engineering students. The results of the two-sample t test are listed in Table 
5. 
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Figure 9. Estimated brain connectivity in the resolution-reaching phase for spatial 
intelligence tasks. 
Note: Arrows represent causality directions (green arrow: engineering > liberal 
arts; red arrow: liberal arts > engineering). 
 
Table 5 
Two-sample t test during RR in the SI task. 

 K1 K2 K3 K4 K5 K6 K7 
K1 NaN 0.181 -2.4434* 2.0338 0.0689 0.4458 0.3108 
K2 -0.9914 NaN -1.4304 1.0794 0.7705 -0.4572 -0.9455 
K3 -0.7294 -0.2413 NaN -1.4627 0.4938 1.1515 1.2212 
K4 0.8548 0.0122 -1.7075 NaN -0.0071 0.1523 -0.2069 
K5 0.4456 1.6171 -0.1733 0.1819 NaN 0.1688 0.6987 
K6 0.034 2.2739* 0.9924 0.3756 1.1798 NaN 0.2915 
K7 0.4022 -1.5419 1.1718 1.8707 -0.5287 2.0504 NaN 

Notes: *p < 0.05 **p < 0.01 ***p < .0.001.  
RR refers to the resolution-reaching phase; SI refers to the spatial intelligence 

task. 
 
Compared with their counterpartsCompared with their counterparts, the 

engineering students used more cognitive resources for transferring 
information from nonverbal communication (the right temporal region) to 
spatial relation integration and emotional thought (the right frontal region) and 
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spatial attention (the right parieto-occipital region) as well as from verbal 
comprehension (the left temporal region) to spatial attention and visual 
perception (the right parieto-occipital region) (Corbetta & Shulman, 2002; 
Malhotra, Coulthard, & Husain, 2009) in the resolution-reaching phase. By 
contrast, the liberal arts students used more cognitive resources for 
transferring information from spatial thinking and analogical reasoning (the 
left frontal region) to spatial relation integration and emotional thought (the 
right frontal region) in the same phase. These results suggest that the 
engineering students activated their spatial processing network to recognise 
spatial configurations, maintain spatial awareness, and integrate spatial 
relationships (Malhotra, Coulthard, & Husain, 2009; Sakurai, Hamada, 
Tsugawa, & Sugimoto, 2015), whereas the liberal arts students built spatial 
relationships through contextual information and reasoning in this phase. 

 
Research limitations. The use of EEG generated several research 

limitations. First, problem-solving is a complex process; however, 
neuroscience studies have typically inspected small-scale and simple 
cognitive processes. Complicated connections and patterns of brain activity 
render logical conclusions difficult. Second, the small number of participants 
limits the generalisability of the current findings. Thus, whether the results 
and conclusions would be the same for a general population, including 
different levels of academic performance and diverse disciplines, remains 
unclear. Third, the three types of intelligence test questions used in this study 
limit the experimental findings. Additional types of IQ test questions and 
supplementary items can help increase validity. 
 

Conclusions and Reflections 
 
Despite the aforementioned limitations, three broad conclusions can be drawn. 
(i) Regarding brain activation during verbal intelligence tasks, major 
differences between the engineering and liberal arts students were observed 
in the information flows of verbal message comprehension and contextual 
familiarity detection in the problem-identifying phase. However, no 
significant difference was observed between the two groups in the resolution-
reaching phase. (ii) Regarding brain activation during numerical intelligence 
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tasks, major differences between the two groups were observed in the 
information flows of mental calculations and message comprehension in the 
problem-identifying phase and those of verbal perception and analogical 
reasoning in the resolution-reaching phase. (iii) Regarding brain activation 
during spatial intelligence tasks, major differences between the two groups 
were observed in the information flows of spatial relation integration and 
spatial context memory retrieval in the problem-identifying phase and those 
of spatial attention and contextual relation integration in the resolution-
reaching phase. 

The aforementioned research findings indicate the differences in problem-
solving processes between engineering and liberal arts students. Broadly 
speaking, the engineering students in the experiment tended to focus on 
certain tasks, whereas the liberal arts students favoured the contextual aspects 
of a task. Each can benefit from the other in terms of professional cultivation; 
that is, engineers should think about how invented technologies can be used 
in diverse sociocultural contexts and refine them accordingly, whereas liberal 
arts professionals should learn how engineers realise unusual ideas. Few 
studies have examined differences in problem-solving processes between 
students of distinct disciplines, but the importance of integrative intelligence 
to neuroscience research should be highlighted. This original provides 
potential for future inquiries on this research theme. 
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