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Abstract 
Teaching and learning Calculus concepts and procedures, particularly the definite 
integral concept, is a challenge for teachers and students in their academic careers. In 
this research, we supplement the analysis made by different authors, applying the 
theoretical and methodological tools of the Onto-Semiotic Approach to mathematical 
knowledge and instruction. The goal is to understand the diverse meanings of the 
concept of the definite integral and potentials semiotic conflicts based on the given 
data. We focus attention on a first intuitive meaning, which involves mainly arithmetic 
knowledge, and the definite integral formal meaning as Riemann’s sums limit 
predominantly in the curricular guidelines. The recognition of the onto-semiotic 
complexity of mathematics objects is considered as a key factor in explaining the 
learning difficulties of concepts, procedures and its application for problem-solving, 
as well as to make grounded decisions on teaching. The methodology analysis of a 
mathematical text, which we exemplify in this work applying the tools of Onto-
Semiotic Approach, provides a microscopic level of analysis that allows us to identify 
some semiotic-cognitive facts of didactic interest. This also allows for the 
identification of some epistemic strata, that is, institutional knowledge that should 
have been previously studied, which usually goes unnoticed in the teaching process.  
Keywords: Definitive integral, mathematical practices, onto-semiotic complexity, 
teaching, learning. 
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Resumen 
La enseñanza y el aprendizaje de los conceptos y procedimientos del Cálculo, en 
particular del concepto de integral definida, es un reto para profesores y estudiantes 
en su trayectoria académica. En esta investigación, complementamos el análisis 
realizado por diferentes autores, aplicando las herramientas teóricas y metodológicas 
del Enfoque Onto-Semiótico al conocimiento y la instrucción matemática. El objetivo 
es comprender los diversos significados del concepto de integral definida y los 
potenciales conflictos semióticos a partir de los datos aportados. Centramos la 
atención en un primer significado intuitivo, que implica principalmente 
conocimientos aritméticos, y en el significado formal integral definida como límite de 
las sumas de Riemann predominantemente en las directrices curriculares. El 
reconocimiento de la complejidad onto-semiótica de los objetos matemáticos se 
considera un factor clave para explicar las dificultades de aprendizaje de los 
conceptos, los procedimientos y su aplicación para la resolución de problemas, así 
como para tomar decisiones fundamentadas sobre la enseñanza. El análisis 
metodológico de un texto matemático, que ejemplificamos en este trabajo aplicando 
las herramientas del Enfoque Onto-Semiótico, proporciona un nivel microscópico de 
análisis que permite identificar algunos hechos semiótico-cognitivos de interés 
didáctico. También permite identificar algunos estratos epistémicos, es decir, 
conocimientos institucionales que deberían haber sido estudiados previamente y que 
suelen pasar desapercibidos en el proceso de enseñanza. 
Palabras clave: Integral definitiva, prácticas matemáticas, complejidad onto-
semiótica, enseñanza, aprendizaje. 
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he review prepared by Bressoud, Ghedams, Martinez-Luances 
& Törner (2016) describes the evolution of research and main 
trends on various topics involved in the teaching and learning of 
calculus, such as student difficulties, task design, class practices, 

technology usage, etc. These authors identify issues related to the 
epistemological, cognitive, institutional, and instructional aspects raised by 
the research in this field. They also highlight the concern about the 
relationship between student thoughts in Calculus concepts and learning 
expectations in the curricula. In this relationship, they identify at least three 
dialectical tensions: the potential infinity versus actual infinity, the dynamic 
versus the static, and the visualization versus formalization. These dialectics 
lead to some open questions: “What epistemological considerations should 
be taken into account to address such tensions? Which are the roles of 
teaching and the practices in the classroom?” (Bressoud, et al., 2016, p. 30). 

Bressoud et al (2016) mention the main theoretical frameworks that have 
been applied in educational research on Calculus with an emphasis on 
cognitive development. They refer to the approaches “Concept Image and 
Concept Definition” (Tall & Vinner, 1981), the theory of Semiotic 
Representation Register (Duval, 1995), the theory Action-Process- Object-
Schema (Dubinsky, 1991), and the Three Worlds of Mathematics theory 
(Tall, 2004). Some research focus on institutional, socio-cultural, and 
discursive aspects such as the Didactic Situations Theory (Brousseau, 1997), 
the Anthropological Theory of Didactics (Chevallard, 1992), and the 
Cognitive Framework (Sfard, 2008). Others have carried out experiments in 
teaching the definite integral based on different theoretical frameworks. 
Attorps, Björk, Radic &Tossavainen (2013) apply the Learning Study model 
grounded on the Variation Theory (Marton, Runesson & Tsui,2004) and 
Kouropatov & Dreyfus (2013; 2014) adopt a research methodology based on 
the Abstraction in Context theory (AiC) (Hershkowitz, Schwarz & Dreyfus, 
2001). 

Despite the great amount of research done about the teaching and learning 
of Calculus, we consider that it is important to problematize the meanings of 
key concepts in Calculus, like limit, derivative, and integral. The purpose is 
to identify a sequence of situations-problems whose resolution allows them 
to contextualize the knowledge and to develop progressively the student’s 
mathematical comprehension and competence. 

T 
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In this research, we focus the attention on the definite integral concept. In 
some countries its study begins in the later grades high school, presenting to 
the students an informal/intuitive first encounter with this mathematical 
object, preparing them to understand the most general and formal meanings 
required in university studies. While in other countries, the study of the 
integral is introduced abruptly, with all its generality, mainly in the case of 
students from experimental sciences, engineering, and other technical 
careers; this approach can make conceptual understanding and justification 
of procedures difficult. 

Our research deals with the problem of clarifying some key meanings of 
definite integral, applying the theoretical and methodological tools of the 
Onto-Semiotic Approach (OSA) to mathematical knowledge and instruction 
(Godino & Batanero, 1998; Font, Godino & Gallardo, 2013; Godino, 
Batanero & Font, 2019). The notion of partial meaning (or sense) of a 
mathematical concept, understood in a pragmatic and anthropological way, 
provides a macroscopic view of the overall meaning of a mathematical 
object. Besides, the OSA provides tools to make a microscopic analysis of 
the mathematical activity, allowing to identify the configuration of objects 
and processes that intervene in the mathematical practices required in 
problems solving, which are the raison d'être of a concept. These analyses 
allow us to become aware of the concept complexity, which will lead to the 
reflection by the teacher’s educator and the teacher about the possible 
difficulties that may arise in the organization of the teaching and learning 
processes.  

The article is organized in the following sections. After this introduction, 
which we consider as section 1, in section 2, we describe the theoretical tools, 
the specific research problem and the methodology applied. In section 3 we 
included a synthesis of previous research on the definite integral components 
and structure and the characterization of its meanings. In sections 4 and 5 we 
applied some OSA tools to analyze the complexity of the mathematical 
practices involved in the Riemann’s integral study. To underscore the 
dialectic tension between the intuitive and formal meanings, firstly, in section 
4, we analyze the presentation proposed by Starbird (2006), that can be 
considered as a first informal encounter with the integral. Later on, in section 
5, we analyze the general and formal definition that Stewart (2016) makes, 
which is preceded by a previous contextualization based on the study of 
problems related to the area and distances calculations. The microscopic 
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analysis of the integral meanings made in these sections show how the 
ontological and semiotic-cognitive problem of mathematical education is 
approached using the OSA tools. The analysis in these sections lead us in 
section 6 to establish a discussion in relation to the articulation of our analysis 
with other research. The implications of our investigation and some open 
questions are included at the end in the section 7. 

 
Theoretical Framework, Specific Problem, and Methodology 

We will apply some tools of the Onto-Semiotic Approach (OSA) of 
mathematical knowledge and instruction to analyze the diversity and 
complexity of mathematical objects and its meanings. We consider this 
complexity as an explanatory factor of the students’ learning difficulties and 
conflicts.  
 
Theoretical Framework  

The OSA approaches the epistemological, ontological, and semiotic-
cognitive problems in mathematics teaching and learning process, by 
proposing a system of theoretical notions and methodological tools (Godino 
et al., 2019). Below we include a synthesis of the main notions used in this 
research work. 

 
The epistemological problem 

The OSA gives answers to the epistemological problem of how mathematical 
knowledge emerges and develops, by assuming anthropological 
(Wittgenstein, 1953) and pragmatist (Peirce, 1958) views. It considers 
people's activity in solving problems as a central element in mathematical 
knowledge construction. This epistemological view is made with the notion 
of mathematical practice, by assuming its institutional and personal 
relativity. In the OSA framework, a mathematical practice is (Godino & 
Batanero, 1998, p. 182): “any action or manifestation (linguistic or 
otherwise) carried out by someone to solve mathematical problems, to 
communicate the solution to others, so as to validate and generalize that 
solution to other contexts and problems.” 
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The institutional genesis of the mathematical knowledge is investigated 
in the following methods: (1) The identification and categorization of the 
problems-situations that require an answer; (2) The description of the 
practice sequences in the resolution. 

 
The ontological problem 

Mathematics is not only human activity, but also a logically organized system 
of objects. In OSA, a mathematical object is any material or immaterial 
entity that intervenes in mathematical practices, by supporting and regulating 
its realization. This general idea of an object is useful when it is 
complemented with a typology of mathematical objects considering their 
different roles in mathematical activity. Symbols, external representations, 
and manipulatives intervene in the school and professional mathematical 
activity, in a public, material, and perceptible way. Therefore, they are 
considered ostensive mathematical objects. The concepts of numbers, 
fraction, derivative, integral, etc., are mathematical objects of different 
natures and roles than their ostensive representations. They are not ostensive 
objects, but mental objects (when they intervene in personal practices). They 
are also institutional objects (when they participate in sociocultural or shared 
practices). Together with the propositions, procedures, and the arguments 
that justify them, they are objects that regulate the mathematical activity, 
while its ostensive representations serve as support to facilitate the realization 
of this work. There is no mathematical activity without objects or 
mathematical objects without activity. As the practices, it could be seen from 
the social (institutional, shared) or personal (individual, idiosyncratic) 
perspectives, objects can also be conceived from the institutional-personal 
duality which originates the following principle: 

In institutional or personal mathematical practices, different kinds of 
objects intervene that fulfill different roles: instrumental/representational, 
regulatory (setting rules on practices), explanatory, justifying. 

Given the generality of the practice and object notions, as well as the 
diversity of sequences of practices (processes) that can be made, it is 
considered necessary and useful to propose a typology of objects and basic 
processes, which are reflected in figure 1, designed as onto-semiotic 
configuration. These configurations can be epistemic (institutional objects 
networks) or cognitive (personal objects networks). Other processes from 
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figure 1 are considered in the psychological and educational literature, for 
example, problem solving and modeling processes, among others. Those 
processes can be described by using the proposed basic processes by the 
OSA, so they are treated as mega processes.  

 
Figure 1. Onto-semiotic configuration of practice objects and processes. Source: 

Godino (2014, p. 23). 

The concepts, propositions and procedures, are understood, in its unitary 
version (treated as a whole or unit), according to Wittgenstein’s proposal, 
that is to say, as grammatical rules of the languages used in the practices 
carried out to describe our worlds and give answer to the problems-situations 
we face to. In the OSA, the concepts and other mathematical objects can also 
be considered from a systemic perspective, that is, as a system of components. 

 
The semiotic-cognitive problem 

The knowledge is assumed in the OSA as the integration of relations that the 
subject (person or institution) establishes between the objects and the 
practices, relations that are modeled by the semiotic function notion. A 
semiotic function is understood as the correspondence between an antecedent 
object (expression, signifier) and a consequent one (content, meaning) 



REDIMAT 10(1) 
 

 

9 

established by a subject (person or institution), according to a criteria or 
correspondence rule. An act of interpretation or semiosis relates an 
antecedent object with another consequent object according to a certain 
agreement or correspondence rule. The act of semiosis may consist in giving 
sense, use or purpose to an action, or sequence of actions, within the 
framework of the activity being carried out. Knowledge is about the content 
of one (or many) semiotic functions, so there is a variety of types of 
knowledge in correspondence with the diversity of semiotic functions that 
can be established between the various types of practices and objects. The 
next principle is based on that: 

The institutional or personal ‘meaning of the object’ is interpreted as the 
correspondence between an object and the system of practices where such 
an object occurs.  

The problem-situations depend on the individuals and communities of 
practice (institutions). Hence, meanings, and therefore, knowledge, are 
relative. However, it is possible to reconstruct a global or holistic meaning 
of an object through the systematic exploration of the object contexts of use 
and the systems of practices required in solving problems. This holistic 
meaning is an epistemological and cognitive reference model for the object 
meanings, and constitutes an onto-semiotic-cognitive methodological tool: 

The method to delimit the different meanings of mathematical objects, 
and, therefore, to reconstruct the epistemological and cognitive reference 
models is to analyze the practice systems (personal and institutional) and of 
the onto-semiotic configurations involving them. 

The reconstruction of each partial meaning of a mathematical object, for 
example, the definite integral notion, implicates the description of the system 
of practices required to solve a type of problems in a context of use, as well 
as the objects and processes put at stake in these practices. 
 
Specific Research Problem and Methodology  

The educational-instructional issue of trying to understand the student’s 
learning difficulties about the definite integral, and to intervene in a grounded 
way in the teaching processes, could be formulated using the OSA theoretical 
and methodological tools. We should begin by characterizing the different 
meanings of the definite integral and the diverse generalizations that have 
been developed to solve the application problems. To characterize the 
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meanings, the problem-situations that are the raison d'être of each meaning 
and the systems of operative, discursive and normative practices involved in 
their resolution must be identified and categorized. This is the perspective 
adopted by authors like Ordoñez (2011) and Crisóstomo (2012), who identify 
and analyze the partial meanings of the definite integral from a historical-
epistemological approximation. Other studies that have applied the OSA 
framework on different aspects of integral learning are Mateus (2016); Pino-
Fan, Font, Gordillo, Larios, & Breda (2018); Borji & Font (2019). 

The main contribution of this research work in teaching and learning 
Calculus is essentially theoretical and methodological. We focus our 
attention on the ontological and semiotic-cognitive problem based on two 
partial meanings of the definite integral, one informal / intuitive meaning, 
and the other formal meaning of the integral as the limit of Riemann Sums. 
With this aim, we apply a microscopic analysis oriented to the explicit 
recognition of objects (problems, languages, definitions, propositions, 
procedures, and arguments) that intervene and emerge in mathematical 
practices. We also identify the processes involved (interpretation / meaning, 
representation, argumentation, generalization, etc.).The onto-semiotic 
analysis is applied to two texts with a certain international diffusion: the 
intuitive presentation of the definite integral proposed by Starbird (2006), 
and the exposition of the integral as the Limit of Riemann Sums by Stewart 
(2016). 

Background on the Definite Integral Characterization 

Different authors have studied the meaning of definite integral, its 
components and structure, in order to design suitable teaching processes to 
enable students to apply this object in problem solving. They have also 
identified the ways in which students understand the definite integral. In this 
section we include a synthesis of these studies. 

 
Components and Structure of the Definite Integral 

Although a large part of the educational research on the definite integral has 
been carried out to characterize the types of students’ learning, with a 
cognitive approach (Orton, 1983; Grundmeier, Hansen & Sousa, 2006; 
Rasslan and Tall, 2002; Serhan, 2015), we have found some authors who 
analyze the structure and components of the integral from an epistemic 
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perspective. Such as Sealey (2014) who develops a framework to 
characterize students' understanding of Riemann Sums and the definite 
integral. This author indicates the conceptualization of the product f(x)∆x as 
the most complex part of the problem-solving process involving the integral, 
despite the simplicity of the mathematical operations required in this step. 
Sealey presents a reference frame for understanding the structure of the 
Riemann integral that distinguishes four layers: Product, Summation, 
Limitand Function. The layers correspond to the mathematical operations 
involved in calculating the integral as∑ 𝐹(𝑥!)∆𝑥"

!#$ 	where 	𝑥! represents any 
value in the i-th interval associated with a partition of [𝑎, 𝑏]	and Δ𝑥 =
𝑏 − 𝑎 𝑛⁄ . 
    The Product layer is composed of the multiplication of two quantities, f(xi) 
and ∆x, where f(xi) (for example, the speed of an object) is a rate and ∆x a 
difference (elapsed time). The product of both quantities corresponds to the 
distance traveled in aninterval. The Summation layer, including the sum from 
i=1 to i=n, gives the Riemann Sums ∑!"#$ 𝑓(𝑥")∆𝑥. Thus, if f(xi) is the speed of 
an object during a time interval ∆x, the sum would be approximate of the 
distance in the interval from a to b, which are the extreme points of the 
interval 

The third layer, Limit, corresponds to the limit when n approaches to 
infinity in the expression of the other two layers, which brings the Riemann 
integral. The fourth layer considers the definite integral as a function whose 
variable is the upper limit (i.e., right endpoint) and the value of the function 
is the numerical value of the definite integral. 

As a result of her experimental research, Sealey (2014) introduced a 
preliminary layer, which she calls Orienting, to take into account the 
activities that students perform to visualize the situation, understand the 
problem variables, recognize the magnitudes, and quantities (pressure, force, 
etc.). The product of the quantities given by f(x) and ∆x represents new 
quantities in the context of the problem that needs to be visualized. 

Thompson and Silverman (2008) present the definite Riemann integral in 
terms of the mathematical idea of the accumulation function 𝐹(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡%

& . 
They explain the students’ understanding and use difficulties, based on 
constituent parts. The concept of accumulation is the core of understanding 
of Calculus concepts and applications, but the meaning it takes in this branch 
of mathematics is not simple. Students find it difficult to think of something 
that accumulates when they are unclear about the "bits" that accumulate. For 
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example, to understand the idea of work done as something that accumulates 
incrementally means that the total amount of work at each moment must be 
thought of as the sum of previous increments, and each additional 
incremental bit of work is made up of an applied force over a distance. 

Jones (2013, 2015) approaches the topic of the definite integral by 
distinguishing three conceptualizations: a) as the area under a curve; b) as the 
values of an anti-derivative; c) as the limit of Riemann Sums. 
Conceptualization a) uses the representation "perimeter and area" to indicate 
the integrating function, the area of a region of the Cartesian plane, and the 
region contour. Conceptualization b) uses the notation indicating the 
relationship among anti-derivative, derivative, and the original function, 
𝐹′(𝑥) = 𝑓(𝑥). Conceptualization c) uses the sum of infinitely small pieces. 

Greefrath, Oldenburg, Siller, Ulm & Weigand (2016) propose a model for 
understanding the concept of definite integral that considers three axes or 
dimensions: 1) Aspects of the content that serve as the basis for a definition 
of the concept (antiderivative, product sum, measure); 2) Conceptions or 
mental models (Grundvorstellungen) about the concept (reconstruction, area, 
average value, accumulation); 3) Levels of understanding of the concept 
(intuitive, subject matter, integrated, critical). Combining the different 
aspects, conceptions, and understandings, they elaborate a three-dimensional 
model with 48 cells (8 of them empty) in each of which specific knowledge, 
skills, and abilities are put into play for the understanding and use of the 
integral concept. 
 
Cognitive Schemas on the Integral 

Rasslan and Tall (2002) describe the cognitive schemas that high school 
students have about the definite integral, applying the notions of concept 
image and concept definition. Although the definition of the concept is 
introduced in school, students use concept image, that is, “all the mental 
pictures, properties and processes associated with the concept in their mind” 
(Tall & Vinner, 1981). Rasslan and Tal (2002) consider that “the concept 
definition is essentially an incidental part of the process which is far more 
concerned in practice with developing experience and images of the concepts 
themselves” (volume 4, p. 96). 

Serhan (2015) investigates students' conceptual and procedural 
knowledge of the definite integral, applying the cognitive framework of 
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Hiebert and Lefevre (1986) and the notions of concept image and concept 
definition of Tall and Vinner (1981). Meanwhile, Hiebert and Lefevre (1986) 
express “conceptual knowledge is characterized most clearly as knowledge 
that is rich in relationships. It can be thought of as a connected web of 
knowledge, a network in which the linking relationships are as prominent as 
the discrete pieces of information. Relationships pervade the individual facts 
and propositions so that all pieces of information are linked to some network” 
(p. 3). Procedural knowledge, “is made up of two distinct parts. One part is 
composed of the formal language, or symbol representation system, of 
mathematics. The other part consists of the algorithms, or rules, for 
completing mathematical tasks” (p. 6). 

Specifically, Serhan (2015, p. 85) asks the following questions: 1) Which 
is the most dominant knowledge of the definite integral for students? Is it the 
procedural knowledge or conceptual knowledge? 2) Are students capable of 
dealing with negative areas and explaining their answers? 3) Which concept 
images do Calculus students associate with the definite integral concept? The 
results coincide with those of Orton (1983) in that students can use 
procedural knowledge and solve integration problems but have a limited 
understanding of the integration of basic concepts. 
 
Meanings of the Definite Integral  

The integral concept has been generated and evolved throughout the history 
of Mathematics, starting from its applications to solving problems, 
fundamentally those related to Physics and Geometry. After a period where 
the emphasis was on the calculation of primitives, approximate integration 
emerged (through numerical, graphical, and mechanical methods) where 
processes were sought to find an approximate value for the definite integral 
of functions whose primitive could not be determined. Next, the 
mathematical development of the definite integral was interested in its 
foundation with the elaboration of more precise definitions, independent of 
geometry and based on the limit calculation. The final formalization of the 
integral would be supported by the measurement theory. 

The universe of the definite integral meanings can be structured according 
to different criteria, considering the fields of problems that are solved with 
the integral, the resolution techniques, and the degree of generality and 
formalization with which they are treated. Contreras and Ordóñez (2006), 
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Contreras, Ordóñez and Wilhelmi (2010), the doctoral thesis of Ordóñez 
(2011), and Crisostomo (2012), study the meanings of the definite integral 
applying the OSA assumptions and tools. Ordóñez (2011) performs a 
historical-epistemological study of the definite integral meanings; she uses it 
as a reference frame in a study of the institutional and personal meanings of 
this mathematical object in High School. Also, Crisóstomo (2012) has a 
similar study to investigate the institutional meanings of integral in university 
studies for secondary school mathematics teachers training. 

From the point of view of the processes of mathematical instruction at 
High School and University levels, we consider useful to distinguish four 
types of meanings, the integral as: 

1) Quantity of magnitude bounded between two sequences of convergent 
quantities. The magnitude can be geometric, physical, length, area, volume, 
distance, work, density, etc. 

2) Limit of Riemann Sums, ∫ 𝑓(𝑥)𝑑𝑥'
& = ∑ 𝑓(𝑥"∗)∆𝑥!

"#$ . 
3) Cumulative function, G(x) = ∫ 𝑓(𝑡)𝑑𝑡%

&  . 
4) Incremental difference of the cumulative function, ∫ 𝑓(𝑥)𝑑𝑥'

& = 𝐺(𝑏) − 𝐺(𝑎), 

if 𝐺 ′(𝑥) = 𝑓(𝑥).  
Each of these integral partial meanings provide relevant aspects of the 

global meaning of this mathematical object, understood as the articulated 
network of partial meanings. The meaning1) constitutes a first encounter 
with the integral, which lends itself to an intuitive treatment connected with 
the applications, which constitutes its original raison d'être. This conception 
alone is not enough for robust understanding of integrals. The integral has 
additional layers of meaning above and beyond the limit (Jones, 2013; 
Thompson & Silverman, 2008). As suggested by Sealey (2014), the 
interpretation of “area under a curve,” could limit the integral applicability 
to other areas. 

The partial meaning 2) as the limit of Riemann Sums introduces precision 
to the strategy of calculating the integral as “an infinite summation of 
infinitely small pieces” associated with meaning 1). “Adding up pieces is not 
equivalent to the Riemann integral, since the students tend to think of the 
summation happening with an infinite number of infinitesimally small 
pieces. By contrast, the Riemann integral constructs a sequence of finite 
summations and then considers the limit of this sequence” (Jones, 2015, p. 
11). 
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However, the calculation of the definite integral applying the meaning 2), 
that is, by calculating the limit of Riemann Sums, is complex in most cases, 
if it is compared to the application of the meanings 3) and 4), that is, finding 
the antiderivative function first and then the incremental difference. 

The curricular planning of the integral study should consider this 
macroscopic perspective on the various partial meanings and their 
articulation as a strategy to promote the students’ understanding and 
competence. But the management of the learning and teaching processes 
requires the teacher to be aware of the ontological and semiotic complexity 
of each one of the meanings, even the meanings that we consider as informal 
or intuitive. In sections 4 and 5 we include the analysis of two integral 
meanings by applying the onto-semiotic analysis methodology. 

 
Intuitive Meaning of the Riemann Integral 

In this section we analyze Starbird's intuitive presentation of the integral, 
where he finally gets to justify the Riemann Sums for the case of calculating 
the covered distance by a car with a variable velocity (Starbird, 2006, p. 18-
21). The presentation is supported by the following problem: 

Imagine you are kidnapped and tied up in the back of a car and driven off 
on a straight road. You cannot see out of the car, but fortunately, you can see 
the speedometer, and you have a video camera to take time-stamped pictures 
of the speedometer. (There is no odometer in sight.) After an hour, you are 
dumped on the side of the road. How far have you gone? 

 
Resolution Process: Sequence of Operative and Discursive Practices 

We include below the abbreviated process of solving the problem. Starbird 
comes to state the Riemann Sums and the concept of definite integral. For 
the analysis, we break the process down into units (epistemic configurations), 
and in each one we identify the elementary mathematical practices that 
compose them. 
 

Configuration 1 (EC1): Constant velocity 

P1.1: Let’s take a simple case: The car was moving at a constant 
velocity. 
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P1.2: If we go 1 mile per minute for 60 minutes, we will have gone 
60 miles during that hour. If we go 2 miles per minute for 20 minutes, 
we will have travelled 2 × 20, or 40 miles; in one hour the distance 
travelled will be 3 × 40, that is, 120 miles. 
P1.3: On a graph, this constant velocity would appear as a horizontal 
line. 

 
Configuration 2 (EC2): Piecewise constant velocity  

P2.1: Suppose the velocity is steady for some time, then abruptly 
change to another velocity and so on. 
P2.2: Suppose we travel at 1 mile per minute between times 0 and 
10 minutes, 2 miles per minute for the time between 10 and 20 
minutes, 3 miles per minute for the time between 20 and 30 minutes, 
4 miles per minute for the time between 30 and 40 minutes, 5 miles 
per minute for the time between 40 and 50 minutes, and 6 miles per 
minute for the time between 50 and 60 minutes. 
P2.3: Our total distance travelled will be: (1 × 10) + (2 × 10) + (3 × 
10) + (4 × 10) + (5 × 10) + (6 × 10); that is, 210 miles. 

 
Configuration 3 (EC3): Variable velocity 

P3.1: Let’s consider a car that is moving at each time t at velocity 2t 
miles per minute. 
P3.2: That is, at 1 minute, it is traveling at a speed of 2 miles per 
minute; at 2 minutes, it is traveling at 4 miles per minute; and so 
forth. 
P3.3: The strategy we are going to follow is to underestimate the 
distance travelled, then overestimate it and affirm that the distance 
will be between these two estimates.  
P3.4: Every minute the car accelerates smoothly, so the velocity at 
the beginning of the minute is less than at the end. 
P3.5: Since we already know how to calculate the covered distance 
by a car jumping in each interval, we calculate the distance travelled 
of two “jerky” cars, one with the velocity of our car at the beginning 
of the interval and another with the velocity at the end of the interval.  
P3.6: In the first 3 minutes, if we divide each minute into 0.5-minute 
intervals, the covered distance by the delayed “jerky” car is 7.5 miles 
and the advanced “jerky” car 10.5 miles. 
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P3.7: Let’s try to break down the time into intervals 1/10th of a 
minute long. Once again, we can get an underestimate distance (8.7 
miles) and an overestimate distance (9.3 miles). 
P3.8: The correct answer would be somewhere between those two 
estimates. The smaller the intervals, the more accurate will be the 
approximation to distance travelled. 
P3.9: The exact distance can’t be found with any single division of 
the time interval. It is obtained by looking at the infinitely many 
increasingly improved approximations. 
P3.10: The finer approximations get closer and closer to a single 
value—the limit of the approximations. 
P3.11: This infinite process is the second fundamental idea of 
Calculus—the integral. If we know the velocity of a car at every 
moment in the interval of time, then the integral tells us how far the 
car travelled during that interval. 

 
Configuration 4 (EC4): Space as a function of time and variable 

velocity 

P4.1: In the example above where 
the speedometer always reads 2t, 
where are we after 1 minute, 2 
minutes, 2.5 minutes, 3 minutes? 
P4.2: In each case, we will use this 
infinite procedure to see how far we 
travelled from 0 to these times.  
P4.3: Let’s look at the table and see 
if there is a pattern.  
P4.4: We see that at any time t the odometer will mark the distance 
t2: the distance travelled is, thus, the square of the time interval 
taken, or p(t) = t2.  

 
Configuration 5 (EC5): The integral as a limit of sums 

P5.1: The integral process involves dividing the interval of time into 
small increments, seeing how far the car would have travelled if it 
had gone at a steady velocity during each small interval of time, and 
then adding up those distances to approximate the total distance. 
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P5.2: Therefore, the formula to determine the distance travelled 
between time a and b is: (𝑣(𝑎) × ∆𝑡) + (𝑣(𝑎 + ∆𝑡) × ∆𝑡) +
(𝑣(𝑎 + 2∆𝑡) × ∆𝑡) +⋯+ (𝑣(𝑏 − ∆𝑡) × ∆𝑡), as∆t becomes 
increasingly smaller. 
P5.3: By taking smaller subdivisions and taking a limit, we arrive at 
the actual value of the integral. 

 
Analysis of Practices: Intentionality, Objects, and Processes 

Below we include the detailed analysis of the network of practices, objects, 
and processes identified in each of the above configurations where Starbird 
introduces the intuitive meaning of Riemann integral. In the below tables from 
1 to 5, the first column indicates the groups of practices (epistemic 
configurations) mentioned above, the second column identifies the usage or 
intentionality of each practice, columns 3 and 4 describe the types of objects 
(languages, concepts, propositions, procedures, and arguments) and the 
involved processes in the practices or groups of practices. In the OSA, every 
sequence of practices is considered as a mathematical process, and 16 basic 
processes are proposed (Figure 1). We consider it important to become aware 
of the processes of interpretation, particularization/generalization, 
algorithmization, argumentation, among others. The mega-process of 
problem-solving is made up of the sequence of mathematical practices 
described above; this mega-process can be broken down into more basic 
processes, focusing on the sequences of elementary practices that are being 
carried out. 

 
Table 1 
EC1. Onto-semiotic configuration: Constant velocity 

 
Practice Use/ intentionality Objects Processes 

P1.1 
 
 
 
 
P1.2 
 
P1.3 

Pose a simple case 
of uniform 
motion. 

 
 
 
 

Language: natural, 
numerical and graphic. 
Concepts: uniform 
movement; magnitudes 
distance, time, speed; units 
of measure, miles, hours, 
minutes; function v(t) = 
constant.  

Interpretation: 
- The general statement of the 
problem cannot be solved unless a 
hypothesis about the car velocity is 
introduced. 
- Meaning is assigned to the terms 
used to describe uniform motion: 
constant velocity; measurement  
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Table 1 (Continued) 
EC1. Onto-semiotic configuration: Constant velocity  

 
 State and solve a 

case of uniform 
movement. 

Cartesian graph; constant 
function. 
Proposition: In one hour 
the distance covered will 
be 120. 

 
Procedure: arithmetic 
calculation of the distance 
covered.  

 
Proposition: Constant 
velocity will appear as a 
horizontal line.  

 
Arguments: in uniform 
movement p(t) = vt. 
 

units of the magnitudes velocity, 
time and space. 
- Graphic is related to the 
Cartesian representation of 
functions; the graphical 
representation of the constant 
function is a line parallel to the 
abscissa axis. 
Particularization: 
- The movement is supposed to be 
uniform, the speed is constant. 
- Give specific values to velocity. 
Algorithmization/Calculation: 
Sequence of arithmetic 
calculations to find the miles 
covered in the given conditions. 
Argumentation (implicit): In 
uniform motion, the space covered 
is obtained by multiplying the 
constant velocity by the elapsed 
time. 

 
    The practices in EC1 seek to solve an elementary case of calculating the 
distance in a uniform motion. This is particularized to some velocity values, 
and the miles covered are calculated in simple and specific situations. The 
argumentation appears implicit, supported by the knowledge of the physical 
conditions that characterize the uniform motion. 
    In CE2, the procedures used in the EC1 configuration are “locally” applied 
by assuming that velocity is now piecewise constant. EC1 has gained entity 
as a new mathematical object that can be involved as an argument or technique 
in a new configuration. 
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Table 2 
EC2. Onto-semiotic configuration: Piecewise constant velocity  

 
Practice Use/ intentionality Objects Processes 

P2.1 
 
P2.2 
 
 
P2.3 

State and solve a 
more general case; 
uniform piecewise 
motion. 
 
First encounter 
with Riemann-
type sums. 

Language: natural and 
numerical. 
Concepts: piecewise constant 
function. 
Procedure: arithmetic 
calculation of the distance 
covered. 
Proposition: Total distance 
covered is 210 miles. 
Arguments: In each section 
the motion is uniform. 

Generalization: from constant 
velocity to piecewise constant 
velocity. 
Algorithmization/calculation: 
sequence of arithmetic 
calculations. 
 
Argumentation: In uniform 
motion e=vt; distance is an 
additive magnitude. 

 

 
Table 3 
EC3. Onto-semiotic configuration: Variable velocity 

 
Practice Use/ intentionality Objects Processes 

P3.1 
 

 
 
 
P3.2 
 
P3.3 

 
 
 
 
 
P3.4 

 
 

State the case of 
variable velocity when 

v(t) = 2t.  
 

 
Explain the function 
v(t) = 2t.  
Describe the 

approximate distance 
calculation procedure 
fixing upper and lower 
limits.  
Set the car 
acceleration.  

 

Concepts: continuous 
function, linear 

function v=2t;  
Estimation by defect 
and excess of the 
distance; acceleration. 
Language: natural, 
symbolic. 

Proposition: the 
relationship between 
time, t, and velocity 
v=v(t), is v(t)=2t. 
 
 

 
Proposition: The 
velocity at the 
beginning of the 
. 

Generalization: From 
piecewise constant 

velocity it is passed to 
linear velocity 
(continuous). 
 
Particularization: 
From the linear 

function to specific 
velocity values for 
some time values. 
 
Argumentation: 
explanation of the 

problem and the 
procedure to follow. 
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Table 3. (Continued) 
EC3. Onto-semiotic configuration: Variable velocity 

 
Practice Use/ intentionality Objects Processes 

  minute is less than at 
the end. 
Argument: it is 
assumed that the car 

accelerates smoothly, 
the function v(t)=2t is 
increasing. 

 

P3.5 
 
 

 
P3.6 
 
 
 
P3.7 

Description of the 
approximation 
procedure.  

 
Present and solve a 
case of approximation 
as an illustrative 
example. 
Idem, with finer 

approximation.  

Concept: initial speed, 
final speed, 
discontinuous speed 

change; time interval; 
interval width. 
Procedures: arithmetic 
calculation of the 
distance covered. 
 

 

Algorithmization: 
Calculation of 
estimates for excess 

and defect of the 
distance covered.  

 
Particularization: 
Obtaining the distance 
for two subdivisions of 

the intervals. 
P3.8 

 
Set the approximation 
for the solution, exact 
distance covered. 

Propositions: 
p1: the actual distance 
is between two 
estimates; 
p2: the estimation is 

more precise when the 
intervals are smaller. 

Enunciation: lower 
and upper bound of the 
exact distance covered, 
precision of the bound. 
 

P3.9 
P3.10 

Identify the 
relationship between 
the exact distance and 
the limit of the 

approximations.  

Concept: limit value of 
approximations.  
Proposition: 
p3: the sequence of 

estimates approaches a 
single limit value  
Arguments: Practices 
P3.5, P3.6, and P3.7 
plausibly justify. 

Enunciation: distance 
as the limit of 
approximations. 
Argumentation: 

deductive based on 
previous practices. 
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Table 3. (Continued) 
EC3. Onto-semiotic configuration: Variable velocity 

 
Practice Use/ intentionality Objects Processes 

  propositions p1, p2, 
and p3. 

 

P3.11 Introduce the integral.  Concept: integral as 
the limit value of an 

infinite process. 

Definition: The 
distance covered in a 

interval of time as an 
integral of the velocity 
in said interval. 

 
    In EC3 the velocity is directly proportional to time, v (t) = 2t. It changes 
from a constant piecewise function (with jump discontinuities) to a continuous 
function. The function growth allows us to calculate estimates by default 
(considering the speed at the beginning of each interval) and by excess 
(considering the final speed in each interval). In the practice P3.5, it is said 
that “since we already know how to calculate the distance covered by a car 
jumping rapidly in each interval”, that is, EC2 is involved in this new 
configuration as a process that is applied in a particular way in each one of 
these estimates. P3.9 states the "need to look at infinite approximations." The 
improvement of these approximations supposes smaller and smaller divisions 
of the intervals, so that they "progressively" get closer until the estimates taken 
by default and by excess are indistinguishable. The integral appears as a 
"fundamental idea of Calculus after this infinite process." 
    In EC4 the generalization must allow obtaining the distance p(t) = t2 as a 
primitive of the velocity as a function of time. Again, the "infinite procedure" 
established in EC3 is used to obtain the values that allow "deducing a pattern". 
In this configuration we observe two processes of "abusive generalization" 
that can be a source of potential semiotic conflicts. One of them refers to 
obtain the distance covered for the five values of time, applying the limit 
calculation processes previously mentioned; the other, the inference of the 
general formula of the distance for any value of t, using only 5 pairs of values. 
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Table 4 
EC4. Onto-semiotic configuration: Space as a function of time and variable 
velocity 

 
Practise  Use/ intentionality Objects Processes 

P4.1 

 

 

 

 

P4.2 

Pose the problem of 
calculating the 
distance for a 
collection of time 
values.  

Relate the solution 
of P4.1 to the 
procedure 
developed in CE3. 

Problem: calculation of 
p(v, t) for 4 values of t. 

Languages: tabular and 
algebraic-functional. 
Concepts: instantaneous 
velocity; linear function. 
Procedure: calculating 
the distance for 4 times 
values. 

Problematization: Find the 
distance as a function of time. 
Algorithmizing: Calculate 5 values 
of the space covered when v=2t 
applying the limits procedure. 

Representation: Tabular 
arrangement of the 5 pairs of 
function values. 

P4.3 

 

 

P4.4 

Pose the problem of 
identifying a pattern 
in the table. 

State the function 
that relates space to 
time 

Concepts: quadratic 
function.  

Proposition: p(t)=t2 
Argument: Inductive 
reasoning from the 5 
values in the table. 

Problematization: Analyze the 
existence of a pattern. 
Generalization: The continuous 
case is inferred from the discrete 
case of five pairs of values. 

Enunciation: the distance covered 
is the square of the time interval 
taken. Argumentation: Inductive, 
the expression of the continuous 
function is stated in the case of 5 
pairs of values. 
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Table 5 
EC5. Onto-semiotic configuration: The integral as a limit of sums 

 
Practice  Use/ intentionality Objects Processes 

P5.1 

 

 

P5.2 

 

 

 

 

P5.3 

Describe the whole 
process in a discursive 
way. 
Symbolically describe 
the summation formula 
to find the distance 

covered in any finite 
time interval. 

Define the value of the 
integral as a limit of 
the sums. 

Concepts: value of the 
integral; limit, formula. 
 

Procedure: product of 
instantaneous velocities 
for small time intervals; 
sum of products; limit 
calculation. 

 

Argument: sequence of 
configurations CE1 - 
CE4. 

Algorithmization: Regulate the 
steps to calculate the value of 
the integral (integral process). 

Representation: Symbolic 
expression of the sequence 
sums of space covered 
quantities. 

 

Definition: The value of the 
integral is the limit of the sums 
of the sequences when the 
subdivisions become 

progressively smaller.  

 
    In the first elementary practice of EC5 it is established what is the essence 
of the “integration process”: 1) split the time interval into small increments; 
2) see how far the car would go if it had gone at constant speed during each 
small time interval; 3) add these distances to approximate the total distance 
covered. Taking limits when the subdivisions are getting smaller, we get the 
integral value, which appears linked to the distance covered during the time 
interval. 

Formal-Algebraic Meaning 

In this section, we carry out an onto-semiotic analysis of the definite integral 
meaning usually studied in university Calculus courses, which is characterized 
by its progressive generalization and formalization achieved with the use of 
algebraic tools. We choose Stewart's (2016) book widely used. Lesson 5 of 
this textbook begins with problems about areas and distances which are solved 
using the Riemann Sum limit calculation, strongly supported by graphical 
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representations. This section serves as a context and foundation for the 
subsequent introduction of the general definite integral definition (section 5.2, 
p. 378).  
    In the following sections, we present a synthesis of the epistemic trajectory 
developed by Stewart, with the posing and solution of problems and exercises 
on calculating areas and distances, highlighting the main epistemic 
configurations developed. Since the analysis of the practices, objects, and 
processes of these configurations requires excessive space for this article, we 
have chosen to make this analysis only for the integral general definition, 
which we include in section 5.2. 
 
Preparing the Definite Integral General Definition: Geometric and 
Kinematic Meaning 

To understand the validity and usefulness of the generality with which the 
integral definition is presented, it is necessary to start from specific problems 
whose resolution brings into play the mathematical practices condensed in the 
definition. It is necessary to understand the raison d'être, the origin and 
motivation of the normative practice that constitutes the integral Definition as 
a whole. For this reason, Stewart's (2016) book includes section 5.1, which 
addresses two types of problems: calculation of areas, and distance traveled 
by a moving object. 

 
    The area calculation problem 

The calculation of areas of plane surfaces limited by curves is proposed, using 
as an example the function f(x) = x2 in the interval [0, 1] (Figure 2a). 
 

 
Figure 2. a) Area under a curve; b) Distance traveled 
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    In Figure 3 is observed that as the number n of rectangles increases, both 
the sums of the areas of the approximation rectangles Ln (whose heights are 
taken at the left endpoints), and the sums of the areas of the approximation 
rectangles Rn (whose heights are taken at the right endpoints) are increasingly 
better approximations of the area of the region S under the graph. This 
generalization process is supported by graphical representations and tables 
with numerical estimates of areas by default and excess. 

 
 
 
 
 
 
 
 

Figure 3. Approximating rectangles 
 

This allows to formulate the definition of the area A of the region S that lies 
under the graph of a continuous function f as the limit of the described sums 
(Figure 4). 

 
 
 
 
 
 

Figure 4. Definition of the area of a region (Stewart, 2016, p. 371). 
 

The existence of the limit “can be demonstrated” from the continuity of the 
function f; in the same way that it “can be demonstrated” that the same value 
is obtained if Rn is replaced by Ln. 
 
    The distance problem 

The aim is to find the distance travelled by a moving object in a time period 
if the velocity of the object is known as a function of time (Figure 2b). In this 
case, after several examples, solved with arithmetic procedures and supported 
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by their Cartesian representation (Figure 2b), the author proposes to observe 
the similarity of the sums to calculate the distance and the sums to calculate 
the areas. Now the area of each rectangle should be interpreted as a distance 
because the height represents velocity, and the width represents the time. 
    After the discussion of some examples, explained in arithmetic language, 
given that finite sets of particular numbers and arithmetic operations are used, 
Stewart proceeds to the general case v=f(t), where	𝑎 ≤ 𝑡 ≤ 𝑏, and f(t)≥0, 
making it plausible that the exact distance travelled d is the limit of the 
expression,𝑑 = ∑ 𝑓(𝑡!5$	)∆𝑡"

!#$ = ∑ 𝑓(𝑡!	)∆𝑡"
!#$ . 

    Comparing the expressions of the area and distance calculations, it follows 
that the distance travelled is equal to the area under the graph of the velocity 
function. Later, Stewart considers the case of other relationships between 
magnitudes of interest in the natural and social sciences fields, which can be 
interpreted as the area under a curve. 
    Due to space limitations, it is not possible to make a detailed analysis of the 
mathematical practices described in this section like the one carried out in 
section 4. We apply that microscopic analysis of mathematical activity to the 
general definition of the integral as a Limit of Riemann Sums, enunciated by 
Stewart as the final milestone of some concepts and procedures introduced in 
section 5.1. In this case, the onto-semiotic analysis is applied to a text that 
does not correspond to the process of solving a problem, but to the process of 
the general definition of a mathematical concept. 

 
Onto-Semiotic Analysis of the Integral Definition as a Riemann Sum 
Limit 

The mathematical practice of the definition in Figure 5 can be broken down 
into more basic practices. In these practices, different types of (ostensive and 
non-ostensive) objects intervene, interrelated by means of semiotic functions, 
each of which constitutes specific knowledge. The recognition of the network 
of semiotic functions reveals the complexity of the required interpretation and 
performance processes, as well as the logic and intentionality of each action.  
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Figure 5. Definite integral definition (Stewart, 2016, p. 378) 
 
    Next, we break down the definition (Figure 5) into elementary practices: 

P0: Definition of a definite integral  
P1: If f is a function defined for a ≤ x ≤ b, 
P2: We divide the interval [a,b] into n subintervals of equal width 
∆𝑥 =(b-a)/n 
P3: We let x0(=a), x1, x2, . . . , xn(=b) be the endpoints of these 
subintervals 
P4: and we let x*1, x*2, . . . , x*n be any sample points in these 
subintervals, so x*i lies in the ith subinterval [xi-1, xi]. 
P5: Then the definite integral of f from a to b is ∫ 𝑓(𝑥)𝑑𝑥!

" =
∑ 𝑓(𝑥#∗)∆𝑥%
#&'  

P6: provided that this limit exists and gives the same value for all 
possible choices of sample points. 
P7: If it does exist, we say that f is integrable on [a, b]. 

    The intention of P0 is to name the sequence of practices that follow and 
classify it as a definition / rule. We consider practices P1, P2, P3 and P4 as an 
epistemic configuration of the general definition (EC1-DG), which have a 
preparatory role for the definition itself, done in practices P5, P6 and P7 (EC2-
DG). Tables 6 and 7 show these elementary practices (column 1) related to 
their use or intentionality (column 2), the objects (column 3) and processes 
put at stake (column 4). 
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Table 6 
EC1-DG Onto-semiotic configuration: Function, interval, partition, and 
sample points 

 
Practice Intentionality Objects Processes 

P1 Establish a 
condition for the 
type of functions 
to be considered 
and represent it 
with f. 

Languages: natural, 
symbolic.  
Concepts: function; 
real number interval; 
domain; variable. 
 

 

Interpretation: 
-The term function refers to the concept of 
real function of real variable. 
- The domain of the function is the interval 
between two fixed but arbitrary real 
numbers, a and b.  
Representation: f designates any function of 
real variable; x the independent variable; 
a ≤ x ≤ b represents the domain of the 
function. 

P2 Set the interval 
width of the 
partition.  

Concepts: interval 
extreme points, 
interval width. 
Procedure: 
Determination of the 
subinterval’s 
amplitude.  

Interpretation: 
A generic range of real numbers is assigned 
as content (meaning) to the expression [a, b];  
The letters a (origin) and b (end) name the 
interval endpoints. 
∆𝑥 designates the amplitude of any 
subinterval; it intervenes as a variable. 
Splitting (the interval) into n subintervals 
means breaking it down into n disjoint parts. 
The letter n refers to the finite number, but 
any, in which the interval is broken down. 
Definition: ∆x =(b-a)/n 
Representation: Assignment of symbols to 
the interval endpoints, number of intervals 
and interval width. 

P3 Assign a symbol 
to the endpoints 
of the 
subintervals of 
the partition. 

Language: symbolic 
representation of 
points.  
Concepts: endpoints 
of subintervals; finite 
sequence of points. 
Procedure: choice of 
partition. 

Interpretation: 
Endpoints of the subintervals. An interval is 
given by two points, lower (left) and upper 
(right). Because the subintervals are 
contiguous, the upper one matches the lower 
one, except for the first subinterval: x0(=a) 
and the last subinterval: xn(=b). 
Representation: Assignment of symbols x0, 
x1, x2, . . . , xn to the sequence of points that 
split the interval. 

P4 Assign a symbol 
to each sample 
point of the 
intervals; 
Remember what 
sample point  

Language: symbolic 
representation of a 
generic sample point. 
Concept: sample 
point.  
 

Definition: Sample points in each interval 
refer to specific interior points in each 
interval. 
Interpretation: 
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Table 6. (Continued) 
EC1-DG Onto-semiotic configuration: Function, interval, partition, and 
sample points 

 
P4 means. 

 
Procedure: choice of 
sample points in each 
interval. 

- The sample points will represent the set of 
points of each subinterval. 
- Each sample point xi* belongs to the 
interval 
 [xi-1, xi]. 
Representation: The symbols x1*, x2*,. . . , xn* 
refer to particular points of the n 
subintervals. 

 
    The subject who reads and understands the definition of definite integral 
(Figure 5) must mobilize a system of prior knowledge, for which he/she needs 
to relate the different objects involved in the practices and recognizing the role 
that each one plays in the definition process. In the network of processes 
recognized in Tables 6 and 7, those of interpretation/meaning are particularly 
noteworthy. These processes involve knowledge that an epistemic subject 
(expert or ideal) implicitly puts at stake when read, interpret, and understand 
the definition. 
 

Table 7 
EC2-DG Onto-semiotic configuration: Definition of definite integral and 
integrable function 

 
Practice Intentionality Objects  Processes 

P5 Define the 
definite integral 
of any function 
f, as the limit of 
a sum of 
products. 

Language: 
symbolic. 
Concepts: definite 
integral; value of a 
function at one 
point; subinterval 
width; product; 
sum and limit. 

Interpretation: 
-The expression 𝑓(𝑥"∗	) refers to the value of 
the function f at the sample point 𝑥"∗	 of the 
interval i. 

-The expression Δx refers to the constant 
width of each subinterval given in P3. 

- The expression 𝑓(𝑥"∗	)Δx refers to the 
product of the value of the function at the 
sample point i bythe interval width.  
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Table 7 (Continued) 
EC2-DG Onto-semiotic configuration: Definition of definite integral and 
integrable function 

 

Practice Intentionality Objects  Processes 

   -The expression ∑ 	!
"#$ refers to the sum of the 

n products. 

- The expression refers to the limit 
calculation of the summation sequence in n. 
∫ 	!" 𝑓(𝑥)𝑑𝑥	designates the value of the integral 
of the function f in the interval [a,b]. 

The resulting value of the limit is assigned to 
the definite integral, a symbol that intervenes 
as a variable used as a receiver of values. 
Representation: Assignment of symbols to 
the definite integral, limit and summation. 
Algorithmization: Products; sum of product; 
calculation of the limit of the sums sequence. 

Definition: The integral is defined as the 
number resulting from the calculation of the 
limit.  

P6 Establish 
conditions on 
the definition 
validity. 

Language: natural 
Concepts: limit; 
convergence 
sequence; sample 
point.  

Interpretation: 

- Existence of the limit, refers to the fact that 
∑ 𝑓(𝑥"∗	)Δ𝑥!
"#$ 	 is a convergent sequence of 

natural numbers. 

- It gives the same value for all the possible 
choices of sample points; it refers to the fact 
that the value of the limit does not depend on 
the points at which the function is evaluated. 

P7 Assign a name 
to the functions 
that meet a 
condition. 

Concept: 
integrable 
function; interval; 
existence of the 
limit. 

Definition: Function integrable in an interval. 
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    Throughout the definition process, the alphabetic symbols a and b intervene 
as parameters: the real number to be designated as an integral of the function 
f depends in each case on the value assigned to the interval endpoints. The 
terms interval, subinterval and amplitude are related to their respective 
concepts/rules. 
    We find a generalization process related to the set of proposed and solved 
examples in section 5.1 of the book (Stewart, 2016, pp. 366-378). These refer 
to situations in which magnitudes, quantities, measurements and 
correspondences between magnitudes intervene. However, the general 
definition of integral refers to any function f of real variable; hence, the 
magnitudes disappear, and the correspondence is established between 
numbers. 
    In practice P6 a semiotic conflict may arise in the meaning and 
representation of the definite integral value of a function f in the interval [a, 
b]: the symbol dx has no previous referent. It could be expected to represent 
(for instance) this number as S (f, a, b); it is a value that depends on the 
function f and the parameters a and b, extremes of integration. 
    In this system of practices, the integral is defined as a number, obtained as 
result of the application of the rule whose justification refers to the system of 
discursive, operative and normative practices previously included in section 
5.1. 

Discussion and Connections 
 

In this section we synthesize the contributions made with the onto-semiotic 
analysis of the integral meanings carried out in sections 4 and 5, relating them 
to the insights proposed by other authors applying various theoretical tools. 
The analysis of the intuitive meaning (section 4) reveals that a first encounter 
with the integral is possible by selecting an introductory problem-situation, 
solvable with a sequence of practices involving arithmetic objects and 
procedures. It is inevitable, however, to look at the infinite process of 
obtaining the limit of the sum of products sequence of infinitesimal quantities. 
    However, the progression in the efficiency of mathematical work by future 
university professionals requires mastering the algebraic tool to express the 
generality of mathematical concepts and procedures and operate syntactically 
with such generality. The onto-semiotic analysis of the integral formal-
algebraic meaning, established in the definition as limit of Riemann Sums 
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(section 5), is also revealed as useful to become aware of the knowledge, skills 
and understanding acts involved. 
    The methodology of analysis of a mathematical text that we have 
exemplified in sections 4 and 5 applying the OSA theoretical tools provides a 
microscopic level of analysis that allows us to identify some epistemic and 
semiotic-cognitive facts of didactic interest, as well as some epistemic strata, 
that is, institutional knowledge that should have been previously studied, 
which usually goes unnoticed in the teaching processes. In both cases, we have 
been able to identify potential semiotic conflicts related particularly to the 
generalization processes that are carried out, often implicitly, in the process 
of defining the integral. 
    To recognize that a first encounter with the definite integral can be 
implemented by relying on non-algebraic means of expression is an epistemic 
event of educational interest. However, our analysis reveals that even in this 
intuitive approach, discursive practices that involve semiotic questioning on 
the part of the reader could be required. For example, in practice P5.2 (EC5, 
Section 4), Starbird abruptly introduces a general algebraic expression of the 
sum of increments of the distance covered between any time interval [a, b], 
that contrasts with the previous presentation made with natural language and 
particular numerical values. The reader unfamiliar with this symbolism to 
express the generality of the resolution process will have to question the 
meaning of each term of the expression. 
    In the case of the study of the integral proposed by Stewart (2016), Section 
5, we also find a similar semiotic problem. For example, the solution to the 
problem of calculating the area under a curve is a number expressed as 

𝐴 = 𝑅" = [𝑓(𝑥$	)∆𝑥 + 𝑓(𝑥8	)∆𝑥 +⋯+ 𝑓(𝑥"	)∆𝑥] = 
𝐿" = [𝑓(𝑥9	)∆𝑥 + 𝑓(𝑥$	)∆𝑥 +⋯+ 𝑓(𝑥"5$	)∆𝑥] 

and the solution to the calculation of the distance traveled is also a number 
represented as  

𝑑 = ∑ 𝑓(𝑡!5$	)∆𝑡"
!#$ = ∑ 𝑓(𝑡!	)∆𝑡"

!#$ . 
    Furthermore, the reader should accept the existence and equality of such 
limits. 
    In the general definition of the integral (Figure 5) this number is expressed 
with a complex notation in which the reader have to understand that the 
symbol dx has no meaning by itself and that the expression,∫ 𝑓(𝑥)𝑑𝑥:

;  must 
be seen as a single symbol to represent "a number that does not depend on x". 
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Students will read about Riemann Sums, limits, derivatives, area, and 
many other concepts while they are learning definite integral. In order to have 
a good understanding of the definite integral, students should be able to make 
connections between all these concepts. The research on definite integrals 
found that student’s knowledge was limited to procedural knowledge, but they 
had difficulty making connections between different representations of the 
definite integral (Serhan, 2015). 

Our analysis helps to reveal the complex network of objects involved in 
operative, discursive and normative mathematical practices that are inherent 
in mathematical activity. In these practices, not only conceptual and 
procedural objects intervene, but also problems that contextualize and give 
meaning to all mathematical activity; representations of various kinds 
(symbolic, graphic, diagrammatic, natural language, etc.); propositions that 
relate the concepts and synthesize the results that respond to problems; 
arguments of a descriptive, explanatory nature or those that justify procedures 
and propositions. Special attention is also required to mathematical processes, 
interpreted in terms of sequences of practices aimed at achieving the 
objectives of the mathematical activity. Thus, in the general process of 
problem solving, more specific processes are distinguished, such as 
representation, interpretation, definition, algorithmization, enunciation, 
argumentation, generalization, particularization, etc. In the practices analyzed 
in sections 4 and 5, we observe that not all these processes have the same 
presence and that their complexity could be also an explanatory factor for the 
various potential students’ learning difficulties. 

The onto-semiotic analysis exemplified here can complement the study 
carried out by other authors using different theoretical tools. The definite 
integral structure model elaborated by Sealey (2014) is undoubtedly useful 
and relevant for understanding the students’ understanding difficulties. We 
consider that the analysis accomplished in sections 4 and 5 complements the 
Sealey model in two directions. On the one hand, in addition to the Orienting 
layer, related to the understanding of the magnitudes involved and the 
relationships with the problem contexts, there is a network of previous 
mathematical knowledge - linguistic, conceptual, procedural and 
argumentative - that should be considered in the instructional process. 
Furthermore, understanding each layer that Sealey describes also brings into 
play processes and objects that the onto-semiotic analysis reveals, which can 
be the source of potential semiotic conflicts. 
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We also consider that the onto-semiotic tools that we have presented are 
compatible with the notions of concept definition and concept image (Rasslan 
& Tall, 2002; Grundmeier, Hansen, & Sousa, 2006; Serhan, 2015), although 
they could broaden and deepen the analysis of the concepts, limitations and 
learning biases of the integral concept. The image concept is interpreted in the 
OSA as the personal meaning of the subject about a concept, which implies 
adopting a systemic and pragmatic perspective on mathematical knowledge. 
This meaning is described by the cognitive (or personal) onto-semiotic 
configuration, which involves a type of problem, the system of practices for 
its solution and the network of objects and processes involved in the practices. 
The concept definition is one of the objects of the configuration, such 
definition is a norm that regulates the operative and discursive practices that 
are carried out to solve the corresponding type of problems. The activity and 
mathematical knowledge analysis is done both from a personal or cognitive 
perspective, as well as from an institutional or epistemic perspective; 
consequently, one should also speak of the institutional “concept image”, that 
is, the institutional meaning of the integral, also understood as an onto-
semiotic configuration. Moreover, for the integral and any mathematical 
concept it is possible to find, not a single definition, but there are different 
definitions, each one linked to certain contexts or types of problems whose 
resolution brings into play different systems of practices, and, therefore, 
different meanings (senses). 

The distinction between conceptual and procedural knowledge, introduced 
in mathematics education in the work of Hiebert and Lefevre (1986), has been 
used by Serhan (2015), among other authors, in the case of learning the 
integral concept. We consider that the notion of pragmatic meaning proposed 
by the OSA for a concept, understood systemically as an onto-semiotic 
configuration, develops the notion of conceptual and procedural knowledge. 
This is because of the onto-semiotic configuration shows the elements that 
intervene in the conceptual and procedural components, as well as the 
relationships that exist between them. The onto-semiotic analysis that we have 
done in sections 4 and 5 shows, by means of two specific examples, the pieces 
of information about the integral that should be interconnected in order to 
affirm that a subject has conceptual and procedural knowledge. It is important 
to explain the argument component, as well as the processes of interpretation, 
representation, generalization, etc., that are put at stake in each case, which 
are implicit or poorly developed in the Hiebert and Lefevre model.  
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Final Thoughts 

The onto-semiotic analysis applied to two meanings of the integral has 
revealed the complex network of objects and processes involved in 
mathematical activity, the knowledge that we consider useful for managing 
the teaching and learning of the integral. We have shown that the onto-
semiotic approach to mathematical knowledge makes it possible to connect 
two complementary perspectives on mathematics: as a problem-solving 
activity for people, and as a system of objects and processes that regulate and 
emerge from this activity. It also considers the personal (cognitive) and 
institutional (epistemic) duality of mathematical knowledge, which is 
fundamental for the study of phenomena related to the teaching and learning 
of mathematics. 

According to Serhan (2015), it is important for instructors to review the 
way definite integral is presented and taught in class. It is necessary to make 
more emphasis on the multiple representations, their connections, and how 
students may use the Riemann Sum to enhance their structural understanding 
of the definite integral. 

Although it is a laborious analysis that requires a certain mastery of 
theoretical tools, we consider that researchers and teacher educators should be 
trained to carry out similar analysis of teaching content, at least the essential 
concepts and procedures of each subject. For each partial meaning of the 
object, and each resolution of the prototypical tasks that characterize it, it is 
necessary to identify the network of objects and processes involved, in order 
to be able to plan the teaching, manage interactions in the classroom, 
understand difficulties, and evaluate students’ learning levels. The 
identification of the objects and processes involved in mathematical practices 
is a teaching competence that will allow us to understand the learning 
progression, manage the necessary institutionalization processes, and assess 
the students’ mathematical competences. 

It would be necessary to continue this research work with other meanings 
of the integral, in particular, the Fundamental Theorem of Calculus, which 
leads us to understand the integral as the incremental difference of the 
cumulative function. It is also necessary to broaden the study in three 
directions: deepen the articulation of the onto-semiotic analysis with the 
contributions of other theoretical frameworks, apply the OSA tools to the 
study of the students’ personal meanings of the integral and analyze the impact 
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of the use of the technology in mathematical practices for solving integral 
Calculus problems. 
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