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Abstract
Aim of study: To isolate fibre effect from other factors when comparing fibrous sources, the rumen fermentation pattern of extracted cell 

walls was studied.
Material and methods: Cell wall fractions from soybean hulls (SH), sugarbeet pulp (BP), palm kernel cake (PK), oat hulls (OH), dehy-

drated alfalfa meal (DA) and barley straw (BS) were incubated in four 48 h series.
Main results: Cell wall extraction efficiency was ± 0.07 units over the neutral detergent fibre content, except for PK, which recovery 

was 0.20. Gas produced from BP and SH was higher (p<0.05) from 6 h. PK behaved similarly to SH from 6 to 24 h but maintained 
constant thereafter, whereas gas volume from OH was the lowest from 24 to 48 h (p<0.05). All substrates recorded a maximum rate of 
gas production at 12 h, except OH, for which fermentation was constant on time. The organic matter disappearance after 48 h incubation 
agreed with these results, being higher with BP and SH, whereas OH was the lowest (p<0.05). The proportion of methane in total gas 
produced was higher in OH than BP at 36 and 48 h (p<0.05). The highest total VFA concentration was recorded with BP (p<0.05). Pro-
pionate proportion was enhanced from BP, BS and SH, and that of butyrate was higher with PK and OH, whereas no differences among 
substrates were recorded in acetate proportion.

Research highlights: Fermentation of the cell wall fraction of fibrous feeds is not directly linked to its chemical composition, not even 
to its lignin proportion.  

Additional key words: neutral detergent fibre; gas production; non-forage fibrous sources.
Abbreviations used: ADFom (acid detergent fibre, excluding of residual ashes); BCVFA (branched-chain volatile fatty acids); BP (su-

garbeet pulp); BS (barley straw); DA (dehydrated alfalfa meal); DM (dry matter); NDF (neutral detergent fibre, including ashes); NDFom 
(neutral detergent fibre, excluding of residual ashes); OH (oat hulls); OM (organic matter); OMd (organic matter disappearance); PK (palm 
kernel meal); SH (soybean hulls); VFA (volatile fatty acids.
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Introduction
There is an increasing interest for using non-forage 

fibre sources, often agricultural by-products, in diets for 
ruminant feeding, as they can contribute to adjust feed 
costs compared with forages (Bradford & Mullins, 2012). 

These feeds are generally included as ingredients in the 
compound feed, and although non-forage fibre based diets 
can maintain or even improve rumen health and perfor-
mance of dairy cattle under certain conditions (Pereira 
et al., 1999; Ertl et al., 2015), their use as main sources 
of fibre is controversial. Their particle size is smaller  
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compared with forages, thus promoting a limited effect as 
potentially effective fibre, which is necessary for stimu-
lating rumination and modulating rumen pH in high con-
centrate feeding conditions (Armentano & Pereira, 1997; 
Grant, 1997). 

Because of their variable origin, the composition of 
non-forage fibre sources is very heterogeneous. Their fi-
brous fraction can include high proportions of cell wall, 
such as insoluble polysaccharides (cellulose or hemicellu-
loses), like in seed hulls or crop and harvest wastes (Hsu 
et al., 1987; Gasa et al., 1989; DePeeters et al., 1997), as 
well as of pectin and soluble fibre, like in sugarbeet pulp 
or citrus pulp (Bampidis & Robinson, 2006; Münnich 
et al., 2017). Besides, the lignin content in some fibrous 
feeds may be important. Composition also varies widely 
in their non-fibrous fraction, with different proportions of 
protein or even lipids among sources.

The amount, composition and structure of the fibrous 
fraction of feeds determines the rate and extent of their 
rumen fermentation (Ford & Elliot, 1989; Chesson, 1993; 
Miron et al., 2001), in terms of microbial access and ac-
tivity (Krause et al., 2003; Wang et al., 2018). Further, 
lignin forms complexes with cellulose and hemicellulo-
ses and affects fermentation of structural polysaccharides 
(Chesson, 1993; Jung & Deetz, 1993; Wilson, 1994). In 
addition, other nutrient compounds interact with the fi-
brous fraction, and must also be considered in order to 
compare their nutritive value as fibre sources. Thus, re-
leased fatty acids from lipolysis may negatively affect 
microbial activity and thus reduce degradation (Doreau 
& Ferlay, 1995; Beauchemin et al., 2009). Besides, pro-
tein proportion is inversely related to feed fermentation, 
partly because it is less fermentable than that of carbo-
hydrates (Getachew et al., 1997) but also because the re-
leased ammonia binds to the CO2 produced, underestima-
ting fermentation if measured by gas production (Cone 
& Van Gelder, 1999). Thus, comparing fibrous substrates 
without interactions with other feed nutrients that may in-
terfere in their response when included in ruminant diets 
seems necessary for giving a clear approach to their value 
as fibre sources. Therefore, this work aimed to study, un-
der in vitro conditions, the rumen fermentation pattern of 
the cell wall fraction extracted from several forage and 
non-forage fibrous sources. A previous evaluation of the 
same non-extracted substrates has been previously publi-
shed by Ortolani et al. (2020).

Material and methods
Substrates and inocula

The substrates chosen for this comparative study were: 
soybean hulls (SH), sugarbeet pulp (BP), palm kernel 
cake (PK), oat hulls (OH), dehydrated alfalfa meal (DA) 

and barley straw (BS). Chemical composition is given in 
Table 1. Substrates were ground in a hammer mill (Retsch 
Gmbh/SK1/417449, Haan, Germany) through a sieve of 
1 mm. Cell wall was extracted from ground substrates  
following the procedure by Smith & Waldo (1969), after 
boiling in neutral detergent solution (100 mL/g substrate) 
for 75 min. Residues were extensively washed with dis-
tilled water and fixed with acetone, dried and stored until 
their use as incubation substrates. 

Rumen fluid as inoculum was extracted from four 
adult ewes (54.5 ± 6.8 kg live weight) housed in the faci-
lities of the Servicio de Apoyo a la Experimentación Ani-
mal of the Universidad de Zaragoza. Donor animals were 
fed on 1 kg of a mixed diet composed of (g/kg): alfalfa 
hay 250; barley straw 250; barley 300; maize 100; soy-
bean meal 100, in a single daily offer at 09:00, from three  
weeks before the experiment. Before feeding, rumen con-
tents (approximately 300 mL) of each animal were sam-
pled and filtered through a cheesecloth, mixed, collected 
in thermos flasks and immediately transferred to the lab 
for incubation. Animal care and procedures for extraction 
of rumen inoculum were approved by the Ethics Com-
mittee for Animal Experimentation (protocol PI48/20). 
Care and management of animals agreed with the Spanish 
Policy for Animal Protection RD 53/2013 (BOE, 2013), 
which complies with EU Directive 2010/63 (EU, 2010) 
on the protection of animals used for experimental and 
other scientific purposes. 

Experimental procedures

Four incubation runs (48 h) were carried out, in a wa-
ter bath at 39ºC. Incubation procedures were according to 
Theodorou et al. (1994) procedures, but without micromi-
nerals and resazurin (Mould et al., 2005). Concentration 

SH BP PK OH DA BS

Organic matter 946 920 962 953 886 872

Crude protein 179 85 157 48 133 61

Ether extract 18 3 88 11 18 13

NDF 594 456 616 778 532 763

NDFom 592 442 555 771 513 760

ADFom 417 234 352 376 343 434

Lignin (sa) 16 23 87 56 66 40

Table 1. Chemical composition (g/kg DM) of original feeds 
(SH, soybean hulls; BP, sugarbeet pulp; PK, palm kernel meal; 
OH, oat hulls; DA, dehydrated alfalfa meal; BS, barley straw) 
before cell wall extraction.

DM, dry matter; NDF: neutral detergent fibre (including ashes); 
NDFom: neutral detergent fibre (excluding ashes); ADFom: 
acid detergent fibre (excluding ashes); Lignin (sa): lignin. 
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of bicarbonate buffer in the incubation solution was ad-
justed as in Amanzougarene & Fondevila (2018) to get a 
medium pH of 6.5. A total of 28 bottles per run were incu-
bated, with 4 bottles per treatment plus another 4 bottles 
without substrate considered as blanks of inoculum. In-
ternal pressure of two bottles per treatment was recorded 
at 2, 4, 6, 8, 10, 12, 16, 24, 36 and 48 h for determination 
of gas production, and the gas was released. Thereafter, 
these bottles were opened, and their pH measured (CRI-
SON micropH 2001, Barcelona, Spain) to validate the 
incubation conditions, and the whole incubation content 
was filtered through nylon bags (45 µm pore size) that 
were dried at 60ºC for 48 h to determine organic matter 
disappearance (OMd).

Concentration of methane in the gas produced was 
determined at successive time intervals along the incu-
bation (0 to 12 h, 12 to 24h, 24 to 36 h and 36 to 48 h), 
by taking a single sample (5 mL) of the gas produced in 
each interval. Gas samples for 0 to 12 h and for 12 to 
24 h were collected from the third and fourth incubated  
bottles per treatment, respectively, whereas one of the two 
bottles used for gas production was used for gas sampling 
in the 24 to 36 h and 36 to 48 h intervals, the same bottle 
for both periods. For each substrate and incubation series, 
methane concentration was extrapolated to average total 
gas for each time interval to calculate total methane pro-
duction per unit of incubated substrate. Two milliliters of 
liquid medium from the bottles incubated for 12 h was 
also sampled on 0.5 mL solution of 0.5M phosphoric acid 
with 1 mg of 4-methyl-valeric acid as internal standard, 
and was stored at -20ºC for the analysis of volatile fatty 
acid (VFA) concentration.

Analytical procedures

Substrates were analysed for dry matter (DM), orga-
nic matter (OM), crude protein and ether extract content 
according to the AOAC (2005) procedures (methods ref. 
934.01, 942.05, 976.05 and 2003.05, respectively). Their 
concentration in neutral detergent fibre was analysed as 
described by Mertens (2002) in an Ankom 200 Fibre 
Analyser (Ankom Technology, New York), using α–
amylase and sodium sulphite, and results being expressed 
both including (NDF) or excluding (NDFom) residual as-
hes. The acid detergent fibre, expressed exclusive of resi-
dual ashes (ADFom, ref. 973.18) and lignin determined 
with sulphuric acid were analysed as described by AOAC 
(2005) and Robertson & Van Soest (1981), respectively. 
Incubation residues were also analysed for t heir DM and 
OM content.

Internal pressure on each bottle was measured with 
a HD8804 manometer provided with a TP804 pressure 
gauge (DELTA OHM, Caselle di Selvazzano, Italy). Rea-
dings were corrected for the atmospheric pressure and 

converted to volume (mL) using a pre-established linear 
regression (n=103, R2=0.996) recorded in the same type 
of bottles and expressed per unit of incubated OM. Re-
sults are presented either as accumulated gas volumes 
(total gas produced after a given period of time) or as a 
rate of gas production (volume of gas per unit of time 
produced in a specific interval). Methane concentration 
in gas samples was measured in an Agilent 6890 appara-
tus (Agilent Technologies España, Madrid) equipped with 
a capillary column (HP-FFAP polyethylene glycol TPA, 
30 m × 530 µm id), calibrated with a 10% CH4 standard, 
with a flux of 2 mL/min at 250 ºC. The frozen samples of 
the incubation medium were thawed and centrifuged at 
13,000 g for 15 minutes at 4 ºC for their analysis of VFA, 
that were determined by gas chromatography on the same 
apparatus than for methane analysis.

Calculations and statistical analyses

Results were analysed statistically by ANOVA using 
the Statistix 10 package (Analytical Software, 2010), con-
sidering the substrate (n=6) as factor and the incubation 
series (n=4) as a block. For total gas production and OMd, 
the experimental unit was the average of the two bottles 
per treatment incubated for 48 h in the same run, whereas 
for methane production (from 12 to 48 h) and VFA pattern 
at 12 h the value from a single bottle per run was conside-
red. Treatment differences among means with p<0.05 and 
0.05<p<0.10 were accepted as representing statistically 
significant differences and a trend to differences, respec-
tively. When significant, differences were contrasted by 
the Tukey test. 

Results
Cell wall recovery from SH, BP, PK, OH, DA and BS, 

measured as weight of residue after large scale extraction 
with neutral detergent, was 586, 478, 669, 774, 534 and 
707 g/kg DM of original feeds, respectively. Initial incu-
bation pH (0 h) averaged 6.36 ± 0.20 for the four incu-
bation runs. Along the whole incubation period, pH va-
lues were maintained within a narrow range (from 6.38 to 
6.66), not existing differences over 0.15 pH units among 
substrates at any time interval (12, 24 and 48 h) or over 
0.25 units among times within each substrate.

The pattern of total accumulated gas production (Fig. 
1) showed substrate differences along the whole incuba-
tion period (p<0.01). From 6 h onwards cell walls from 
BP and SH showed higher volumes of gas (p<0.05), al-
though PK behaved similarly to SH from 6 to 24 h and 
recorded minimum increases thereafter. Fermentation of 
the other three substrates did not greatly differ from PK 
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up to 12 h incubation, and at 48 h differences between this 
and DA and BS again became non-significant. Gas pro-
duction from OH was the lowest from 24 to 48 h (p<0.05). 
For a better characterisation of cell wall fermentation, the 
rate of gas production as volume per time unit is presen-
ted in Fig. 2. All substrates reached a maximum gas pro-
duction at 12 h, except for OH, which rate was relatively 
constant along the whole incubation, ranging from 2.2 to 
4.5 mL/g OM/h. This and the moderate magnitude of in-
creases from the initial 2 h to the maximum for SH (from 
7.4 to 11.1 mL/g OM/h) contrast with changes observed 
with BP, PK and DA (9.4, 6.6 and 6.5 mL/g OM increase) 

and mainly the 9.7-fold increase (from 1.2 to 12.0 mL/g 
OM/h) in BS in the same period. Rate of fermentation of 
BP was the highest from 6 to 12 h and that of OM was the 
lowest from 10 to 24 h (p<0.05), being the comparison 
among the other substrates similar to that commented re-
garding Fig. 1.

Proportion of methane in the gas produced at the  
different incubation time intervals (Table 2) showed 
differences only at the end of incubation (36 to 48 h), 
when methane proportion from fermentation of OH 
was higher than that with BP, not existing differences 
among the rest of substrates. When the volume of me-
thane produced was expressed per unit of incubated 
substrate (Fig. 3), the production with OH was lower 
than BP, SH and DA from 0 to 12 h, and was the lowest 
from 24 to 48 h (p<0.05). Higher methane production 
was observed with SH, BP and PK at 24 h, but differen-
ces among PK, DA and BS became non-significant at 
36 h. After 48 h of incubation, substrates ranked as fo-
llows: SH>BP, PK, DA, BS > OH (p<0.05). The OMd 
after 48 h incubation (Table 2) was higher with BP and 
SH, followed by PK and BS and then DA, whereas OH 
was the lowest (p<0.05).

Total VFA concentration and molar proportions of 
the major VFAs after 12 h incubation are presented in 
Table 3. The highest total VFA concentration was recor-
ded with BP, and it was also higher with DA than OH, 
recording intermediate values with the rest of substrates 
(p<0.05). No substrate differences were recorded on ace-
tate proportion, whereas that of propionate was higher 
with BP than PK, OH and DA, and with SH and BS it 
was higher than PK (p<0.05). Instead, butyrate propor-
tion was higher with PK and OH than BS, and higher 
in SH than BP and DA. OH recorded higher valerate 
and branched-chain volatile fatty acids (BCVFA, sum 
of isobutyrate and isovalerate) proportions than SH and  
DA (p<0.05).

Discussion
Compared with the analysed NDF proportion of subs-

trates (without discounting ashes) that is shown in Table 
1, the proportion of cell wall recovery in the extraction 
process was 0.99, 1.05, 1.09, 0.99, 1.00 and 0.93, respec-
tively. Extraction efficiency was within ± 0.09 units in-
terval, with extreme values for BS and PK. In the former 
substrate, the lower recovery could be associated to a par-
tial solubilisation of cell wall when processed at a larger 
scale, as it was also observed by Barrios Urdaneta et al. 
(2000). In the case of PK, the difference could be due to a 
noticeable proportion of cracked stones in this by-product 
that might bias the NDF proportion in the reference analy-
sis from this substrate because of problems in sampling, 
aspect that should be minimised when a higher initial 
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Figure 2. Rate of in vitro gas production pattern (mL/g OM 
per h) of cell wall fractions extracted from soybean hulls  
( ), sugarbeet pulp (◼ ), palm kernel meal ( ), oat hulls ( 
), dehydrated alfalfa hay ( ) and barley straw ( ). Upper bars 
show standard error of means.
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Figure 1. In vitro gas production pattern (mL/g OM) of cell 
wall fractions extracted from soybean hulls ( ), sugarbeet pulp 
(◼ ), palm kernel meal ( ), oat hulls ( ), dehydrated alfalfa 
hay ( ) and barley straw ( ). Upper bars show standard error 
of means.
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amount of substrate was used for the large batch extrac-
tion respect to chemical determination. 

In order to validate the process of cell wall isolation 
in this experiment, it is assumed that extraction accurate-
ly reflects the entire cell wall fraction of all sources, and 
thus allowed for a homogeneous comparison of their fer-
mentation, without interferences from other components 
of the original feed (Barrios Urdaneta et al., 2000; Zhang 
et al., 2007). In this regard, it is worth considering that 
chemical analysis of substrates showed a crude fat con-
tent of 88 g/kg DM in PK respect to a range from 3 to 18 
g/kg in the other substrates, and a crude protein content 
of 179, 157 and 133 g/kg DM in SH, PK and DA vs. a 
range from 48 to 85 g/kg in BP, BS and OH (Table 1). 

In other way, some cell wall components such as pectins 
and to some extent non-lignified xylans are solubilised by 
neutral detergent (Van Soest, 1994; Jung & Allen, 1995) 
and thus were not recovered when processed for cell wall 
extraction. Therefore, fermentation potential of non-pro-
cessed BP, which contains from 13 to 20% pectins (Miron 
et al., 2001; FEDNA, 2019) might be underestimated in 
substrate comparison. In fact, cell wall fermentation me-
asured as gas production after 48 h incubation was 0.86 
of that of the whole ingredient of the same batch reported 
by Ortolani et al. (2020). Other substrates such as SH and 
DA may also contain noticeable proportions of pectins 
(around 8 % in both SH and DA; FEDNA, 2012), and 
thus a reduction in fermentation could be expected when 
this fraction was removed. However, this might be coun-
terbalanced by the protein washout in the cell wall treat-
ment, as nitrogen content is negatively correlated with gas 
production (González-Ronquillo et al., 1998; Cone & Van 
Gelder, 1999). Thus, despite the 179 and 133 g CP/kg DM 
of SH and DA (Table 1), fermentation of their extracted 
cell wall fractions resulted in gas volumes after 48 h close 
to those reported with the original substrate (Ortolani et 
al., 2020).

Cell wall polysaccharides from BP and SH were rapid-
ly and extensively fermented, at a slower but more cons-
tant rate for the latter (Fig. 2), thus making that extent 
of gas production in the first 24 h interval was 0.74 vs. 
0.61 of total gas with BP vs. SH, although both of them 
reached similar gas volume after 48 h (Fig. 1). Getachew 
et al. (2004) observed a 0.76 NDF digestibility after 24 h 
of in vitro incubation. In both cases, such pattern could 
be related with its high availability of cell wall polysac-
charides (Miron et al., 2001; Seo et al., 2009) and low 
lignin content (0.03 - 0.05 of total NDF). Initially, rate of 
gas production for PK was relatively constant from 2 to 

Substrates 0-12 h 12-24 h 24-36 h 36-48 h OMd

SH 0.060 0.174 0.153 0.160ab 0.816a

BP 0.052 0.166 0.148 0.159b 0.829a 

PK 0.051 0.192 0.152 0.163ab 0.650b

OH 0.043 0.166 0.164 0.179a 0.240d

DA 0.076 0.178 0.165 0.169ab 0.493c

BS 0.048 0.153 0.169 0.161ab 0.650b

SEM 0.0100 0.0137 0.0061 0.0042 0.0132

p-value  0.29 0.48 0.14 0.026 <0.001

Table 2. Methane (proportion of total gas) produced for the different substrates 
(soybean hulls, SH; sugarbeet pulp, BP; palm kernel meal, PK; oat hulls, OH; 
dehydrated alfalfa hay, DA; barley straw, BS) incubated at successive time 
intervals, together with organic matter disappearance (OMd) after 48 h.

SEM: standard error of means.  Within columns, letters indicate significant 
differences (p<0.05)
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of means.
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8 h and then increased up to 12 h, but fermentation from 
24 h onwards was notably diminished, and only 0.21 of 
total gas production was produced thereafter. It seems that 
availability of fermentable polysaccharides was rapidly 
reduced, and the masking effect of its high lignin content 
(0.16 of total NDF) over polysaccharides probably was 
then more apparent. According to results from Hindle et 
al. (1995), the proportion of rumen undegradable fraction 
in palm kernel cake may reach up to 0.37 of total NDF. 
Non-processed OH had a high cell wall content (Table 1), 
but in the range previously reported (Garleb et al., 1991; 
Thompson et al., 2000). The low rate and extent of cell 
wall fermentation of OH, even lower than that from straw, 
agrees with previous in situ results (Hsu et al., 1987; 
Thompson et al., 2000), although it may widely vary de-
pending on the oat variety. The low fermentation of OH 
can be attributed to its high lignin content and the presen-
ce of tight lignin/carbohydrate complexes (Garleb et al., 
1991). However, for a similar feed such as wheat bran, 
Miron et al. (2001) suggest that it is cutin (also recovered 
in the lignin analysis) rather than lignin which restricts 
microbial fermentation, and Jung & Allen (1995) indicate 
that determination of lignin as soluble in sulphuric acid 
tends to underestimate lignin content of grasses.

According to Miron et al. (2001), cell walls from dico-
tyledonous substrates (SH, BP, PK and DA) are higher in 
cellulose and lower in hemicelluloses compared with mo-
nocotyledonous cell walls (OH and BS). In any case, pro-
portion of cellulose and lignin does not apparently affect 
the rate or extent of cell wall fraction of these substrates. 
In fact, correlation of both OMd and 48 h gas production 
with cellulose, considered as the difference between ADF 
and lignin, or lignin/cutin contents of incubated cell wall 
substrates rendered low coefficients (-0.015 and -0.012 
for cellulose and -0.325 and -0.433 for Lignin (sa), res-
pectively). However, correlations with hemicelluloses, 

considered as the difference between NDF and ADF, were 
higher (-0.664 for OMd and -0.685 with 48 h gas produc-
tion). Miron et al. (2001) recorded different in vitro micro-
bial degradability of cell wall polysaccharides depending 
on the substrate. Although the potential effect of the lignin 
proportion is associated with cell wall fermentation pat-
tern (Chesson et al., 1983; Thompson et al., 2000), this is 
not necessarily a direct relationship (Jung & Allen, 1995), 
as the type of lignin and the extent of linkages between 
lignin and heteroxylan side-chains, which difficult hemi-
celluloses digestion, depend on the nature of the substrate 
(Jung & Deetz, 1993; Miron et al., 2001).

Methane production can be an index of fermentation 
efficiency in ruminants, since up to 12% of energy intake 
is lost as methane (Johnson & Johnson, 1995). Compared 
to forages, fermentation of some non-forage fibre sources 
may alter rumen microbiota towards a more amylolytic 
population, thus leading to a higher propionate produc-
tion. Propionate may act as hydrogen sink reducing the 
utilisation of hydrogen in methanogenesis (Wang et al., 
2018). Further, the smaller particle size of these feeds 
promotes a faster passage rate, which leads to a lower me-
thane production (Okine et al., 1989; Beauchemin et al., 
2008). This effect is further enhanced as highly digestible 
fibre sources stay in the rumen for a shorter time, and this 
may also restrict the time available for fermentation, lea-
ding to a lower methane production than less digestible 
fibre sources. Pardo et al. (2016) estimated a reduction of 
methane emission from fermentation in dairy goats when 
increasing proportion of agroindustrial by-products in 
diet. In general, total methane production (Fig. 3) agreed 
with gas production pattern (Fig. 1); however, among the 
highly fermentable sources, from 24 h onwards methane 
volume from BP was lower than SH, in response to its nu-
merically lower methane proportion in total gas (p>0.05). 
The lack of a specific methane pattern, different to that 

Substrates Total VFA Acetate Propionate Butyrate Valerate BCVFA

SH 30.37bc 60.09 20.71ab 15.07ab 0.79b 3.34bc

BP 44.75a 61.33 23.51a 12.17c 0.66b 2.34c

PK 31.83bc 61.02 16.82c 17.19a 0.86ab 4.12c

OH 24.86c 58.45 18.81bc 16.23a 1.09a 5.43a

DA 34.45b 64.19 19.14bc 12.46c 0.76b 3.46bc

BS 29.89bc 60.71 21.35ab 13.21bc 0.86ab 3.89b

SEM 1.904 1.269 0.655 0.524 0.056 0.270

p-value <0.001 0.11 <0.001 <0.001 <0.01 <0.001 

Table 3. Total volatile fatty acid (VFA) concentration (mM) and molar proportions (%) of VFA 
with the different substrates (soybean hulls, SH; sugarbeet pulp, BP; palm kernel meal, PK; oat 
hulls, OH; dehydrated alfalfa hay, DA; barley straw, BS) at 12 h of incubation.

SEM: standard error of means; BCVFA: branched chain VFA (sum of isobutyrate and isovalerate).  
Within columns, letters indicate significant differences (p<0.05))
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of total gas production, is expectable considering that no 
differences were recorded in acetate proportion, and subs-
trates differences in that of butyrate were manifested in 
lower values for BP and DA, that otherwise rendered a 
higher VFA production at 12 h. Therefore, qualitatively, 
fermentation of cell wall fractions from fibrous feeds does 
not allow for substantial differences in methane produc-
tion, apart to those expected from the quantitative extent 
of fermentation, that are manifested in total gas and total 
VFA production.

However, substantial differences were observed in 
propionate proportion, which was higher in BP than in 
PK, OH and DA. It is worth considering that propiona-
te proportion is inversely related with methane (Moss et 
al., 2000). Having into account that, stoichiometrically, 
propionate contribution to the volume of gas produced 
is lower than that from acetate and butyrate (Beuvink & 
Spoelstra, 1992; Getachew et al., 1997), certain level of 
underestimation of cell wall fermentation from sugarbeet 
pulp can be assumed if measured from the total gas pro-
duction, as it is reflected by its higher total VFA produc-
tion. However, it was not the case with OMd, which did 
not differ between BP and SH. Reasons explaining diffe-
rences in OM that did not match to those in gas produc-
tion or VFA concentration are not apparent but respond to 
previously observed non-extracted substrates comparison 
(Ortolani et al., 2020).

 In summary, fermentation of the cell wall frac-
tion of these fibrous feeds is not directly linked to its che-
mical composition, at least to their cellulose or lignin pro-
portions, although a correlation with their hemicellulose 
content has been observed. Cell wall of sugarbeet pulp 
is highly and rapidly fermentable, producing a high pro-
portion of propionate and rendering a low proportion of 
methane, and that from soybean hulls behaves similarly. 
The fermentation rate of palm kernel cake was also high 
during the first 24 h, so a potential contribution can be as-
sumed if included as ingredient in concentrate compound 
feeds, considering the low rumen retention time of high 
concentrate diets. Despite structural and chemical diffe-
rences of cell wall fractions from dehydrated alfalfa and 
barley straw, their fermentation was very similar in rate 
and extent.
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