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Abstract 
Two modified Portmanteau statistics are studied under dependence assumptions common in financial applications which can be used 
for testing that heteroskedastic time series are serially uncorrelated without assuming independence or Normality. Their asymptotic 
distribution is found to be null and their small sample properties are examined via Monte Carlo. The power of the tests is studied 
under the MA and GARCH-in-mean alternatives. The tests exhibit an appropriate empirical size and are seen to be more powerful 
than a robust Box-Pierce to the selected alternatives. Real data on daily stock returns and exchange rates is used to illustrate the tests.
Keywords: Nonlinear Dependence, Sample Autocorrelation, Portmanteau Statistics, Robust Tests.

Resumen
Se estudian dos estadísticos de Portmanteau modificados bajo supuestos de dependencia comunes en aplicaciones financieras que pueden 
utilizarse para comprobar que series de tiempo heterocedásticas son serialmente incorreladas sin suponer independencia o normali-
dad. Se encuentra que su distribución asintótica es nula y se examinan sus propiedades de muestras pequeñas usando Monte Carlo. El 
poder de las pruebas se estudia para alternativas MA y GARCH en la media. Las pruebas exhiben un tamaño muestral apropiado y se 
comprueba que son más poderosas que la prueba robusta de Box-Pierce para alternativas selectas. Ilustramos las pruebas usando datos 
diarios de retornos financieros y de tipos de cambio.
Palabras clave: dependencia no lineal, autocorrelación muestral, estadísticos de Portmanteau, pruebas robustas.

Introduction

Testing for zero autocorrelation is a frequently encountered problem in applied financial econometrics. Cus-
tomarily, testing the random walk hypothesis for log-returns of financial assets is done with the Portmanteau 
statistic of Box & Pierce (1970) or its size-corrected version of Ljung & Box (1978), both of which are based in 
the vector or empirical autocorrelations

ρX = (ρX (1) ,…, ρX (k))',˄ ˄ ˄

and whose limiting null distribution is found using Bartlett’s formula of Bartlett (1946). This result hea-
vily depends on the hypothesis that the underlying series is not only uncorrelated; but independent. Thus, in a 
sense, Portmanteau tests based on Bartlett’s formula are not only tests for the absence of autocorrelation; but 
also, and mainly, tests of independence. One way in which this may not be adequate in practice is if the observed 
series appears to be uncorrelated; but certain functions of it do not. Certainly, if the series {Xt}t is of indepen-
dent random variables, then so is the transformed series {f(Xt)}t for any function f. A usual finding in financial 
econometrics is the presence of a significant correlation in the squared and absolute log-returns which signals 
a nonlinear dependence ignored by the usual Portmanteau tests. Since these tests are not robust to nonlinear 
dependencies, serious consequences arise in terms of both, size distortion and inappropriate power when using 
them in financial applications. 
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As argued among other authors (Campbell et al., 1996) financial econometrics is more concerned with the 
absence of autocorrelation than it is with independence in dealing with log-returns. The reason for this is that 
the models that best suit the examination of the Efficient Market Hypothesis are precisely those in which the 
log-prices are either a martingale or a random walk with uncorrelated increments. Since martingales in discrete 
time can be represented as a random walk with martingale difference increments, and given that the property 
of being a martingale difference entails uncorrelatedness; the random walk with uncorrelated increments is 
the most general one for dealing with log-returns, according to financial theory.

For this reason, the study of Portmanteau statistics for uncorrelated, dependent data has received some at-
tention in the literature. One of the main strategies in this direction is to correct Bartlett’s formula in different 
ways. For instance, Diebold (1986) focuses on the ARCH(q) case showing that the correct limiting variance 
for ˄ρX ( j) depends on the autocovariance function of the squared process, {X  } 2

t . Franq et al. (2005) and Franq 
& Zakoïan (2009) also obtain modified versions of Bartlett’s formula for weak white noise. A fundamental 
reference in this direction is Romano & Thombs (1996), where the asymptotic normality of the sample au-
tocorrelation function of weakly dependent processes is proven. In all cases, moment conditions set the stage 
for generalized laws of large numbers and central limit theorems as those of Ibragimov & Linnik (1971). 

Applying a particular version of these results, Lobato et al. (2001) propose a simple modification of the 
Portmanteau statistic of Box and Pierce, Q*, which is suitable for financial analysis. In fact, Escnaciano and 
Lobato (2009, p. 978) recommend this modified statistic (or its Ljung-Box analog) to be “routinely computed 
for financial data instead of the standard Qq [of Box and Pierce]”. A generalization of this test can be found 
in Lobato et al. (2002), and an alternative version in Lobato (2001).

On the other hand, research on improving the power of Portmanteau tests against different alternatives 
has been fueled by their use in univariate model selection. For example, the test by Monti (1994) uses the 
empirical partial autocorrelation function, π (⋅),˄  instead of  ρ (⋅)˄  to test H (k)

0 . More specifically, the test statistic, 
QM, is exactly that of Ljung & Box (1978); but with ρ ( j)˄  substituted by π ( j),˄  and is more powerful to AR 
alternatives. The asymptotic null distribution of QM is established by using the fact that πk 

˄  satisfies the same 
limit theorem as ρk ˄ : Bartlett’s formula. Other tests have been devised based on completely different ideas. 
For example, Lin & McLeod (2006) and Peña & Rodríguez (2002, 2006) develop tests based on a general 
measure of multivariate dependence. Their main idea is that the estimated residuals from an ARMA fit can 
be viewed as a sample from a multivariate distribution, so that testing for zero autocorrelation amounts to 
testing for proportionality of their correlation matrix to the identity, in other words, testing whether or 
not the correlation matrix is diagonal. In a similar vein, Fisher & Gallagher (2012) are inspired in high-
dimensional data analysis to derive new weighting schemes for the Portmanteau statistic. All the resulting 
tests are weighted sums of the empirical autocorrelation and partial autocorrelation functions as explained in 
Gallagher & Fisher (2015). The asymptotic null distribution under H (k)

0  is, in all cases, a linear combination 
of k independent χ2(1) variates. This follows from the fact that under the assumption of independence, the 
classical results for the empirical autocorrelation functions apply so that ˄nρ ( j)2 converges in distribution 
to a χ2(1) variate.

In this paper, we combine these two approaches, namely, modifying the Portmanteau statistic to achieve 
a better power and, simultaneously, making the tests robust to heteroskedasticity and weak dependence as is 
required for financial applications. We study a modified version of the test of Peña & Rodríguez (2006) and 
the test of Fisher & Gallagher (2012) under the assumptions of weak dependence of Lobato et al. (2001) or 
(Franq & Zakoïan, 2009). These assumptions are satisfied by the usual models in the GARCH and Stochastic 
Volatility families and are suitable for financial applications. The limiting null distribution will be obtained as 
a linear combination of independent χ2(1) with coefficients which depend on the fourth order properties of 
the underlying process. A feasible version of the test, obtained by estimating such moments in a n-consistent 
fashion, is proposed, and its small sample properties are examined.
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We focus on the GARCH process of Bollerslev (1986) and the Long Memory Stochastic Volatility of Hurvich 
& Soulier (2009) to study the small sample properties of our tests. The reader is referred to Breidt et al. (1998), Ding 
et al. (1993), Franq & Zakoïan (2010), Harvey (1998), Lobato et al. (2001) for further justification of our choice.

A Monte Carlo experiment is presented which includes seven models representing different degrees and forms 
of persistence in volatility. For each model, we use sample sizes ranging from small (n = 100) to relatively large 
(n = 1000) and different lags ( j = 1, 5, 10). We estimate the empirical size of the test and the power under two 
alternatives: the weak MA and the GARCH in mean. We compare the new tests with the one by Lobato et al. 
(2001) and find that these new statistics offer more powerful tests without a significant size bias.

1. The tests and their asymptotic null distribution

Let {εt} be a stochastic process with autocorrelation function ρ(⋅) and autocovariance function γ(⋅). The depen-
dence structure of {εt} is limited in two ways: First we impose a mild mixing condition with fast enough a decay 
and, second, we impose a symmetry condition on the fourth order moments. Outliers are also restricted by fourth 
order conditions. Specifically, the following set of assumptions is maintained throughout the paper.

Assumptions A1
The following assumptions hold for the underlying stochastic process {εt}:

1. {εt} is stationary,
2. E[ε   ] < ∞4

1 , and E[| ε1 ε2 |2+δ] < ∞ for some δ > 0,

3. {εt} is α–mixing with mixing coefficients satisfying ∑n α(n)       < ∞, 
δ

2 + δ  and
4. E(εt - μ)(εt + i - μ)(εt + d  - μ)(εt + d + j  - μ) = 0 for i, j = 1 ,…, k; for all d when i ≠ j and for d = 0 if i = j.

Let R
˄

 be the Toeplitz matrix of sample autocorrelations of order k ≥ 1, that is,









Rk = 
˄

˄

1
ρ(1)
´

ρ(k)

˄

˄

ρ(1)
1
´

ρ(k - 1)

˄

˄

˄

ρ(2)
ρr (1)
´

ρ(k - 2)

˄

˄ρ(k)
ρ(k - 1)
´
1

…
…

…
…

 
.

Also, let |Rk| 
˄

 denote its determinant. The statistics of Fisher & Gallagher (2012) and Peña & Rodríguez (2006), 
hereafter abbreviated as PR and FG, for the null hypothesis

H      : ρ(1) = … = ρ(k) = 0,(k)
0  

as we will use them throughout the paper are defined as

k

j = 1

˄

PR = -     log(|Rk|)  and  FG = n(n + 2)  ∑                         .n
k

k - j + 1
k

˄ρ2 ( j)
n - j  

The PR statistic is originally normalized by k + 1 instead of k, the number of autocorrelations in the test. 
Nonetheless, Peña & Rodríguez (2006) use this normalization only as a matter of preferred interpretation. We 
normalize by k in order to make the weight schemes of both statistics the same. Assuming {εt} is strong white 
noise, these statistics share a common limiting distribution which can be written as that of:
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k
i = 1Z = ∑                         χ2(1),k - i + 1

k                                                                   (1)

where the χ2(1) variates are independent. To understand this asymptotic equivalence, let 
ρk  = (ρ  (1), ρ  (2),…,ρ  (k))T, πk = (π(1), π(2),…,π(k))T˄ ˄ ˄˄  and M the diagonal matrix









M =                             .

1
0
´
0

…

…
…

0

0
0
´
1
k

k - 1
k

0

…
0

                                                                       (2)

As one can see from the Appendix to Peña & Rodríguez (2002), two applications of the delta method imply 
that the PR statistic is asymptotically equivalent to nπ    Mπk;T

k
˄ ˄  while it’s clear that the FG statistic is asymptotically 

equivalent to ˄ ˄nρ   MρkT
k . It must be emphasized that this asymptotic equivalence does not rest upon the depen-

dence structure of {εt} but only in the form of the test statistics. Furthermore, ˄ ˄πk = ρk + OP(n-1) as shown, for 
instance, in Monti (1994), which gives the asymptotic equivalence of ˄n ρk and ˄ n πk. This is further explained 
in the following lemma whose proof we give for completeness of exposition.

Lemma 1: Let {εt} satisfy assumptions A1. Then, if the PR statistic is asymptotically distributed as X, so is the 
FG statistic.

Proof: As shown in Peña & Rodríguez (2002), the log-determinant of  Rk 
˄

 can be written as

˄ ˄|Rk|1/k =  ∏ (1 - π(i)2)(k - i + 1)/k,
k

i = 1          

which implies that  
˄

˄-nlog| Rk|1/k = -n∑                         log(1 - π(i)2)k
i = 1

k - i + 1
k .  Apply the δ-method as it is explained, 

for instance, in Theorem 11.2.14 of Lehmann & Romano (2005) to the function

k

i = 1

k - i + 1
kf (x1,…, xk) = - ∑                    log(1 - xi),

to obtain that if  ˄nπ 2
k  converges in distribution to X then 

˄

-nlog|Rk |1/k  does so to ∇f(0)X, where ∇f  is the 

gradient of  f and can be easily evaluated to k -1
k

1
k

∇f (0) =   1,          ,…,      






. Now, FG is asymptotically equivalent

to ˄ ˄˄ ˄nρ   Mρk = n∑                        ρ(i)2 = n∇f (0)ρ   T
k

2
k

k
j = 1

k - i + 1
k . Since ˄n ρk  shares its asymptotic distribution with ˄n πk , it

follows that FG converges in distribution to ∇f(0)X and the proof is complete.
Assumptions A1 are a particular case of those used by Romano & Thombs (1996) to derive a Central Limit 

Theorem for the sample autocorrelations and is a simple generalization of the assumptions of Theorem 18.5.3 in 
Ibragimov & Linnik (1971). Under A1 and H (k)

0 , Theorem 3.2 in Romano & Thombs (1996) states that

˄n1/2 ρk ⇒ N(0,W),                                                                               (3)

where W(i, j) = γ(0)-2 (Ci, j - ρ(i)C0, j - ρ(j)C0, i + ρ(i)ρ(j)C0, 0) The last condition in assumptions A1 helps 
us in simplifying W to W(i, j) = γ(0)-2 Ci, j. Furthermore, Ci, j = 0 for i ≠ j and Ci, i = E[(εt - μ)2 (εt + i - μ)2], so 
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that W is diagonal. This is the same strategy followed in Lobato ( 2001) and as mentioned in the Introduction, 
includes the usual GARCH and LMSV models. As a consequence, we have the following result.

Theorem 1: Let {εt} be a stationary stochastic process for which assumptions A1 hold. Then, under  H (k)
0 , the 

limit in distribution of the statistics PR and FG can be written as k
i = 1X = ∑        λi τi χ2 (1). The χ2(1) variables are 

independent, λi = (k + i - 1)/k, and

τi =
E [(εt - μ)2 (εt + i - μ)2]

E [(εt - μ)2]2

Proof: First, we know from Lemma 1, that both statistics have the same limiting distribution, so we focus on 
the PR case. From the proof to Lemma 1, we also know that ˄ ˄PR = nπ    Mπk

T
k . Since {εt} satisfies assumptions 

A1, we know from (Romano, & Thombs, 1996) that πk ˄  is asymptotically Normal with asymptotic covariance 
matrix W/n. The results in Box (1954) imply that PR ⇒ ∑        νi χ2 (1)k

j = 1 , where ``⇒’’ signifies convergence in 
distribution, the χ2(1) variates are independent, and νi are the eigenvalues of matrix WM. Finally, since both, W 
and M, are diagonal, with respective diagonal elements τi and λi, the result follows.

The asymptotic distribution depends on the unknown quantities {τi} which need to be estimated. Consistent 
estimators of τi are readily available making this a simple procedure to implement. To make the robust PR and 
FG statistics feasible, we estimate τi consistently as

˄









τi = 
∑           (εt - ε)2 (εt + i - ε)2  

∑       (εt - ε)2  2    

1
n

1
n

T
t = i + 1

T
t = i

                                                              (4)

We follow Fisher & Gallagher (2012) and Peña & Rodríguez (2002, 2006) in approximating the limiting 
distribution with the methods of Box (1954) and Satterthwaite (1941, 1946). Thus, we use the distribution of an 
aχ2 (b) variable as an approximation to the distribution of  ˄∑       λi τi χ2 (1) k

i = 1 . The constants a and b are chosen 
to equate the first two moments of these distributions and are, in our particular case, given by

˄

k
i = 1
k
i = 1

a =                       ,
∑       λ   τ   

∑       λi τi









˄2
i

2
i

˄k
i = 1
k
i = 1

b =                         .
     ∑       λi τi  2   

∑       λ   τ 

2
i

2
i

˄

                                                       (5)

Remark: Under assumptions A1, Bartlett’s formula may hold either exactly or approximatively. If the squared 
process {ε  } 2

t  is uncorrlated, we have τi = 1 in Theorem 1, which implies that Bartlett’s formula holds exactly in 
this case. On the other hand, if the lag, i, is large then W(i, i) ≈ 1. To see why, define zt = εt - μ, so that

τi =                  =                       =            + 1.  
E[z   z      ]

E[z   ]2         

2
t

2
t

2
t + 1 γz2(i) + E[z  ]2

E[z  ]2         

2
t

2
t

γz2 (i)
γz (0)2         

Now, under assumptions A1, {εt} is short memory, and thus so are {zt} and 2
t{z   }. Therefore γz2(i) → 0 and 

Bartlett’s formula holds asymptotically.
Thus, the need for modifications to the usual Portmanteau tests for zero autocorrelation is driven by the 

autocorrelation in the squared process, which as explained in Cont (2001), Granger & Ding (1995) and Granger 
et al. (2000), is common in financial data.
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2. Design of the Monte Carlo experiments

We focus on two families of stochastic processes that are common in financial applications, namely the GARCH 
and LMSV models with Gaussian innovations, which satisfy assumptions A1. Thus, we simulate from the mul-
tiplicative models εt = σt Zt, where the specification of σt is either GARCH or LMSV. We specify our GARCH 
models to have the orders (1, 1) and thus 2

t
2
t - 1

2
t - 1σ    = ω + αε       + βσ . The parameters (ω, α, β) are required to 

satisfy ω > 0, to avoid the trivial stationary solution, 1 - α - β > 0, which implies second order stationarity, and 
1 - 3α2 - β2 - 2αβ > 0, which is necessary for the fourth order moment to exist. For the LMSV, we focus on 
the fractional AR(1) specification

2
tlog(σ   ) = (1 - ϕL)-1 (1 - L)-dηt : = ht,

where | ϕ | < 1, so that the process is stationary, 0 < d < 0.5, so that there is persistence in the volatility process, 
{ηt} and is strong Gaussian white noise with variance 2

nσ . The process {εt} can then be written as

εt = exp(ht)Zt,

and since ht is a Gaussian process, εt follows a lognormal distribution which implies the existence of its mo-
ments. In particular

2
h

2
h

4
t

Var(εt) = exp(σ   /2),
E[ε   ] = 3exp(2σ   ),

with 2
n

2
hσ   = γ(1 - 2d)/γ(1 - d)2 σ , the variance of ht. See, for example Harvey (1998).

We conduct our experiments for the hypotheses H (k)
0  for k = 1, 5, 10 and for the sample sizes of n =100, 

200, 500, and 1 000. Even if these sample sizes are relatively small, when the availability of long streams of daily 
log-returns is considered, we choose them to illustrate the speed of convergence of the test to its nominal size. 
A total of  M = 10 000 independent paths are generated from each of the models in table 1. The particular para-
meters chosen are intended to represent the usual range found in financial applications and are similar to those 
used by Lobato et al. (2001) to study the Q* statistic. The robust test based on the PR and FG statistics are then 
performed as outlined in the previous Section, and the size is estimated as the empirical rejection probability, 
that is, the ratio of the number of rejections to the number of simulated paths.

TABLE 1
 Simulated processes under the Null

Model Parameters
GARCH α β ω

1 0.09 0.90 0.01
2 0.01 0.97 0.01
3 0.10 0.90 0.01

LMSV ϕ 2
nσ d

1 0.97 0.005 0.25
2 0.97 0.005 0.45
3 0.90 0.003 0.25
4 0.90 0.003 0.45

Source: Own elaboration.
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To study the power of the tests, we use two alternative hypotheses. In the first, we use the GARCH and LMSV 
models in table 1 as innovations in an MA(1) process. Thus, under this alternative we have {εt} a GARCH or 
LMSV process and simulate from ut = εt + θεt - 1, allowing θ to vary in (0.01, 0.35). Under the second alterna-
tive, we have a specification in the mean given by 2

tut = μ + cσ    + εt where {εt, σt} are simulated with each one 
of the model specifications of table 1. Parameter c is allowed to vary in [-0.9, 0.9], whereas parameter μ is fixed 
to 0.005 which does not pose any problem with the tests since μ is just a location parameter. As in the study of 
the empirical size, we generate M = 10 000 independent paths of each process and apply the robust testing pro-
cedures each time. We report the empirical rejection probability as an estimate of the power of the tests. All the 
simulations for these experiments were carried out in the Julia language of Bezanson et al. (2017).

3. Monte Carlo Results

We begin by observing that the GARCH 3 specification is an IGARCH(1, 1) model which therefore does not 
meet the hypotheses A1, in particular its strongly stationary solution is not second-order stationary. Nonethe-
less, as can be seen in the tables below, the size of the tests is quite well achieved, which suggests that the result 
in Theorem 1 can be proven under even milder assumptions. Tracing this fact to the minimal set of assumptions 
required for the robust statistics to perform as expected is out of the scope of this paper; but may be an interesting 
line of future research.

Figures 1, 2, and 3 show the deviations of the empirical size from the nominal one for the robust tests under the 
chosen GARCH and LMSV specifications. We include the Q* test of Lobato et al. (2001), labeled LNS, which 
is a robust Box test with good empirical properties, as a reference. The first thing to notice in these Figures, is 
that there is no overall winner for every given sample size, model, and nominal size. Nonetheless, when it comes 
to large sample sizes, illustrated here with n = 1 000, the PR and FG tests exhibit a smaller deviation from its 
intended size most of the times. The scales of the vertical axis in the figures show that the deviation is always 
small, though it increases slightly with the lag. The FG test appears to be more sensitive to persistence for smaller 
sample sizes than the PR test; but as the sample size grows, the situation is reversed in many cases. Overall, we 
can say that for sample sizes larger than, say, n = 500 the empirical size is certainly reasonable for applications. 
For the smaller sample sizes, some distortion will occur, but not a drastic one. In any case, for smaller sample sizes 
one could bootstrap the test to make its size more accurate.

FIGURE 1
Empirical size of the PR and FG tests at lag 1. Included, as a reference, is the LNS test. The horizontal axis 

shows sample size, while the vertical axis shows the empirical size. The dotted line indicates the nominal size 
Source: Own elaboration.
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The power against the MA(1) alternative is presented graphically for the GARCH models in figure 4. 
We choose the nominal level of the test as α0 = 0.95 in all cases. As it can be appreciated, the persistence 
plays a role in the power function, making it grow slower, if slightly. The difference in persistence between 
the specifications is consistently 0.01 being 1 for GARCH3, 0.99 for GARCH 1 and 0.98 for GARCH2. 
The decrease in the steepness of the power function with increasing persistence does not prevent the test 
from being highly sensitive even in the IGARCH model. As it can be seen, the test for H (1)

0  is, for all 

FIGURE 2
Empirical size of the PR and FG tests at lag 5. Included, as a reference, is the LNS test. The 

horizontal axis shows sample size, while the vertical axis shows the empirical size. The dotted 
line indicates the nominal size 

Source: Own elaboration.

FIGURE 3
Empirical size of the PR and FG tests at lag 10. Included, as a reference, is the LNS test. The 
horizontal axis shows sample size, while the vertical axis shows the empirical size. The dotted 

line indicates the nominal size 
Source: Own elaboration.
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practical purposes, equivalent under all the tests. Nonetheless, for H (5)
0  and H(10)

0  the PR and FG tests 
exhibit a considerably higher power.

Figure 5 shows the same kind of results for the MA(1) model with LMSV innovations that the GARCH 
counterparts of figure 4. Again, the greater the persistence is in the volatility process, the lower the power of 
the test for any given value of θ. Here, the effect of persistence is combined in the parameters d, for the frac-
tional noise, and ϕ for the AR(1) part of the process. The upper part of the figure concerns models LMSV 1 
and 2, in which ϕ = 0.97, whereas the lower part depicts the power function for models with ϕ = 0.90. On 
the other hand, the lefthand side of the figure includes models with d = 0.25, while d = 0.45 can be seen in 
the righthand side. The loss of power is evident in both directions, when ϕ grows from 0.90 to 0.97 and d is 
fixed, or when ϕ is fixed and d grows from 0.25 to 0.45. Indeed, the upper right figure, which corresponds to 
ϕ = 0.97 and d = 0.45 shows a much slower increase in power than the one in the lower left where ϕ = 0.90 and
d = 0.25. Notice that in this case the PR and FG tests are also more powerful than the LNS test, the difference 
in power being more pronounced for more persistent processes.

Figures 6 and 7 illustrate the situation for the second alternative of processes with a volatility effect in the 
mean. Again, we see the strong impact that persistence has on the power of the tests. This is, of course, not a 
surprise since the correlation in the series {εt} is introduced by that of the volatility process 2

tσ{     }. In this case 
all the tests seem to have a virtually equivalent power. The FG test is slightly more powerful than the other 
procedures in most of the instances when the powers differ. Figure (b) suggests that with a persistence as high 
as 0.98, the test may have a very low power.

FIGURE 4
Power function for the MA(1) alternative under GARCH innovations. The figures are faceted 
by sample size and lag. The horizontal axis shows the value of θ ∈ [0.01, 0.35] and the vertical 

axis shows the power function
Source: Own elaboration.
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Figures 6 and 7 illustrate the situation for the second alternative of processes with a volatility effect in the mean. 
Again, we see the strong impact that persistence has on the power of the tests. This is, of course, not a surprise 
since the correlation in the series {εt} is introduced by that of the volatility process 2

tσ{     }. In this case all the tests 
seem to have a virtually equivalent power. The FG test is slightly more powerful than the other procedures in 
most of the instances when the powers differ. Figure (b) suggests that with a persistence as high as 0.98, the test 
may have a very low power. Remember that under the GARCH 1 and GARCH 3 specifications, the persistence 
is 0.99 and 1.0 respectively. However, this low power is rather a function of parameter α in the specification of 
the model, namely,

εt = σt Zt,
σ    = 0.01 + αε    + (0.98 - α)σ   ,
α ∈ [0.01, 0.20].

2
t

2
t

2
t

Finally, figure (6-d) depicts the power function of the family of GARCH-M models with μ = 0.005 and 
c = 0.9 and a rapid and persistent increase of power can be seen for all testing procedures.

Observe that the persistence in volatility is fixed to 0.98 just as in the GARCH 2 specification. The reason for 
this behavior is that the correlation in the series comes from the correlation in the volatilities, which is an increa-
sing function of α. When α = 0.01, the correlation between ut and ut-1 is as low as 0.00083 and that between 
ut and ut-10 as low as 0.00069.

FIGURE 5
Power function for the MA(1) alternative under LMSV innovations. The figures are faceted by 
sample size and lag. The horizontal axis shows the value of θ ∈ [0.01, 0.35] and the vertical axis 

shows the power function
Source: Own elaboration.
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FIGURE 6
Power function for the in-mean alternative in GARCH specifications. The figures are facetted by 
sample size and lag. The horizontal axis shows the value of the parameter c in [-0.9, 0.9] and the 
vertical axis shows the power function.  Figure (d) helps better explain what we see in figure (b)

Source: Own elaboration.

FIGURE 7
Power function for the in-mean alternative in LMSV specifications. The figures are facetted by sample 
size and lag. The horizontal axis shows the value of the parameter c in [-0.9, 0.9] and the vertical axis 

shows the power function.
Source: Own elaboration.
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4. Empirical application

In this section, we consider the log-returns of different stock and indexes, and the growth rate of some exchange 
rates. We test for zero autocorrelation at lags 1, 5, and 10 with the usual Box-Pierce and Ljung-Box tests, and with 
the robust tests studied in this paper: LNS, PR, FG. The empirical quantiles are determined, as in our Monte 
Carlo experiment, with the aχ2(b) approximation using (8) with ˄τi  as in (7). We report the test statistic and its 
significance, coded with stars, as usual. The data for stocks and indexes has been downloaded from Yahoo! Finance 
and includes the daily log-returns of the S&P500, NASDAQ composite, CAC-40, DAX, NIKKEI-225, Exxon 
Mobile Corporation (XOM), Bank of America Corporation (BAC) and Apple Inc (AAPL). The data spans the 
period from 2007-01-03 to 2018-06-15. The daily exchange rates were downloaded from the Federal Reserve 
Bank of Saint Louis, through FRED, and include the following exchanges: USD / EUR, CNY / USD, JPY / 
USD, USD / GBP, MXN / USD. The data covers the period starting 2013 -01- 03 and ending 2018 -06 -15.

Table 2 shows the results of our application. The first thing to notice is that both traditional tests employed, 
Box-Pierce and Ljung-Box, tend to reject at high significance levels where the robust tests do not. For example, 
with the S&P500 index H (1)

0  is rejected at 99% with the traditional tests; but all robust tests fail to reject. In other 
instances, the robust tests lower the level of rejection from 99% to 90% as is the case of H (5)

0  also for S&P500. 
In practical terms, since empirical work is usually carried out at least at a 95% confidence level, this is equivalent 
to going from a sound rejection to a non-rejection. This discrepancy is due to the size distortion experimented 
by the traditional tests under nonlinear dependence.

Comparing the robust tests among them is more interesting, since it is these tests that are corrected for 
dependence. In some cases, the tests offer no practical difference. For example, working at 5% with the S&P500 
series, all three tests agree that there is no correlation; or that there is correlation in NASDAQ or order 1. 
Lag 5 of NASDAQ is an example of the robust PR and FG tests offering a different appreciation than the 

TABLE 2
Tests for zero autocorrelation for stocks and indexes.  Included are the tests of Box-Pierce (BP), 

Ljung-Box (LB), Lobato-Nankervis-Savin (LNS), Robsustified Peña-Rodríguez(RPR) and 
Robistified Fisher Gallagher (RFG). 

Lag Test S&P500 NASDAQ CAC40 DAX NIKKEI XOM BAC APL
1 BP 11.948*** 29.947***   0.389   0.082   1.516 189.116***   2.889*   4.047**

LB 11.950*** 29.954***   0.389   0.083   1.516   18.121***   2.890*   4.048**
LNS   2.288   6.709***   0.173   0.038   0.381     2.367   0.267   1.590
RPR 11.948 29.947***   0.389   0.082   1.516   18.116   2.889   4.047
RFG 11.950 29.954***   0.389   0.082   1.516   18.121   2.890   4.048

5 BP 47.541*** 44.267*** 44.400*** 21.006*** 14.140**   93.174*** 51.123*** 26.224***
LB 47.552*** 44.279*** 44.436*** 21.023*** 14.145**   93.207*** 51.155*** 26.237***
LNS   7.414   9.969* 16.981***   7.987   3.722   18.070***   6.356 11.955**
RPR 39.274* 40.548** 20.010**   9.206 10.732   75.792*** 20.177 16.637*
RFG 38.125* 38.986** 19.555**   9.188 19.655   69.630*** 20.381 16.637*

10 BP 57.640*** 50.995*** 50.552*** 24.743*** 27.623*** 103.150*** 77.689*** 34.786***
LB 57.657*** 51.015*** 50.597*** 24.765*** 27.637*** 103.190*** 77.753*** 33.810***
LNS 10.126 11.701 19.722**   9.564   8.506   21.601** 10.123 16.697*
RPR 47.701* 44.785* 34.705*** 16.348 17.857   96.563*** 38.113 23.563*
RFG 45.934 43.123* 33.729*** 16.300 17.688   85.009*** 39.210 23.612*

Source: Own elaboration.
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robust Box-Pierce (LNS). In this case LNS does not reject H (5)
0  whereas both, PR and FG, do at 5%. A similar 

situation is seen in lag 10 of CAC-40 and XOM where rejection goes from 95% in LNS to 99% in both, PR and 
FG. Conversely, lag 5 of AAPL shows an instance in which the new tests do not reject H (5)

0  at 5% but LNS does. 
Similarly, for lag 5 of CAC-40, LNS rejects at 99% when the robust PR and FG do only at 95%.

We can see how the traditional tests of Box & Pierce (1970) and Ljung & Box (1978) lead to spurious 
autocorrelation. Apparently, the robust Box-Pierce test of Lobato et al. (2001) may be subject to the opposite 
error when the actual correlation is small enough; but the PR and FG test seem quite sensitive to deviations from 
the null. Thus, when using the traditional tests, we will be led, usually, to overparameterization of the conditional 
mean of the series under study, that is, to overparameterized ARMA models with conditionally heteroskedastic 
innovations. Of course, this is not desirable since the overparameterization would cause the point forecasts not 
to be optimal (in mean squared error) and the confidence intervals for them to be misleading. Another reason 
why spurious autocorrelation is to be avoided concerns a common use of the econometric model: The estimation 
of risk measures in the context of dynamic risk management. In this case, as explained in Chapter 4 of Embrechts 
et al. (2005), conditional risk measures are estimated by means of the representation

rt = μt + σt Zt,

where rt is the (negative) log-return and (μt, σt) stand for the conditional mean and volatility of the series. 
Unnecessarily including an ARMA component would lead to setting a working model for μt when in fact μt = 0, 
which would impact the estimation of the associated risk measures. For instance, the Value at Risk and Expected 
Shortfall for period t + 1 based on the information available up to time t would be computed as 

˄VaR    =    t + 1 + σt + 1 VaRα (Z),t
α μ˄

˄ ˄t
αES    = μt + 1 + σt + 1 ESα (Z),

where ˄μt + 1 and ˄σt + 1 are the one-step-ahead forecasts for the mean and the volatility, and Z is a random 
variable with the same distribution as Zt. Incorrectly deciding to model {μt} as an ARMA process would lead to 
biased estimators of both measures which implies that the VaR will not have the required level and the expected 
shortfall will not accurately depict the conditional distribution of losses exceeding the VaR t

α.
Table 3 shows the results of our application to exchange rates. We see that persistence in volatility and nonlinear 

dependence does not seem to affect the traditional tests in some cases. For example, the null hypothesis of zero 
autocorrelation is not rejected for the USD / EUR at all lags  k = 1, 5, 10 and all the tests. This also happens with 
the exchange JPY/USD for lags 1 and 5. Another scenario is illustrated by CNY/USD and USD/GBP, where 
volatility and nonlinear dependence alter the size of the traditional tests, both of which favor rejection at 5%; 
but not for the robust versions which do not reject the null. Lastly, for MXN/USD we see that all tests favor 
rejection at some level for lags 5 and 10. In the first case, the robust Box-Pierce test (LNS) rejects at 5% whereas 
the newly proposed tests (PR and FG) do only at 10%. In practical terms, where decisions are usually taken at 
least at the 5% level, LNS favors rejection while PR and FG do not, so that the later tests support the hypothesis 
that the exchange rate follows a random walk (when applied with five lags). Lag 10 for this same exchange shows 
that the LNS and FG tests favor rejection at 5% whereas PR does only at 10%. In practical terms, LNS and FG 
would imply, overall, that the exchange MXN/USD has a statistically significant (short) memory, whereas PR 
would advise otherwise.

Finally, two things should be noticed about the proposed tests: First, when applied to strong white noise 
they are equivalent to their non-robust counterparts. Indeed, since for strong white noise we have γε2 (i) = 0, 
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the limiting distribution of  ˄ρk   is given by Bartlett’s formula so that the results in Fisher & Gallagher (2012) 
and Peña & Rodríguez (2006) apply. As noted earlier, this is not limited to strong white noise; but it is valid 
whenever the squared process is uncorrelated. Second, the robust PR and FG tests exhibit a similar power 
which is greater, in many cases, than that of the LNS test. Since the FG statistic is computationally simpler, we 
rephrase the advice of Escanciano & Lobato (2009) and recommend to routinely compute the modified FG 
statistic when testing for zero autocorrelation in financial applications.

Conclusions

Testing for autocorrelation is deeply connected with some of the most common hypothesis in financial theory, 
such as the Efficient Market Hypothesis, so that empirical financial econometrics require reliable tests for the 
hypothesis of zero autocorrelation. Even though the existing literature provides with different test statistics for 
autocorrelation, most of them are developed under the hypothesis of independence or even Normality of the 
sequence under study. These hypotheses are inconsistent with financial data, making it necessary to develop tests 
for autocorrelation specifically suited for financial applications. In this paper we proposed and studied two such 
tests and the results make their use promising.

To begin with, both tests are based on recently proposed Portmanteau statistics which are more powerful 
than the traditional tests of Box & Pierce (1970); Ljung & Box (1978) which suggests that their robustification 
will also be more powerful. This intuition is corroborated by our Monte Carlo study at least for two common 
alternatives, namely, the moving average and the GARCH in mean. It should also be noted that the three tests 
that are compared are almost identical for lag one; but as the lag being tested increases, the new tests are more 
sensitive than the modified Box test. Finally, since the limiting distribution can be approximated with a simple 
transformation of a χ2 distribution, its applicability does not impose high computational costs.

The proposed generalizations differ from the one given in Lobato et al. (2001) in that it is not the statistic 
that we compute differently, but rather the limiting distribution. It should be realized that there is a double 
approximation in this process: First, the linear combination of χ2 random variable is an asymptotic distribution 
and, second, the terms appearing in this linear combination are, themselves, approximations –being, as they are, 
consistent estimators of the actual terms involved. This imprecision is counteracted, as usual, by larger sample 
sizes. In other areas, such as macroeconomics, requiring large samples can be problematic; but not in finance, so 
that the tests are applicable without small-sample corrections. Future research includes the generalization of our 
results to general weighted Portmanteau statistics, where the weight functions may be fixed or random. 
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