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Abstract
In this work, the approximate analytical solutions of both the modified Klein—-Gordon equation and modified Schrddinger
equation have been obtained with a newly proposed potential called modified screened cosine Kratzer potential (MSCKP)
under the condition of equal scalar and vector potentials. The potential is a superposition of screened cosine Kratzer
potential and some exponential radial terms. The aim of combining these potentials is to have an extensive application.
The energy shift and the energy eigenvalue are calculated using the procedure of improved approximation of the
centrifugal term, Bopp’s shift method, and perturbation theory. We show that the new energy shift depends on the global
parameters characterizing the noncommutativity space-space and the potential parameter (De, re, ) in addition to the
Gamma function and the discreet atomic quantum numbers (j, I, s, m). The present results are applied in calculating both
the energy spectrum for a few heterogeneous (LiH, HCI, NO) and homogeneous (H2, 12, O2) diatomic molecules.
Furthermore, we have applied our study to calculation the modified mass of the heavy quarkonium system such as the

charmonium ¢ and bottomonium bb under MSCKP. We have also discussed some special cases of physical importance.

Keywords: Klein-Gordon equation, Schrddinger equation, the screened cosine Kratzer potential, Noncommutative
quantum mechanics, star products.

Resumen
En este trabajo, las soluciones analiticas aproximadas tanto de la ecuacién de Klein-Gordon modificada como de la
ecuacion de Schrodinger modificada se han obtenido con un potencial recientemente propuesto llamado potencial de
Kratzer de coseno filtrado modificado (MSCKP) bajo la condicién de potenciales escalares y vectoriales iguales. El
potencial es una superposicion del potencial de Kratzer de coseno filtrado y algunos términos radiales exponenciales. El
objetivo de combinar estos potenciales es tener una amplia aplicacidon. El desplazamiento de energia y el valor propio de
la energia se calculan mediante el procedimiento de aproximacion mejorada del término centrifugo, el método de
desplazamiento de Bopp vy la teoria de la perturbacion. Mostramos que el nuevo desplazamiento de energia depende de
los pardmetros globales que caracterizan el espacio-espacio de no conmutatividad y el parametro de potencial (De, re, o)
ademas de la funcién Gamma y los nimeros cuanticos atémicos discretos (j, I, s, m). Los presentes resultados se aplican
en el calculo del espectro de energia para unas pocas moléculas diatémicas heterogéneas (LiH, HCI, NO) y homogéneas
(H2, 12, 02). Ademaés, hemos aplicado nuestro estudio para calcular la masa modificada del sistema de quarkonium

pesado como el charmonium ¢ y el bottomonium bbbajo MSCKP. También hemos comentado algunos casos especiales
de importancia fisica.

Palabras clave: ecuacion de Klein-Gordon, ecuacion de Schrédinger, potencial de Kratzer del coseno filtrado, mecénica
cuantica no conmutativa, productos estelares.

I. INTRODUCTION

The energy eigenvalues and corresponding wave functions
give significant information in describing various quantum
systems in both the relativistic and non-relativistic regime
using both Schrddinger, Klein-Gordon, and Dirac equations
with different potentials. The standard Kratzer potential
(Kratzer potential) [1] is one of most interest by researchers
in the fields of physics and chemistry; it has been presented
and investigated by many researchers. This potential has
played an important role in the history of molecular and
quantum chemistry [2]. Furthermore, this potential
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approaches infinity as the inter-nuclear distance approaches
zero, due to the repulsion that exists between the molecules
of the potential and has a long-range attraction and a repulsive
part [3]. The energy spectrum of the diatomic CO molecule
with different quantum numbers can be successfully
accounted for by applying the Kratzer potential [4]. Many
techniques have been developed to obtain the solutions of
relativistic and nonrelativistic wave equations under the
Kratzer potential such as the asymptotic iteration method [5],
the factorization method [6], the algebraic approach [7], the
Nikiforov—Uvarov method [8] and others. Currently, there
has been great interest in combination with two or more
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potentials in both the relativistic and non-relativistic regimes.
The aim of combining these potentials is to have an extensive
application. Purohit, K. R. et al. have obtained an
approximate solution of the Klein-Gordon and Schrédinger
equation for the screened cosine Kratzer potential in D
dimensions, within the framework of Nikiforov—Uvarov
method. They obtained bound state energy eigenvalues for a
few heterogeneous (LiH, HCI, NO) and homogeneous (Hz, I,
0,) diatomic molecules [3]. This work, motivated by many
various recent studies such as the non-renormalizable of the
electroweak interaction, quantum gravity, string theory, the
noncommutative relativistic and nonrelativistic quantum
mechanics has attracted much attention of physical
researchers [9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. The
noncommutativity in space-time is not a new and modern
idea, it was proposed by W. Heisenberg in 1930 and then
developed by H. Snyder in 1947. In 2017, we have studied
the new modified Kratzer-type potential in the context of
nonrelativistic two-dimensional noncommutative quantum
mechanics [19]. The main objective of this work is to develop
the study of Purohit et al. within the framework of the Klein
Gordon equation and Schrédinger equation but in the context
of symmetries of noncommutative quantum mechanics. For
the purpose to get more investigation in the microscopic
scales and from achieving more scientific knowledge of
elementary particles and diatomic molecular in the field of
nano-scales. The relativistic and nonrelativistic energy levels
under the modified screened cosine Kratzer potential
(MSCKP) have not been obtained yet in the context of the
NCQM. Furthermore, we hope to find new applications and
profound physical interpretations using a new, updated
model of the MSCKP, this newly potential takes the form:

b
Vie(r) = — (% — 2:2) e~ cosh(Sar)
as_ by _ o
Sec(r) = — — - ﬁ) e~ cosh(Sar)
N 0Vsc(r) L@ 2
Vsc(r) = V(M) — or + 0(@ ) (1)
5. F) = 5,0(r) - 2508 4 o (67)

Wherea, = 2D,1,, b, = 2D,1? (r.is the equilibrium bond
length, D, is the dissociation energy, 6 and aare the screening
parameters while r is the interatomic or particle distance).
The new structure of NCQM based on new covariant
noncommutative canonical commutations relations CNCCRs
in Schrodinger, Heisenberg, and Interactions pictures (SP,
HP, and IP), respectively, as follows[20, 21, 22, 23, 24, 25,
26, 27, 28, 29, 30]:

{[J?y’fﬁv] = [2,@©:p,@®)] = [RL©®);PL(®)] =
(2,52, = [2,©);2,@)] = [£L(0); 2L(©®)] =

lheff (2)

We are generalized the CNCCRs to include HP and IP. It
should be noted that, in our calculation, we have used the
natural unitsc = h = 1. Here h,sfis the effective Planck
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constant, 6V = ¢#V@ (0 is the non-commutative parameter),
which are an infinitesimals parameter if it compared to the
energy values and elements of antisymmetric 3 x 3 real
matrix and &, is the identity matrix. The symbol () denotes
to the Weyl Moyal star product, which is generalized between
two ordinary functions f(x)g(x) to the new modified form
fF@®GR) = fF(x) * g(x) in the symmetries of (RNC: 3D-
RS) as follows [31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41]:

(fg) () = (f xg)(x) =
exp (i@e’“’ axu axv)f(xﬂ)g(xv),

+ 0(62).

Xu=Xy

The indicesy, v = 1,3 and 0(62)stands for the second and
higher-order terms of the NC parameter. Physically, the
second term in Eq. (3) presents the effects of space-space
noncommutativity properties. Furthermore, the new unified
two operators £ (t) = (%,0rp,)(0)and EL(¢) = (2Lor
A#)(t) in HP and IP are depending on the corresponding new
operators fu = %, or p, in SP from the following projections
relations, respectively:

0 0xf 9%g @)

{f}f(t) = exp(iH°T) &5 exp(—iHT),
&L(t) = exp(iH3ET) &5 exp(—iHSET),

{f[f (t) = exp(iHss_, T)*Es* exp(—iHZE_,T), @
§u(®) = exp(iflye_opT) *6i* exp(—if3 orT):
WhereT = ¢ — t,, the three unified coordinates¢; = (x, or

pu), IHOE (xuor pH)(t) and &/,(t) = (x,ﬂor p[t)(t) are
represented in three relativistic quantum mechanics pictures,

while the dynamics of new systems ———= df”( ) are described from

the following motion equations in the modlfled Heisenberg
picture as follows:
dfu( ) 5,4 @ _

afu (®)

= [e(0), HEC] +

= [ He ] + =5~

de(t) (5)

The operators H¢ and H:¢ are the free and global
Hamiltonian for SCKP while H$S_,. and HZS_,. the
corresponding Hamiltonians for the MSCKP. The present
investigation aims at constructing a relativistic
noncommutative effective scheme for the MSCKP. The
outline of the paper organizes as follows: In the next section,
we briefly review the Klein-Gordon equation KGE with
SCKP. Sect. 3 is devoted to studying the modified Klein-
Gordon equation MKGE by applying the ordinary Bopp's
shift method and improved approximation of the centrifugal
term to obtain the effective potential of MSCKP. Besides, via
perturbation theory we find the expectation values of some
radial terms to calculate the energy shift produced with the
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effect of the perturbed effective potential. Sect. 4 is devoted
to present the global energy shift and the global energy
spectra produced with MSCKP in the RNCQM symmetries.
In Sect. 5, we treated the energy spectra for a few
heterogeneous (LiH, HCI, NO) and homogeneous (Hz, Iz, O2)
diatomic molecules in three-dimensional noncommutative
nonrelativistic (NC: 3D-RS) under MSCKP. The next section
is devoted to determining the new masses of the heavy
guarkonium system such as the charmoniumcc and
bottomonium bb under MSCKP. We generate the solutions
of a few special potentials mainly found from our general
form solution in Sect. 7. Eventually, in Sect. 8, we presented
our conclusion of this paper.

{_A + (# + Ssc(r))z - (Enl -

Il. REVISED OF EIGENFUNCTIONS AND THE
EIGENVALUES FOR THE SCREENED COSINE
KRATZER POTENTIAL IN RQM

As already mentioned our objective is to obtain the spectrum
of the MKGE with MSCKP in (RNC: 3D-RSP) symmetries,
we need to revise the corresponding screened cosine Kratzer
potential model in symmetries of ordinary relativistic
guantum mechanics RQM [3]:

o) = — (2= 22 g-ar cosn(s

() = — (7— 2r2)e cosh(bar),

Sec(r) = — (% — 2%) e~ cosh(Sar). (6)
To achieve this goal of our current research it is useful to
make a summary for the Klein—-Gordon equation KGE with
screened cosine Kratzer potential for a system of reduced
massuin three-dimensional relativistic quantum mechanics

[3I:

SC(T))Z}W(T 0,0)=0=>

1(1+1)

(S + 2L 1 (B2 — M?) = 2B Ve (r) + iSec () + V() — S%01) =S} Ry () = 0 7)

dr2  rd

The vector potential V. (r) due to the four-vector linear
momentum operator A“(Vsc(r),/f = 0) and space-time scalar
potentialS,.(r) while E,; represents the relativistic energy
eigenvalues in 3-dimensions and [ represents the principal and
orbital quantum numbers, respectively. Since the screened
cosine Kratzer, potential has spherical symmetry, allowing the

{drz ('u -

If we introduce the shorthand notation VF(r) =
2(EniVoe (r) + 1S, (1) = VE() + 520 + 52 and
ofr = u* —E5, we obtain the following second-order
Schrodinger-like equation:

{d — (Bsfy + Vafr ) fom®) = 0. 9)

dr?

For the equal vector and scalar potentialV,.(r) = S,.(r), the
effective potential reduces to the form:

(5 — @2 — B2) + 2Do (B + 1) (%

The Ref. [3] gives the energy eigenvalues E,,;of the KGE with equal scalar and vector potential ===

wave function ¥(r, 6, ¢) as follows:
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- Z(Enlv.'sc (r) + uSc (T)) + V_;% r)—

solutions of the time-independent KGE of the known
form¥(r, 6, ¢) = R,,;(r)Y/"(0,¢) to separate the radial
R, (r) and angular Y;™ (8, ¢)parts of the wave function and A
is the ordinary 3-dimensional Laplacian operator. To eliminate
the first-order derivative, we introduce a new radial wave
function to the formy,,; (r) = rR,;(r), thus Eq. (7) becomes:

S2.(r) = 52 () = 0, (®)

VSEr(r) = 2(En + Vs (r) + 152 (10)
In the case of the nonrelativistic limit, Eq. (8) Becomes a
Schradinger equation with the interaction potential2V;.(r). To
aim for V,.(r), not 2V,.(r)in the interaction potential under
the nonrelativistic limit, (Kaushal R. Purohit et al.) and
(Xiang-Jun Xie et al.). applied the scheme proposed by
Alhaidari et al. [3, 42, 43] to rescale the vector potential
V.. (r)and scalar potential S,.(r), and rewrite Eq. (8) in the
form of

—Z) e~ cosh(Sar) — M} () =0. (11)

V“(r) S“(r)and the corresponding total
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1(1+1)+De(Enp+p)(a?r, —are)(re re)

EZ — u? = 4a?l(l + 1) + 2D, (E,; + w)(a?r? — ar,) — 4a? = (12)
2<n+ + /Dere (Enl+u)+(l+ ) )
And I1l. SOLUTIONS OF MKGE UNDER MSCKP IN
W(r,0,¢) = Ny - uknt(1 — w)sntpZintm=(q (RNC: 3D-RS) SYMMETRIES
20)Y"(6,) (13)

At the beginning of this section, we shall give and to define a
formula of MSCKP in the symmetries of relativistic
noncommutative three-dimensional real space (RNC: 3D-

Here  {u=1/2+4D12(Ey +w) + (1 +1/2)2, u=

exp(—2ar), ky = \/“ LT I+1)+ De(Enz+#)(t§2rez-are) RS). To achieve this goal it is useful to write the MKGE by
2a applying the notion of Weyl Moyal star product which have

andN,,, = J - a:z!z(zzaiz;1)F(2knz+2<nz+n+1) is the seen previously in Eq. (3), on the differential equation that
o N2 R Rk 4t D26 n+ 1) satisfied by the radial wave function y,,,(r) in Eq. (11), thus,
normalization constant. the radial wave function y,,; () in (RNC: 3D-RS) symmetries

becomes as follows [44, 45, 46, 47, 48]:

2

2
{d— (W — B2) + 2D, (B + 1) (T; - L) ~ar cosh(Sar) — L 1)

dr? 212
{drz (W% = E2) + 2D, (Ep + 1) (g— ) ~ar cosh(Sar) —

}an(r) =0=

’“*”} 2 (r) = 0. (14)

It is well known that the Bopp’s shift method has been applied s s as Ow ¢ .5 s

effectively and has succeeded in simplifying the three basic (xid, i) ( =Xy~ 5 PvPu= pﬂ)

equations: modified Schrédinger equation MSE, MKGE and »

modified Dirac equation MDE with the notion of star product (xf,pH)(@® = ( L () = x] () - —Pf ®), 9 =} (0)
to the Schrédinger equation SE, KGE and Dirac equation DE

with the n(_)tlop of ordlrjary product, respectively. The r_esults (x,ﬂ,pfl)(t) = ( t) = x,i(t) ‘“’ L), p (t) =pf (t))
of the applications of this method were very useful and yielded

promising results in many physical and chemical fields. The (16)
method reduced MSE, MKGE, and MDE, to the SE, KGE, and IR

DE, respectively, under the simultaneous translation in space- This allows us to find the operator r? = 2. = r? — L0 in the
phase. The CNCCRs with star product in Eq. (2) become new symmetries of (RNC: 3D-RS) and (NC: 3D-RS) [47, 48, 49,
CCCRs without the notion of star product as follows [38, 39, 50]. It is convenient to introduce a shorthand notation which
40, 41, 42, 43, 44, 45]: will save us a lot of wrltlng Tpe = r the previously relatlon

CHN aH reduced to ther? = #2 = r? —L@ The coupling L@
[5. 2] = [# @5/ 0] = [%©O.2.®] = 8. (15) equals(Ly©;, + L0y + L,0,5) , here L,L,andL, are

. . . present the usual components of angular momentum operator
The generalized positions and momentum coordinates

(’?wpii) (x#,pﬁ)(t) and (’?;It ﬁ{l)(t)in the symmetries Lin RQM while the new noncommuta’Fivity parameter 0,
(RNC: 3D-RS) and (NC: 3D-RS) are defined in terms of the equals 6,,/2. According to Bopp’s shift method, Eq. (14)
Corresponding coordinates (x[f'pﬁ)! (xﬁ[’pllj)(t) and becomes Similal’ to the f0||0Wing ||ke the SChrbdinger
(xﬂ.p,ﬂ)(t) in the symmetries of RQM And QM via, equation (without the notions of star product):
respectively [38, 39, 40, 41, 42, 43, 44]:
d2 r, 12 I(+1)
{ﬁ = (12 = Ei) + 2D (Eny + 1) (—e - 2;) e cosh(8ar) — } na (1) =
8\ -af P
(& — 2 — E2) + 2D (B + 1) (%~ 25) ™" cosh(Sar) - ““}xnrmr) =o. (17)
obtainV%.(r) = D, (;—i - —) (1 + e~297), At the first order

For the simplifier we introduce the reduced potential V;7.(r) =

of the parameter, ®we apply the Taylor expansion as follows:
D, (T—e - r_gz) e~ cosh(Sar) and for§ =1, we can P dd y P

T 2r
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. L@ vy, Wse _ _p (Te _ Te -2ary _
V) = Vi) - 2D L o(e?) . (19) =D, (Zrz er) (1+e727) — 2aD, (3¢ -
Now, it’s easy to obtain the following results: i) e-2argnd L ~ L + Lo + 0(@2) (19)
472 72

So far, we can rewrite the new modified radial part (new differential equation) of the MKGE in the symmetries of (RNC: 3D-RS) as
follows:

86 -
{m (W = ) = 2B + WOVEC) — 2 4 2(y 4 ) SO2r) _ 1eD L@}xnz(r) = 0. (20)
Moreover, to illustrate the above equation in a simple Moreover, V5, ;- (r) and V¢, (r) are given by the following
mathematical way and attractive form, it is useful to enter the relations:
10
following symbolV,5¢,.. (1), thus the radial Eq. (20) becomes: V() = 2(Em + V() + (+1) 23)
And
(&~ B + Viars O]t = 0, (21)
1(1+1) Z(Enl+ﬂ) aVsc(T)
i Vit (r) = [0 - Lo O] 15 (9)
Ve =V Vs . 22 I . .
ne—eff (1) = Vileps (1) + Vpere (r) (22) Substituting Eq. (19) in (24) gives
l(l"’l) 2ar re? —-2ar Il I
Vi (r) = — 2 + D~ (- %) A+ e —a (- E)e2) | Le. (25)

A direct simplification gives

21(1+1)+(Eq+1)Derd —2a o—2ar
Voo (r) = [P ERMOPTE 4 (E + p)D, {12 Lo, ()

2r4 2r4

T re
to3t (r, — ar?

Eqg. (21) cannot be solved analytically for any state because an excellent approximation to the centrifugal term [3, 53,
of the centrifugal term and the studied potential itself. The 54, 55, 56, 57]:

effective perturbative potential is given in Eq. (23) has a

strong singularity r — 0; we need to use the improved 1. 4a? = 1 2a 7)
approximation of the centrifugal term proposed by Badawi r?  (1-exp(-2ar))? r 1-exp(-2ar)’

et al. [51], this method proved its power and efficiency
when compared with Greene and Aldrich approximation
[52]. The approximations type suggested by (Greene and
Aldrich) and (Dong et al.) for a short-range potential that is

This allows us to rewrite the terms of the effective
perturbative potential given in Eq. (26) as follows:

1 4a? _ 4a? - 1 16a* 1 4q? _ 4a? . e 29" 16a’u
2 (1—exp(=2ar))? (1-w? r* (1-w?* r2 (1-exp(-2ar)? (1-—u)? rt T (1—uw)?

—_

1 2a 2a 1 8al 2a 2a e~2ar 8alu
- = = 52— 00—, —= = = =~
r 1—exp(=2ar) 1—-u 13 (A-w? r 1-exp(-2ar) 1-u r3 (1-w)?¥

1 4q2 _ 4q? e~2ar 42y
and r2 " (d=exp(=2ar)? ~ (1-u)? = 2 (1-w?" (28)

Thus, the new form of the perturbative effective potential is given by:

sc _ [8(21(1+1)+(Ep+p)Derd)at _satrdu | area® | 4dd(re—arf)u | 4readu)]7 -
Vper: (W) = [ (a-w* + (B + '“)De{ (a-w* + a-w)3 + (1-w)3 + (1—u)2}] LO. (29)
The SCKP is extended bymcludlng new terms proportlonal /A998 eff(r) is also proportional to the infinitesimal
1
with the radial terms_—-=, - u)4 L as u)s' a- u)s and vector® = 0116 + 012, + O13¢,. This allows us to
(1 to becomes MSCKP in (RNC-3D: RSP) symmetries. consider the additive effective potential Vyg..(r) as a
The addltlve part V5, () of the new effective potential perturbation potential compared with the main potential
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(parent potential operatorV;f(r)) in the symmetries of
(RNC: 3D-RS), that is, the inequality
Vipert M) <<V7E ;¢ (r)has become achieved. That is all the
physical justifications for applying the time-independent
perturbation theory to become satisfied. This allows us to
give a complete prescription for determining the energy
level of the generalized nt"* excited states. Now, we apply

the perturbative theory, in the case of RNCQM, we fmd the

1 u
expectation values of the radial terms 0?0t o u)s’
u

and Laklng into account the wave function
(1-w)3 (1

which we have seen previously in Eq. (13). Thus, after
straightforward calculations, we obtain the following
results:

We have applied the property of the spherical harmonics,

1 4+ 2 1
— N2 2kni (1 — 20281 | pCRnt28ni-1) 4 _
<n, ILm —(1 0y n, l,m> anfo u=nl (1 —u)*nl [Pn (1 2u)] —(1 oy dr,
<n Lm|—2—|n1 m> = N2 v u?kni(1 — )% [P(Zk"”x"l_l)(l - 2u)]2 Y
IS (1_u)4 )y by - nl 0 n (1_u)4 )
nl lm P EEREY) nl lm = l 1 —Uu
1-w?3 “Jo
u v (7 2Ky 20 [ p@knr28m-1) Z u
<n, I,m a—wp n,l,m> = N2 i uZkni (1 — y)2n [Pn nbetnlT (] — Zu)] ﬂ_—u)gdr;
+o0 (2kn1,28m—1) z
<n L | ) N2 [ k(1 = w2 [P (1 — 0] . (30)
1 dz z+1

2u, we haveu = %,dr =——andl —u = —. From the

which has the formfY™(9,p)Y;™ (8, ¢)sin(8) dodp = . . 2a 1=

61['6mm'-

We haveu = exp( — 2ar),
obtain dr = —%% After introducing a new variablez = 1 —

asymptotic behavior of Eq. (21), when r -0 (z - —1)
andr — 4o (z = 1), this allows to reformulating Eq. (30) as
follows:

this allows us to

nl, m> 1= Z)?ni= (1 + 7)2om=4 [ pFnt2ni 1)(z)] dz,

1
o = (1l | =5 ﬁj (

Ny i 2k, 28m—1 2
nlm> ST f (1 = 2)%nt(1 + 2)%m= [P0 ()| g,

u
Buim = <n, I,m |m

NZ +1 2
2kp—1 2¢n-3 | p@kn12¢ni-1)
Cnlm_<nlm|ﬁnlm> m]l(l—Z) l (1+Z)<l [Pn (Z)] dZ,
u NZ i ok 2 (2kn1,28m— 2
= - om0 _ n {ni—3 n28n1i—1)
Dpim = <n, l,m|(1 e n,l, m) S Tn 2k 1af (1 — 2)?kn1(1 + z)%n [Pn (z)] dz,
+1 _ 2k, 20p—1 2
Enym = <n L m|(1 n,l, m> 22<nl+2knzaf— (1 — z)%*ni(1 4 z)%m=2 [Pn( v24n1 )(z)] dz. 31)
u Ng +1 2k,
For relieving the burden of writing, we will provide useful <(1 _ u)4> = m[ ) (1 -2 1
abbreviations(n, [, m|A[n, [, m) = (A)(nim) = Anim- FOr the ©.Lm) + 7)otz -
ground staten = 0, we haveP,**0"**'™ () thus the above '
expectation values in Eq. (31) reduce to the following simple 1 N +1 —
. B E——— = — 1 — ol— 1
form: <(1 = u)3>(0’l’m) kg g | (1=
2801-3¢4
1 N2 +1 +2) z,
(=) =gy | -2
(1—uw)* o.Lm) 22801+2ko1=3 1
+ z)¥o~*dz,
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u N021 +1 B u
-— =0 1 — z)%koi(1 om = < >
<(1 - u)3>(01m) 2%outZkota ], (=27 SRS Sl D AOYR
+ Z)2Z01_3dz' — N_Ozl F(Zkol + 1)F(2(01 - 3)
2a (2kq, '{ 201 — 3) (2ko; + 280, — 3)°
u __ Ny +1 2k 28012 =< >
1- o1+ o~4dz. Coim =
<(1—u)2>(0‘l‘ ) 22§ol+2kolaf_ (1 =2)*0(1+2z) z om =1 Z )3 oum
(32) _N§ I(2kg)I (24, — 2)

T 2a (kg + 209, — )T (kg + 205 — 3)’
Where ¢y = 1/2 + /D12 (Eo + 1) + (L + 1/2)2, (2kos F 2000 = 3 (2os + 200

Dotm =\e7—3
2_g2 2,2 _ 1-— 3
kor = J“ By (1 4+ 1) 4+ DeCort(@riare) gy A o
e 2@ _ Ny I'(2ko; + DI(28y — 2)
e Compang 9, (2) wi 2 o+ 8 =D ko T =00
A ol oL o= _N§ T@koi+1)I(24g1+1) (34)
integral of the form [58]: om =\ Tz o) 28 @eort2lo- D 2o+ 21
+1
f (1 — )% (1 + )PP ()PP (x)dx Where By, = 2¢&o; + 2k;. For the first excited staten = 1, we

havePl(ZR”’zz“_l)(z) =g +hy (1 —2), withgy; =2k +

a+f+1 . .
2 Ihtat+DIn+p+1) 1, hy = —(kq; + &y + 1/2), the expectation values in Eq.

= =
@n+a+p+DIn+a+pf+Dn! ™ (31) are reduced to the following simple form:
n+a n+p 1 — —
(1 "1+ x)" Fdx <(1 u) > =Ayum =Ty +Tiz + Tis,
(1,I,m)
22n+“+ﬁ+1f(n +ta+DI(n+B+1) _ _
< = Bym =To1 + Top + Tz,
T nta+p+DICn+a+p+1) (1-w* ,1,m)
for (n =0,1,...). (33) 1
<(1 0)? > = Cum =Ts1 + T3 + T3,
A direct calculation gives the expectation values in Eq. (32) (a.Lm)
as follows: <( BE > =Dim =Ty +Tap + Tos
u (1,I,m)
<ﬁ>(“ ) = Eyum =Ts1 +Ts2 + Ts3. (35)
,Lm

where the 15-elements T; j are given by:

gLNT, f+1 1 = 2)2ku=1(1 4 7)2%u4¢ gLNT f+1 1 = )2k (1 + 7)2u—4q
T. 22¢11t2k1 =3y —1( Z) ( Z) z T 228412k =2, _1( Z) ( Z) Z T
11 2 o 21 2 o 31
hi{;N +1 _ hi;N +1 -

(?2) = | st [0, (1= )Pt (1 + 2)%u*dz |, (?z) = | e ), (L= 2?2 (1 + )% utdz |, (?z) =
13 2 h, N2 23 2 hy1N2 33
st [ (1= D™l + )%t dz) St [ (L= DMt (1 + 2)%utdz)
g1INE +1(1 _ Z)Zkll—l(l + 2)2(11—3dz
22<11+2k11—2a -1

NG

+1 —_
S22k 2 -1 (1 - Z)Zkll+1(1 + Z)Z{“ 3dz |,
2guhuNg  (+1 N2k 201;-3
St |, (1= 2)%u(1 + 2)*13dz

22{1l+2k11—2a

2 v2
gulNi +1 - S
e [, (1= 2)?(1 + 2)Xu3dz

T, 2 2 o Tsq

;‘*2 = | e, ), (1= 2)? 2 (1 + 2)%03dz and ;52 =

43 2guhyNy  +1 2k +1 2¢1;-3 >3
St rakgeis ), (L= 2)5 (1 + 2)*1 7 dz)

22(11+2k11—1a
IUNL_ (L1 = )2kl + 2)2u-2dz +

22(1l+2klla
W3NGy +1 2kq7+2 202
22(11+2k11af_ 1 =2)" ™51 + 2)*17%dz | (36)
2911h lN +1 k _
22(L+1zklt; f_l (1 = 2)?k*1 (1 + 2)*%u~2dz)
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We apply the integral in Eq. (33) to obtain the following results:

T, 1 Xy~ 9l Xq=4)
7. ) = N_fll 42, @R+ (2¢11-3)
1217 % U (Xy~2)(Xq-2)

Tis \4 . M@k DI =3) /

JuM ™o Zr ek -3)

2 T(2k1)T(284;-3) \

T2 3

T, 1 (Xy-2)r(Xy-2)
<T42> - N11| 4n?, [(2kyi+3)I'(2¢y—2) |

X1r'X1p)
Tus \4 . T2k 42)I(2311-2) /
G o - Drog -0

2 T2k +1)I(2{1;-2) \

(2§ +1)I'(X1;+2)
2X1U72r (2K +2)T(2011+2)

WithXy; = 2kq; + 20, N =
follows:

2 T2k )I'(21;-3)

2 F(2k11+1)r(2<11—3)
T 1 (Xq-3)(Xq-3)
| (100 = M| 42 TGS
"\ 227 2a U™ (X~ DI (Xqy—1)

T3
N
rorGe |,<T32)_ | 4
T
[(2kqy+2)T(284;-3) 33
\4gllhll—ll - / \

(X11—2)F(X11-2)

2 I(2kq+2)1(281;-3)

2 T(2kqPI(2811-2)
\ W (xyy=3)r0xy-3)

2 T(2kq1+2)11(284;—2)
X -DI'Xq-1)
T2k +1)11(2811-2)

WAL (e -2)rn-2)
2 T2k +1)1(284-1)
-1

T.
and Top | = M| gp2, 2P G | (7
T52 2a Xy + 1) +1) '
53 4q. b, DRRFDI28-1)
guu Xyl (X1p)

. This allows us to obtain the expectation values in the first excited state (1, [, m)as

I'(2k+1)1'(281;-3)

U Xy - -4) i

X11—3)(X11-3)

X11-2)I'(X1;-2)
Alim 12[ T'(2kq+1)11(281;-3) +4 hZ T'(2kq+3)11(2811— 3)
X1~ DIX1-1)

= 2 [(2k1DI(284;-2) + 4h2 I'(2k11+2)17(284-2)

WL (. -3)rQry -3)

A 20+ B+1r(2k 1 4+2)1(281;-3)
Guh (X11=2)I(X1;-2)
I(2kq1+1)I(21;-2)

a | I -3 -3)

X1 —DI'X1-1)

+ 44,8y (38)

X11-2)I'(X1;-2)

Dllm I k' Bl b N
2 Tk +1)I(281;-2) 2 I'(2kq1+3)1(281;-2) I(2kq1+2)1(241;-2)
E1tm U xy-2)rg-2) + 4 Xyl (Xqp) +4guhy (X=X -1
2 T2ky+D)I(284-1) + 212, 2% B2k +3)1(281-1) + 4. ., (RRurDI@8-1)
U gm0 -1) o+ DI +1) Juh =y raay

Our recent research is divided into two main physical parts.
The first part is to correspond to replace the coupling of
angular momentum operator with noncommutativity coupling

L@ by the new interest and significant equivalent coupling
@LS (withe = (0%, +
arbitraries vector(:)parallel to the spin-s of Heterogeneous

+ 0%;)1/2), we have chosen the

8(2L(1+ 1) +(Epy+w)Derd)a*
(1-w*

fa=|

Furthermore, in the RQM and NRQM the operators (H$S_,.J?,
L?, S%and J,) forms a complete set of conserved physics

quantities, the eigenvalues of the operator (]2 — 12— SZ) are

equal the values 2k()=jG+ 1) —-Il(l+1)—-s(s+1),
with [l —s| <j < |l +s|. Consequently, the energy shift

AE,.(n=0,j,1,5)

= 4k(Da3(Ey + ,u)@{Za (Zl(l U

(Eor + 1)
+ DereEOlm}'

AE,(n=1,j,1,5) = 4k(D)a3(Ey, + ,Ll)@{za (2“”1)

(Eqi+1)

Which allows us to generalize the above results to the case of
nt" excited states of Heterogeneous (LiH, HCI, NO) and
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(LiH, HCI, NO) and Homogeneous (Hz, Iz, O2) diatomic
molecules under MSCKP and then we replace OLS

by2 (/2 - 17

Vpere* (W) =

—Sz). Thus, the spin-orbit term containing
Of (w)LS, with
4a(re—ard)u

4,2 3
8a*rgu 4rea

+ (En + 1D, {~

3
o =) (39)
AE,,(n=0,j,l,s) and AE,(n=1,j,l,5s) due to the
perturbed spin-orbit coupling which produced by the effect of
the perturbed effective potential V¢, () for the ground state
and the first excited state, respectively, in (RNC: 3D-RS)
symmetries as follows:

a-w*  (1-uw)sd (1-u)3

+ Derez> A()lm - 2('l’DerezBOlm + Derecolm + De (re - areZ)Dolm

+ Derez)Allm - 2O*'DerfezBllm + Derecllm + De(re - arez)Dllm + DeTeEllm}-

(40)

Homogeneous (Hy, I, O2) diatomic molecules under MSCKP
in (RNC: 3D-RS) symmetries as follows:

http://www.lajpe.org
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. 21(1+1
AEsc(n;]r l,s) = 4k(l)a3(Enl + ﬂ)@{za ((Er(ll:'#)) + Derez)Anlm - 2aDereanlm + D1, Cpim + Do (1, — areZ)Dnlm + DeTeEnlm}-
(41)
The second interest physical part is corresponding to replace AE,.(n=1,1,m) due to the modified perturbed Zeeman

both E(j)’ and®..)b KL, anda; ., R, respectively), we have effect which generated by the influence of the perturbed
also (need . 1Za1)pp>lly(gz121 ) Zml L (Ij;l% ’ m.F; _ 5y) 5,08 effective potential VS (r) for the ground state and the first
» by zItt, - nn' YU Ymm’

(with—(, 1) < (m,m") < +(1, I")). All of this data allows for excited state in (RNC: 3D-RS) symmetries as follows:
the discovery of the new energy shift AE;.(n = 0,1, m) and

210+ 1)

AE,.(n=0,1,m) = 4a3(Ey + )N{Za <7
. onrh ot + 1)

+ DeTeZ>Aolm - 2aDe‘T'eZBOlm + Derecolm + De(re - areZ)Dolm

+ D.1.Eopmcom,

21(1+1
AEge(n = 1,1m) = 4a®(Ey, + W)X {2a ( (Ei;u)) + Der?) Avim — 2aDe12 By + Dot Copm + Dot = a1)Dyyn + Dot By om.
(42)
Thus, we can generalize the previous results to the n*” excited (Hz, I2, O;) diatomic molecules under MSCKP in (RNC: 3D-

states of Heterogeneous (LiH, HCI, NO) and Homogeneous RS) symmetries as follows:

21(1+1)
(Ent+i)

AEge(n,1,m) = 40 (B + X {20 + Det?) Apim — 2D B + Do Coim + De (e — ) Dy + Dot By} om. (43)

IV. GLOBAL RELATIVISTIC SPECTRUM OF the ground state and the first excited state, respectively, in
MSCKP (RNC: 3D-RS) symmetries. Those energy shifts due to the
spin-orbit coupling and modified Zeeman effect which are
In this section, we report our results on based the superposition induced by Vesfcf(r) Heterogeneous (LiH, HCI, NO) and
principle which permitted to deduce the additive energy shift, Homogeneous (Ha, 12, O2) diatomic molecules under MSCKP
AE.,.(n=0,j,1,s,m)andAE;,.(n = 1,j,1,s,m) for as follows:
AE,.(n=0,j,1,s,m)
o 201+ 1) 5 5 5
=4da (EOI + ﬂ) {Za ((Eol—-l-ﬂ) + Dere )Aolm - ZaDere BOlm + DereCOLm + De(re —are )Dolm

+ DeTeEmm} {k(D)® + RXom},

21(1+1)
(Eqi+u)

AE,.(n=1,j,1,s,m) = 4a3(Ey; + u) {Za ( + Derez)Allm —2aD,7?By;y + D,1,Cyym + D, (v, — ar?)Dyypy, +

DereEum} {k(DO + Rom}.  (44)

Which generalized easily to the nt” excited states in (RNC: 3D-RS) symmetries as follows:

. 105

AEsc(n:]: l: S, m) = 4'0-'3(Enl + )u) {20( ((257(11—:11)) + DereZ)Anlm - 2a’Dereanlm + Derecnlm + De(re - arez)Dnlm +

DereEnlm} {k(DO + Rom}. (45)

The above results present the energy shift of Heterogeneous perturbed effective energy (u? — E2,) combined with the same
(LiH, HCI, NO) and Homogeneous (Hz, 12, Oy) diator_nic energy value square and the mass square where we have the
mo_lecules under MS_CKP in (RNC: 3D-RS) symmetries, principle of equivalence between mass and energy at higher
which generated with the effect of noncommutativity energy. This allows us to conclude the
properties of space-space; it depended explicitly with the energyE:<,..(D,, 1., a,n,j,1,s,m) of Heterogeneous (LiH,
noncommutativity parameters(0, o). It is should be noted that HCI, NO) and Homogeneous (Ha, 12, O2) diatomic molecules,
the obtained effective energy AE,.(n, j, , s, m) under MSCKP in the symmetries of (RNC: 3D-RS), corresponding the
has a carry unit of energy because it resulted from the generalized n*" excited states, as a function of the shift energy
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AE,.(n,j, 1, s,m) and E,; due to the effect of SCKP in RQM,
which obtained from Eq. (12), as follows:

E5€,.(Dg, 1o, a,mn, j,l,s,m) =u+ Ey + [40(3(Enz + ) {2 (

V. NONRELATIVISTIC SPECTRUM OF MSCKP

Now, in this section we trite the nonrelativistic effect of
MSCKP on the Heterogeneous (LiH, HCI, and NO) and
Homogeneous (Ha, I2, O,) diatomic molecules. From the Egs.
(3.5) and (3.6), we can write MSCKP in the nonrelativistic
noncommutative three-dimensional real space (NC: 3D-RS)
symmetries as follows:

Ve ®) = Vie ) + V2T () + 0(67). (47)

Where V2" (r) is the perturbative potential in the symmetries
of nonrelativistic noncommutative QM:

The approximations type suggested by (Greene and Aldrich) and (Dong et al.) allows rewriting the perturbative potential V.

follows:

21(1+1)
(Enitw)

1/2
D,(r, — ar?)Dyyy, + DereEnlm} {k()oO + Nam}] . (46)

+ De e )Anlm - 2O(Dereanlm + DereCelm +

(i - —) 1+e2)) 5

pert(r) 2r3 fr‘* ) LO + 0(@2)
‘e _ e |\, 2ar
t2a (Zrz 4‘r3) €
(48)

A direct simplification gives:

pert _ _ 2rfa*  2a*rZu
VSC (T') - 4De{ (1_u)4 (1_u)4 +

Thus, we need the expectatlon values of the radial
u u
Lo find the

1
IMSE g% Gt * G- u)3 G G
nonrelativistic energy corrections produced with the
perturbative potential V2°"*(r). We have calculated the
expectation values for the ground state and the first excited

state and we generalized the results to the n" excited state. To

_r _ 7 -2 + i R
pert _ 2r4 2r4 2
Ve () =—Dey T, pr . @Te . —2ar Lo + 0(6?).
+2—3€ + — 2 e
(49)
pert(r)as
ad(re—ard)u | af reu 2
S T }L@+ 0(6?). (50)

avoid the repetitions the previous calculations and to respect
on considerations the corrections produced with the perturbed
spin-orbit interaction and modified Zeeman effect, we need
to generalize the obtained energy shift in the Eq. (45) to find
the nonrelativistic global corrections under MSCKP for
Heterogeneous (LiH, HCI, NO) and Homogeneous (Hz, Iz,
0,) diatomic molecules as follows:

AEN"6(n, j, 1, s,m) = —4D,a3{=2r2aAm — 2012 By + 1oCppm + (1o — av2) Dy + ToE i k(DO + Rom}.  (51)

This allows us to find the nonrelativistic global energy
EZS_hc(Dg, 1o, a,m, j, 1, 5,m) under MSCKP for
Heterogeneous (LiH, HCI, NO) and Homogeneous (Ha, Iy,
0O,) diatomic molecules as follows in the nonrelativistic

P — 3 2
Erslg—nc(De' Te,a,N, J, Ls, m) - :lllr - 4'Dea' {_Zre aAnlm -

noncommutative three-dimensional real space (NC: 3D-RS)
symmetries as follows:

26”'eanlm + 1Cpim + (1, — ar )Dnlm + 1. Epim 3H{k (DO + Rom}. (52)

Where EJ'is the nonrelativistic energy under for Heterogeneous (LiH, HCI, NO) and Homogeneous (Hz, Iz, O2) diatomic molecules [3]:

a

2
o= 2“71(1 + 1)+ 2D,a(ar? —1,) — 2=

Lat. Am. J. Phys. Educ. Vol. 14, No. 3, Sept. 2020
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Te

2_2Te
L+ Den(ré g )z +1 (n +14 \/Derezu +(1+ 1)2) . (3)
H 2<n+E+JDerez,u+(l+E) ) 2 2 z
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VI. QUARKONIUM MASS SPECTRO-SCOPY OF
THE MSCKP

Quarkonium mass spectroscopy for the screened cosine
Kratzer potential studied by K. R. Purohit et al. [3] in the
symmetries of commutative quantum mechanics. We want to
generalize this study to the case of NCQM. To achieve the
goal we recall first for the mass formula of quarkonium in 3-
dimensional space [59, 60, 61, 62, 63]:

M=mg+mg+Ey > M=2m;+Ey (54)

Here m,, is the bare quark mass for quarkonium andM denote
to the mass the charmoniumce and bottomoniumbb in RQM

under ordinary SCKP. To achieve this goal, we generalize the
traditional formula to the new form:

M. =2mg + Epf (a',b', @) =
Mpé =2mg + Egi_,.(a), b, a,n,j,l,s,m), (55)

whereE;S_,.(a', b, a,n,j,l,s,m) and E; (a',b',a) are
obtained from Egs. (50) and (51), respectively, by making the
changed D,7, —» a' and D2 - b' we obtain the modified
energy and ordinary energy of quarkonium system such as the
charmoniumcc and bottomoniumbb in NCQM and QM
under MSCKP ad SCKP, respectively, as follows:

ESS_nc(a, b, a,n,j,l,s,m) = E}N(a,b',a) — 4a3{—2b'aAp;m — 2ab'Byim + a'Coym + (@' — ab") Dy + @'Eppyn Hk (DO + Rom].

And

(56)

2

,_2a’ 2
B (@b a) = 25 1(1+ 1) + 2a(ab' — ') — 2 | )2 + l<n +14 oue+ (1+3) ) G
" " z(n+g+Jbvﬂ+(z+g) ) 2\ 2 2

Thus, the modified mass of the heavy quarkonium system
such as the charmoniumcc and bottomonium becomes as
follows:

M3 = M. + M2 (a',b', a,m, j, I, s,m). (58)

Where M, are ordinary quarkonium mass spectroscopy in
ordinary QM while M (a', b', a, n, j, I, s, m)is the additive
part of quarkonium mass spectroscopy in NCQM
symmetries produced with the perturbative
potential V.2 (r):

é‘M,hfc’(a’, b,a,n,jl,s,m) =4a3{2b'aA,,2ab'Byym — a'Cppn + (@' — ab) Dy — a'Eqp Hk(DO + Rom}.  (59)

Note that the additive part MY (a',b',a,n,j,1,s,m) is
infinitesimal when it compared with the main part M, because
it is proportional to two infinitesimal parameters(®, o).

VIl. STUDY OF IMPORTANT PARTICULAR
CASES

After studying the bound states of arbitrary | state MKGE and
MSE with the MSCKP, we consider some particular cases:

1- The first special case corresponds to the modified Coulomb
plus inverse-square potential MCISP (6 = @ = 0,D.1, =
Band D,r2 — A). The perturbative effective potential in Eq.
(25) will be simplified to the form:

i 11 A | B\~
Vsere () = Vi () = [F52 = (B + 1) (5 +2)] L6,

(60)

Also, the energy shift in Eq. (56) was reduced to the
corresponding values for MCISP with an additional
condition @ — 1 in corresponded terms in Eq. (26). Thus, we
recover the results that we obtained in our previous reference
[47].
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2- The second special case corresponds to the new modified

Kratzer-type interaction (6§ = @ = 0,D.1, - A = kr,and
D,r? - B = kr2 in addition to imposing the special case
Ly=L,=0 and L, = xpy, —yp, # 0) which
corresponds to the translation into two-dimensional space
from three-dimensional space. The perturbative potential
in Eq. (5.4) will be simplified to the form:

VT ) > VI () = (55— &) L6, (61)

Moreover, the energy E35_,..(De, 7., a, 1, j, I, s,m) in Eq. (52)
was reduced to the corresponding values for the new modified
Kratzer-type interaction with an additional conditiona — 1 in
corresponded terms in Eq. (26). Thus, we recover the results
that we obtained in our previous reference [19].

VIII. CONCLUSIONS

This section of our paper gives a summary of the basic points
in our work; we have presented the formulation of the
noncommutative quantum mechanics based, and we have
studied the effects of the noncommutative space-space on the
MKGE and MSE under MSCKP in the relativistic and
nonrelativistic noncommutative three-dimensional spaces.
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The energy Spectra (EZ€pe(De, 1o, a,m, j, L, s, m)
and E3¢_,.(D,, 7., a,n,j,l,s,m)) of Heterogeneous (LiH,
HCI, NO) and Homogeneous (H>, I, O2) diatomic molecules
due to the noncommutativity property corresponding to the
generalized n*" excited states in the symmetries of (RNC: 3D-
RS) and (NC: 3D-RS) are calculated. The energy eigenvalues
appear as a function of the shift energy AEy,, (n,, j, 1, s,m) and
E,,, of the SCKP is obtained via first-order perturbation theory
and expressed by the Gamma function, the discreet atomic
quantum numbers (j,[,s,m), and the potential parameters
(De, 1, ) in addition to noncommutativity two parameters
(®ando). This behavior is similar to the perturbed both
modified Zeeman effect and modified perturbed spin-orbit
coupling in which an external magnetic field is applied to the
system and the spin-orbit couplings which are generated with
the effect of the perturbed effective potential Vg, (r) in the
symmetries of RNCQM and NRNCQM. Furthermore, we
have calculated the new masses of the heavy quarkonium

system such as the charmoniumccand bottomoniumbb with a
spin-(0 orl) under the MSCKP. It is worth mentioning that, for
all cases, when to make the two simultaneously limits(®, o) —
(0,0), the ordinary physical quantities are recovered. The
comparisons show that our theoretical results are in very good
agreement with reported works.
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