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Abstract
Aim of study: A portable VIS/NIR spectrometer and chemometric techniques were combined to identify bitter pit (BP) in Golden apples.
Area of study: Worldwide
Material and methods: Three different classification algorithms – linear discriminant analysis (LDA), quadratic discriminant analysis 

(QDA) and support-vector machine (SVM) –were used in two experiments. In experiment #1, VIS/NIR measurements were carried out at 
postharvest on apples previously classified according to 3 classes (class 1: non-BP; class 2: slight symptoms; class 3: severe symptoms). 
In experiment #2, VIS/NIR measurements were carried out on healthy apples collected before harvest to determinate the capacity of the 
classification algorithms for detecting BP prior to the appearance of symptoms.

Main results: In the experiement #1, VIS/NIR spectroscopy showed great potential in pitted apples detection with visibly symptoms 
(accuracies of 75–81%). The linear classifier LDA performed better than the multivariate non-linear QDA and SVM classifiers in dis-
criminating between healthy and bitter pitted apples. In the experiment #2, the accuracy to predict bitter pit prior to the appearance of 
visible symptoms decreased to 44–57%.

Research highlights: The identification of apples with bitter pit through VIS/NIR spectroscopy may be due to chlorophyll degradation 
and/or changes in intercellular water in fruit tissue.
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Introduction
Bitter pit is considered one of the key physiological 

disorders in apple crop, causing serious losses in certain 
apple varieties. The symptoms are characterized by de-
pressions on the skin, generally located at the calyx end 
of the fruit. The tissue under these depressed areas is dar-
kened, dry and corky with a bitter taste (Ferguson & Wa-
tkins, 1989; Jemrić et al., 2016). Traditionally, research 
studies have related bitter bit with calcium deficiency and 
the balance between calcium and other nutrients such as 
nitrogen, potassium, or magnesium (Ferguson & Wat-
kins, 1989; Amarante et al., 2013; de Freitas et al., 2015). 

However, some works have shown a lack of relationship 
between calcium content level and bitter pit, indicating 
that the disorder could be affected by other causes such 
as climate and/or growing conditions (Saure, 1996, 2005; 
Lotze et al., 2008; Saure, 2014; Torres et al., 2017b).

Although the process that causes bitter pit usually 
starts during the period of fruit growth, the symptoms 
may not be evident in the orchard and generally appear 
during fruit storage or transport. This can result in exten-
sive losses associated with labor and packing costs (Val 
et al., 2010; Kafle et al., 2016). Identifying fruit prone to 
bitter pit before export or shipment would help to redu-
ce economic losses caused by market rejection (Nicolaï  
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et al., 2006; Torres et al., 2015). Mineral analyses based 
on calcium levels within the fruit or approaches which 
force the appearance of symptoms before they natu-
rally occur have been studied by different researchers 
to predict bitter pit (Torres et al., 2010, 2015, 2021; 
Jemrić et al., 2016; Kalcsits, 2016). The drawbacks of 
these techniques include the fact they are destructive, 
which means the same fruit cannot be monitored over 
time, and a delay of between 5 and 14 d before obtaining  
the results. 

Measurements of spectral reflectance in the visible 
and near-infrared regions (VIS/NIR) using spectroscopy 
technology has several advantages (rapid measurement, 
repeatability, chemical-free and ability to measure mul-
tiple attributes simultaneously) over destructive methods 
(i.e. mineral analysis) which could help to overcome these 
difficulties. The VIS/NIR radiations penetrate the object, 
and changes in the spectral characteristics due to scatte-
ring and absorption depend on its chemical composition. 
These spectral changes provide information about micros-
tructural properties of the object, including stiffness and 
internal damage. Many studies have explored the possibi-
lity of using VIS/NIR spectroscopy for studying quality 
and disorders or for detecting defects in apples (Upchurch 
et al., 1990; Mehl et al., 2002; Ariana et al., 2006; Xing et 
al., 2006; Paz et al., 2009). 

As for bitter pit detection and/or prediction, very few 
studies have been published. Lotze (2005) made a clas-
sification between healthy and bitter pitted ‘Braeburn’ 
apples using fluorescence imaging with an accuracy of 
75–100%. In another study, Nicolaï et al. (2006) used 
a line scan near-infrared camera with a spectrograph to 
capture spectral images and successfully identify visible 
and non-visible bitter pit lesions. Similarly, Ariana et al. 
(2006) presented an imaging model of reflectance and 
fluorescence to differentiate between pitted and non-pit-
ted apples with accuracies of up to 87%. Recently, Kafle 
et al. (2016) and Jarolmasjed et al. (2017) distinguished 
bitter pitted apples by means of NIR spectrometry with an 
average accuracy in the range of 70–100%.

Most of the above-mentioned studies used laboratory 
equipment in the NIR region (780–2500 nm) and are of 
little practical use in the field or packing houses. In recent 
years, as the result of rapid technological developments, 
handheld VIS/NIR spectrometers have been designed to 
specifically control and monitor the quality and maturity 
of different fruits (León-Moreno, 2012). These spectro-
meters are portable and compact, but usually offer me-
asurements only in limited wavelength ranges (<1100 
nm). According previous studies, these wavelength ran-
ges could be enough to detect some disorders in apples. 
ElMasry et al. (2008) developed a hyperspectral imaging 
system based on a spectral region between 400 and 1000 
nm for early detection of bruises on apples. Kleynen et 
al. (2005) observed that the 750 and 800 nm bands offe-

red good contrast for detecting internal tissue damage like 
hail damage, bruises, and so forth.

The present study aims to evaluate the VIS/NIR spec-
troscopy technology for detecting and predicting bitter 
pit in apples. The specific goals of the study were: (1) to 
determine the capacity to classify different severity levels 
of bitter pit; (2) to determinate the capacity to classify 
healthy and bitter pitted apples carrying out one or two 
measures per fruit; and (3) to determine the capacity to 
predict bitter pit prior to the appearance of symptoms. To 
our knowledge, no results related to these specific objec-
tives have been published to date. 

Materials and methods
Plant material and selection of samples

‘Golden Smoothee’ apples (Malus domestica Borkh. 
L) were harvested on September 10th, 2015, and Septem-
ber 13th, 2016, from a bitter-pit-prone orchard located at 
Gimenells (Lleida, NE Spain). The orchard was planted 
in 1994 and trees were grafted onto M9 rootstock. Plant 
and row spacing were 1.4 m and 4 m, respectively (1786 
trees/ha). Fertigation was applied through drip irrigation. 
The soil was characterized as a calcareous loam with ex-
cellent drainage characteristics. Trees were managed ac-
cording to the guidelines for apple integrated production, 
including the application of mineral fertilizers that were 
estimated to cover the nutrient requirements.

Sampling of apples with visible bitter pit symptoms (ex-
periment #1)

In 2015, average-sized apples (80–85 mm of diameter) 
at commercial harvest (September 2nd) were collected and 
placed in packaged fruit boxes and stored in cold storage 
at 0 °C for 4 months. Bitter pit was then evaluated using 
a category scale with 3 classes of bitter pit depending on 
the amount of pitted area (Fig. 1): class 1 with no bitter pit 
symptoms; class 2 with slight symptoms (fruit having 1–5 
pits on the surface); class 3 with moderate/severe symp-
toms (more than 5 pits per fruit). Two 276-apple samples 
were selected. Each sample comprised 100 apples of class 
1, 76 apples of class 2 and 100 apples of class 3 (Table 
1). Two VIS/NIR measurements were carried out on each 
fruit (see section Data collection).

Sampling of apples when bitter pit symptoms were not  
visible (experiment #2)

In 2016, healthy apples were collected at 20 d be-
fore harvest (at preharvest) and at commercial harvest  
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(at harvest, September 8th). One average-sized (70–75 
mm and 75–80 mm of diameter, repectively) and unda-
maged apple was taken from different trees with standard 
crop loads and vigor at a height of 130–170 cm above the 
ground. The apples collected were subsequently placed 
on plastic fruit trays. Then, VIS/NIR measurements were 
carried out on each fruit when no symptom was visible 
(see section Data collection).

After the VIS/NIR measurements, the apples collec-
ted at preharvest were left at room temperature (~ 25 °C) 
to allow the development of bitter pit symptoms accor-
ding to the passive method (Torres et al., 2015). After 7 
d, bitter pit was evaluated using a binary-class classifi-
cation: class 1 and class 3 (apples classified as class 2 
were discarded for this experiment). Then, two balanced 
40-apple samples were selected for bitter pit prediction 
at preharvest.

The apples collected at commercial harvest were kept, 
after the VIS/NIR measurements, in cold storage at 0 °C 
for 4 months; after this, bitter pit was evaluated using a bi-
nary-class classification to separate apples without visual 
symptoms (class 1) from apples with visible BP symp-
toms (class 3). Two 40-apple samples were selected for 
bitter pit prediction at harvest; each sample comprised 
20 apples of class 1 (asymptomatic apples) and 20 apples 
of class 3 (symptomatic apples) (Table 1). Two VIS/NIR 
measurements were carried out on each fruit (see section 
Data collection).

Data collection

The spectral absorbance data were collected under la-
boratory conditions using a UT-5001 portable handheld 

 
Figure 1.   Category scale with three classes of bitter pit depending on the amount of pitted 
area: class 1 with no bitter pit symptoms; class 2 with slight symptoms (fruit having 1–6 
pits on the surface); class 3 with moderate/severe symptoms (more than 6 pits per fruit).

Data set 
Classification 1, 2

Total2Class 1 
(healthy  apples)

Class 2
(slight symptoms)

Class 3
(severe symptoms)

Exp. 1 Multi-class I 200 152 200 552
II 200 152 200 552
III 400 304 400 1104

Binary-class I 200 - 200 400
II 200 - 200 400
III 400 - 400 800

Exp. 2 20 DBH 3 I 80 - 80 160
II 80 - 80 160
III 160 - 160 320

Harvest I 80 - 80 160
II 80 - 80 160
III 160 - 160 320

Table 1. Number of collected spectral data for each dataset

1 Class 1: healthy apples without symptoms; class 2: bitter pit apples with slight symptoms (1–6 pits); class 3: Bitter 
pit apples with severe symptoms (> 7 pits).  2 Two spectral data collected per fruit from two opposite sides.  3 DBH: 
days before harvest



4 Estanis Torres, Inmaculada Recasens and Simó Alegre

Spanish Journal of Agricultural Research March 2021 • Volume 19 • Issue 1 • e1001

VIS/NIR spectrometer (UT instruments, Lugo, Ravenna, 
Italy) with measurement range of 650–950 nm, a range fo-
cuses on the red-border and near-infrared region and with 
high physiological factors such as changes in pigments, 
water, carbohydrates, chlorophyll content and fluorescen-
ce (Kurenda et al., 2014). The spectral resolution of the 
spectrometer was 2 nm. Fruits were equilibrated at room 
temperature approximately half a day before spectral ac-
quisitions. A blank scan was performed using Teflon® be-
fore starting the spectral measurements of each  sample. 
The VIS/NIR measurements were carried out from two 
opposite sides along the equator of the fruit. 

In experiment #1, the first measurement was carried 
out on the most affected side when symptoms were visi-
ble, but on healthy area close to symptoms (symptomatic 
side); the second measurement was carried out on healthy 
area from the opposite side (non-symptomatic side).

For each experiment, two datasets were obtained from 
the measurement of each sample. The two datasets were 
combined to develop a new set of data. Finally, the spec-
tral absorbance data of each experiment were analyzed as 
three datasets (Table 1).

Classification

Experiment #1: identification of bitter pitted apples

Each dataset was analyzed to evaluate the suitability of 
the spectral feature extraction in discriminating the iden-
tified class of bitter pit using a multiclass classification 
(class 1: non-BP; class 2: slight symptoms; class 3: se-
vere symptoms) or a binary-class classification (classes 
1 and 3). Differences between classification accuracies 
using measurements from different fruit sides (sympto-
matic, non-symptomatic and both fruit sides) were also 
analyzed. Each dataset was separated into a balanced tra-
ining and testing dataset. The ratio of each dataset was 
7:3 for model development and validation, respectively. 
The spectral feature extractions were evaluated using 
the algorithms LDA (linear discriminant analysis), QDA 
(quadratic discriminant analysis) and SVM (support-vec-
tor machine). The software used was The Unscrambler® 
(version 10.4; Camo Process AS, Oslo, Norway). The da-
tasets were randomized three times each for evaluation of 
classifier performance.

Experiment #2: prediction of bitter-pit-prone apples

Each dataset was analyzed to evaluate the suitability 
of the spectral feature extraction in predicting the appea-
rance of bitter pit, at preharvest and harvest, before the 
appearance of symptoms on the fruit surface. For this ex-
periment, a binary classification was used (apples of class 

1 and class 3). The VIS/NIR measurements were carried 
out from two opposite sides along the equator of the fruit. 
The spectral feature extractions were evaluated using 
three classification algorithms (LDA, QDA and SVM) for 
each case. Each dataset was separated into a balanced tra-
ining and testing dataset as described above (training-tes-
ting ratio of 7:3). 

Statistical analysis

Analyses were performed in SAS 9.2 (SAS Institute 
Inc., 2009). For experiment #1, a three-way interaction 
from binary logistic regression analysis was performed to 
test the main effects of ‘algorithm’ (LDA, QDA and SVM 
classifier models), ‘bitter pit class’ (1, 2, 3, overall or 1, 
3, overall) and ‘fruit side’ (symptomatic, non-symptomatic 
and both fruit sides), and their interactions, on classification 
accuracies (percentage of correctly classified apples). For 
experiment #2, a two-way from binary logistic regression 
analysis was performed, for the pre- and harvest data, to 
test the main effects of ‘algorithm’ and ‘bitter pit class’ (1, 
3, overall), and their interaction, on prediction accuracies.

Results
Experiment #1

Multiclass classification accuracies

No significant differences were found between mul-
ticlass classification accuracies from different measured 
fruit sides (symptomatic, non-asymptomatic and both 
fruit sides). Nevertheless, the Chi-square test indicated a 
significant ‘algorithm × class’ interaction effect on classi-
fication accuracies (Table 2). Because of this significant 
interaction, algorithms were compared in each individual 
class (class 1, class 2 and class 3) and ‘overall’.

The average individual (class 1, 2 and 3) and  
overall multiclass classification accuracies, using the 
different classifier models (LDA, QDA and SVM), are 
shown in Fig. 2. The average overall classification accura-
cy was significantly higher using the LDA classifier than 
the QDA and SVM classifiers (50% vs. 42%). No signifi-
cant differences between algorithms were found for class 
1 (mean accuracy of 51%). The three classifier models 
(LDA, QDA and SVM) showed the lowest accuracies 
in class 2; LDA yielded an average class 2 classification 
accuracy significantly higher than QDA and SVM, and 
QDA obtained an accuracy significantly higher than SVM 
(37, 22 and 1%, respectively). For class 3, the average 
classification accuracy was significantly higher for SVM 
(65%) than LDA and QDA; no significant differences 
were found between LDA and QDA (52%).
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Binary classification

Binary classification showed significantly higher ac-
curacies than multiclass classification, independently 
of the classifier model. No significant differences were 
found for the effect of different fruit sides (symptomatic, 
non-asymptomatic and both fruit sides) on binary classi-
fication accuracies (Table 2). As in the multiclass classifi-
cation, the Chi-square test indicated a significant ‘algori-
thm × class’ interaction effect on classification accuracies. 
Because of this significant interaction, algorithms were 
compared in each individual class (healthy-class and bit-
ter pit-class) and overall. 

The average individual (class 1 and 3) and overall bi-
nary-class classification accuracies, using the different 
classifier models (LDA, QDA and SVM), are shown in 
Fig. 2. As in the multiclass classification, the average ove-
rall classification accuracy was significantly higher using 
the LDA classifier than the QDA and SVM classifiers; 
QDA produced an overall classification accuracy signi-
ficantly higher than SVM (75%, 65% and 57%, respec-
tively).

The average class 1 (asymptomatic apples) classifi-
cation accuracy was also significantly higher using LDA 
than QDA and SVM, and QDA showed a significantly 
higher accuracy than SVM (81%, 59% and 49%, respec-
tively). The classification accuracy of class 3 (sympto-
matic apples) using QDA was significantly higher than 
when using LDA or SVM (71% vs. 67%); no significant 
differences between LDA and SVM were observed. The 
accuracy average of class 1 was significantly higher than 
of class 3 using LDA (81% vs. 68%), whereas using QDA 
and SVM the accuracies were higher for class 3 than for 
class 1 (59% vs. 71% and 49% vs. 65%).

These results indicate that the LDA classifier yielded a 
higher number of false positives (healthy apples identified 

Factor
Prob > χ2

Multiclass  
classification

Binary class  
classification)

Algorithm <0.0001 <0.0001
Fruit side measured NS NS
Algorithm × fruit side NS NS
Bitter pit class <0.0001 0.0027
Algorithm × Bitter pit class <0.0001 <0.0001
Fruit side × Bitter pit class NS NS
Algorithm × fruit side × Bitter pit class NS NS

Table 2.  p-values of Chi-square test from logistic regression analysis to test the main 
effects on classification accuracies (percentage of correctly classified apples) of ‘algori-
thm’ (LDA, QDA and SVM classifier models), ‘bitter pit class’ (1, 2, 3, overall or 1, 3, 
overall) and ‘fruit side’ (symptomatic, non-symptomatic and both fruit sides), and their 
interactions, using VIS/NIR data when bitter pit symptoms were visible. 

NS: p > 0.05.

Figure 2.   Comparison of average LDA-, QDA- and SVM-ba-
sed multiclass (above) and binary (below) classification accura-
cies (percentage of correctly classified apples), for each bitter pit 
class classification (class 1, class 2, class 3 and overall), using 
VIS/NIR data when bitter pit symptoms were visible. Error bars 
indicate the standard error of the mean. Class 1: no bitter pit 
symptoms; class 2: slight/moderate symptoms (1–6 pits on the 
surface); class 3: severe symptoms (more than 7 pits per fruit).
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as bitter pitted apples), whereas the QDA and SVM clas-
sifiers yielded a higher number of false negatives (bitter 
pitted apples classified as healthy).

A visual inspection of the absorbance curves indicated 
that the greatest differences between pitted (class 3) and 
non-pitted (class 1) apples were in the VIS region of 650–
700 nm and in the NIR region of 900–950 nm (Fig. 4).

Experiment #2

Within each prediction time (preharvest and harvest), 
no significant differences in classification accuracies were 
found between the different classifier models or the di-
fferent classification classes (Table 3). The average indi-
vidual (class 1 and 3) and overall classification accura-
cies, using the different classifier models (LDA, QDA and 
SVM), are shown in Fig. 4, for both prediction times (at 
preharvest and at harvest, respectively). In both prediction 
times, the classification accuracies prior to the appearance 
of bitter pit were lower than when bitter pit was visible, 
independently of the classifier model. The average overa-
ll accuracies were of 44% (LDA), 40% (QDA) and 51% 
(SVM) at preharvest, and of 57% (LDA), 58% (QDA) 
and 47% (SVM) at harvest, with no significant differen-
ce between the different classifier models (Fig. 4). These 
results indicate that VIS/NIR spectra were not capable of 
accurately detecting bitter pit prone fruit.

Discussion
The visual inspection of the absorbance curves indica-

ted that the greatest differences between pitted and non-pi-
tted apples were in the VIS region of 650–700 nm and in 
the NIR region of 900–950 nm. A fruit spectrum in this 
wavelength range is strongly affected by the presence of 
the red light absorbing skin pigment chlorophyll which re-
present the color characteristics in the fruit (Abbott et al., 

2010). Chlorophyll a absorbs light at ~660 nm, while chlo-
rophyll b absorbs ~640 nm. As the fruit mature, the chlo-
rophyll decreases and so does the red-light absorption with 
the consequential loss of green coloring. The reflected red 
wavelengths, combined with reflected green wavelengths, 
is perceived by the human eye as yellow. In this respect, 
immature fruit are more susceptible to bitter pit than fruit 
harvested at the proper maturity (Prange et al., 2011). Hen-
ce, the skin chlorophyll content could be a reliable measure 
of bitter pit risk. Changes in this wavelength range are also 
used as indicative of stress or nutrient deficiencies. Plant 
stress is typically accompanied by a reduction or shutdown 
in photosynthesis, the effect of which is a reduction in the 
absorption (i.e. a higher reflectance) of blue and red wave-
lengths. In short, changes in the absorption range around 
650–700 nm may reflect a combination of reactions of fruit 
physiology and maturity and hence, it could be interpreted 
as indicative of bitter pit. The NIR region of 900–950 nm 
is associated with the water content or dry matter. ElMasry 
et al. (2008) defined in apples the absorption valleys in the 
NIR at 840–960 nm as sugar and water absorption bands. 
Similar findings were reported by Travers et al. (2014) in 
pears who observed that the NIR region between 900–970 
nm was important for dry matter and soluble solids. In our 
case, the differences observed in this NIR region could be 
attributed to the fact that in bruised areas, such as bitter 
pit-like symptoms, water replaces the intercellular air spa-
ces in the plant tissue and, consequently, could cause a de-
crease in NIR-reflectance of these areas.

Multiclass classification overall accuracies were from 
42% (QDA and SVM) to 50% (LDA). Class 2 (slight 
symptoms, with fruit having 1–5 pits on the surface) 
showed accuracies significantly lower than for the other 
two classes and overall accuracies, independently of algo-
rithm (1–37%). The imbalance of the class distribution in 
the training data (100, 76, 100) could have led to classifi-
cation algorithms overestimate the majority classes (class 
1 and 3). The lack of accuracy could be also attributed to 
the low degree to which the apples were affected. In order 
to reduce these errors, we rejected class 2 apples for the 
binary-class classification.

The binary-class classification resulted in accuracies 
significantly higher than for multiclass classification. The 
overall accuracy of the binary-class classification was 75% 
using the LDA classifier model. These results are similar to 
those obtained by other researchers for discriminating be-
tween healthy and bitter pitted apples using a binary-class 
classification (Nicolaï et al., 2006; Kafle et al., 2016; Jarol-
masjed et al., 2017). The LDA classifier accuracies were 
significantly higher than those of the QDA and SVM clas-
sifiers, and QDA (65%) was found to yield higher accu-
racies than SVM (57%). Kafle et al. (2016) also reported 
that QDA had a higher classification accuracy than SVM of 
healthy and bitter pitted apples, with accuracy values simi-
lar to those obtained in the present study.
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The accuracy level in each class depended on the clas-
sifier model used. QDA and SVM showed higher accu-
racies for class 3 (bitter pitted apples), whereas classifi-
cation accuracies of LDA were significantly higher for 
class 1 (asymptomatic apples). This indicates that LDA 
classifiers yielded a higher number of false positives 
(healthy apples identified as bitter pitted apples), whereas 
QDA and SVM classifiers yielded a higher number of 
false negatives (bitter pitted apples classified as healthy). 
These results contrast with those obtained in a similar ex-
periment with Honeycrisp apples performed by Kafle et 
al. (2016), who obtained a significant increase for heal-
thy-apple class accuracies compared to bitter-pitted-apple 
class using QDA and SVM algorithms. Jarolmasjed et al. 
(2017) obtained a higher number of false negatives than 
false positives using partial least square regression. Fur-
ther studies with larger datasets need to be performed to 
validate these aspects because algorithm performance ar-
guably depends on several factors which might be respon-

sible for the different results (Sankaran & Ehsani, 2011; 
Kafle et al., 2016).

It was observed that classification accuracies did not 
change significantly when measuring different fruit sides 
(symptomatic, asymptomatic or both). VIS/NIR spec-
troscopy point meter readings measure a limited area (10 
mm diameter circle) per measurement. This aspect may 
limit the application of NIR technology to detect affected 
apples due to the inability to take measurements on affec-
ted areas (Lotze, 2005). However, the signature of organic 
and complex compounds of major chemical contents as-
sociated with bitter pit (calcium, magnesium, and potas-
sium) might exist in spectral data obtainable by VIS/NIR 
spectroscopy (Jarolmasjed et al., 2017). Hence, it would 
be possible to detect – even prior to the appearance of 
visible symptoms – bitter pitted apples based on the che-
mical contents of the fruit, independently of whether the 
measurement is made on the bitter pit lesion. Our results 
indicate that the VIS/NIR-spectroscopy method offers 
potential for non-destructive discrimination of bitter pit-
ted from healthy apples, independently of measured fruit 
area. This would facilitate the development of a model 
for implementation in portable handheld VIS/NIR spec-
trometers or in automatic apple sorting systems. 

VIS/NIR spectroscopy readings were however unable 
to identify immature (preharvest) or mature apples (har-
vest) more prone to bitter pit development prior to the 
appearance of visible symptoms. Lotze (2005) proposed 
that the inability of VIS/NIR spectroscopy point meter 
readings to identify bitter pit prone fruit could be due to 
not being able to take measurements on the affected areas. 
However, we did not observe this limitation in experiment 
#1 when the bitter pit symptoms were visible. According 
our results, the identification of apples with visible bitter 
pit through VIS/NIR spectroscopy may be due to chlo-
rophyll degradation and/or changes in intercellular water 
in fruit tissue and, from our point of view, these chan-
ges would not have developed before the appearance of 
symptoms. We suggest that bitter pit prone apples could 
be detected through the relationship of mineral content 
associated with bitter pit (calcium, magnesium, and po-
tassium) but, according recent studies, a higher wavelen-
gth range will be necessary for these cases. Bonomelli et 
al. (2020) did not observe correlations in apple tissues 
between calcium content and reflectance spectrum be-
tween 285–1200 nm. On the other hand, Galvez-Sola et 
al. (2015) and Jarolmasjed et al. (2017) obtained a strong 
relationship between the spectral features and the calcium 
content in apples and citrus leaves, respectively, using 
wavelength ranges from 830–2600 nm. Along this line, a 
future work using a higher wavelength range (>900 nm) 
will investigate a possible relationship between NIR spec-
tral features and mineral content at an early stage of fruit 
growth to predict bitter pit potential. Further work will be 
necessary to develop calibration including data covering 
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Figure 4.  Comparison of average LDA-, QDA- and SVM-ba-
sed binary classification accuracies (percentage of correctly 
classified apples), for each bitter pit class classification (class 
1, class 3 and overall), using VIS/NIR data on healthy apples at 
20 days before harvest (DBH) and bitter pit symptoms assessed 
after 10 d at room temperature, and at harvest on healthy apples 
and bitter pit symptoms assessed after 4 months in cold storage 
at 0 ºC. Error bars indicate the standard error of the mean.

Factor
Prob > χ2

Preharvest Postharvest
Algorithm NS NS
Classification NS NS
Algorithm × Classification NS NS

Table 3.   p-values of Chi-square test from logistic regression 
analysis to test the main effects on classification accuracies 
(percentage of correctly classified apples) of ‘algorithm’ (LDA, 
QDA and SVM classifier models) and ‘bitter pit class’ (1, 3, 
overall), and their interaction, using VIS/NIR data when bitter 
pit symptoms were not visible. ‘Preharvest’: NIR measured at 
20 d before harvest on healthy apples and bitter pit symptoms 
assessed after 7–10 d at room temperature (22–25 ºC). ‘Posthar-
vest’: NIR measured at harvest on healthy apples and bitter pit 
symptoms assessed after 4 months in cold storage (0 ºC). 

NS: p > 0.05.
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an appropriate range of instrumental, biological and envi-
ronmental conditions to build more robust models appli-
cable independently of external factors. 
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