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ABSTRACT

Over the last decade, continuous efforts have been made to bring computational
thinking (CT) closer to K-12 education. These focused endeavors implicitly suggest
that the current curricula do not sufficiently contribute to the development of
learners’ CT. On the other hand, since CT is a combined skill with cross-disciplinary
implications, one might conclude that even without an explicit focus on CS
education, students’ CT might develop latently as they advance with the current
curriculum. We have proposed to test whether differences exist in how 3rd-, 5th-,
7th- and 9th-grade learners from two Romanian educational institutions (girls vs.
boys from Art vs. Theoretical school; 214 subjects with no prior experience in CT)
relate to learning tasks that require a certain level of CT. The testing tool was
inspired by the AlgoRythmics dance choreography illustration of the linear search
algorithm and has the potential to reveal different levels of abstracting. Findings
emphasize the need for a purposeful and coordinated CS infusion into K-9
education in order to accelerate students’ CT development.

Keywords COMPUTER-ASSISTED INSTRUCTION, ALGORITHMS, CURRICULUM,
EDUCATIONAL TESTING, GENDER ROLES

1 INTRODUCTION
During the last decade, sustained efforts have been made to bring computational thinking
(CT) closer to K-12 education and even to K-9 education. It is worth mentioning in this
regard two complementary implementational approaches to the “CT for all” initiative: (1)
introducing new computing courses; and (2) infusing CT into the existing courses (Brown,
Sentance, Crick, & Humphreys, 2014). For example, Computer Science (CS) has been
mandatory for pupils in the UK since 2014 from the age of five (Brown et al., 2014; Román-
González, Pérez-González, Moreno-León, & Robles, 2018) and a growing recognition of
the importance of CS education (CSE) becomes visible in other countries too (European
Schoolnet, 2015; Grover & Pea, 2018). In addition, Mannila et al. (2014) report on a survey
distributed to K-9 teachers which aims at revealing the extent to which the different aspects
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of CT already form part of the current curricula both in various European countries and in
the U.S.

This focused attempt implicitly suggest that current curricula do not adequately con-
tribute to the development of learners’ CT. Several studies emphasize that computing stu-
dents lack a variety of skills that programming would require (Ahadi, Lister, Lal, Leinonen,
& Hellas, 2017; Evans & Simkin, 1989; Simon, Chen, Lewandowski, McCartney, & Sanders,
2006). On the other hand, since CT is a combined skill with cross-disciplinary impli-
cations (Feaster, Ali, Zhai, & Hallstrom, 2014), it seems plausible that even without an
explicit focus on CS education learners’ CT might develop latently as they advance with
the current curriculum. For example, Lewandowski and his colleagues report on a series of
computing projects that sought to identify the commonsense knowledge beginners bring
to CS study (Lewandowski et al., 2010). While most previous research focused on assessing
the CT level of certain age groups, this study tried to answer the following key question:
Does any detectable incidental progress take place in students’ CT during their K-9 edu-
cation? Instead of using one of the general CT tests proposed by previous works in this
field (Román-González et al., 2018; Shute, Sun, & Asbell-Clarke, 2017), we chose to follow
the same approach that the authors of the aforementioned computing project had applied.
More precisely, we focused on checking possible differences concerning the way in which
3rd-, 5th-, 7th- and 9th-grade learners (without any explicit prior experience in CT) relate
to a specific learning task that implies a certain level of CT.

The rest of the paper is organized as follows. The literature review included in Section
2 presents the context of the study and identifies the knowledge gap that we addressed by
investigating (and comparing) the developmental trajectory of K-9 students’ CT skills in a
STEM (Theoretical school) and a non-STEM (Art school) institution. Section 3 defines CT
from the perspective of current research and introduces our ad hoc testing tool adapted to
it. Sections 4 and 5 describe the research questions along with the experiment performed.
In Sections 6 and 7, we show our findings and interpret them from the perspectives of grade
level, educational program and gender. Finally, Section 8 provides a brief summary of the
paper and highlights some implications of our findings.

2 REVIEW OF RELATED LITERATURE
In recent years, there has been an increasing interest in CT education at each school grade
level with several approaches being analyzed from different perspectives. By way of exam-
ple, a recent review by Zhang and Nouri (2019) systematically examined the CT skills that
can be obtained through Scratch programming at different age groups (5-9, 9-12, 12-15).
Other studies emphasize the effectiveness of unplugged methods to introduce CT in the
early years of primary education. Del Olmo-Muñoz, Cózar-Gutiérrez and González-Calero
(2020) report on the convenience of combining unplugged and plugged-in activities for
2nd-grade students. Some research works investigated the benefits of using metaphors (fig-
ures of speech that describe objects or actions which, despite not being literally true, help
explain abstract ideas) when teaching CT. In turn, Pérez-Marín, Hijón-Neira, Bacelo, and
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Pizarro (2020) concluded that mixing the use of metaphors with a block-based program-
ming environment could be an effective method to promote CT knowledge acquisition in
primary education ([4th-, 5th- and 6th-grade] 9-to-12-year-old students).

Because of the gender stereotypes associated with CT and the gender gap existing in the
computing field (Grover & Pea, 2013) , research results have been frequently analyzed from
a gender perspective too. For example, del Olmo-Muñoz et al. (2020) reached the conclu-
sion that, despite the possible initial differences, all children can develop CT-related skills
regardless of their gender if a carefully designed instruction is put into play. These authors
also observed how girls showed lowermotivation than boys when plugged-inmethods were
applied; female learners’ interest slightly increased with unplugged approaches, though.

Most studies on CT include assessing methods and tools as well. In a recent system-
atic review, Tang, Yin, Lin, Hadad, and Zhai (2020) examined several research works on
CT assessment implemented across all educational levels. Their analysis revealed that a
large number of studies had focused on cultivating CT in elementary and middle school
grade levels. Some research gaps were also identified. Amongst other things, these authors
observed that: (1) CT assessment is lacking in informal contexts; and also that: (2) com-
pared to assessments infusing CT with STEM subjects, the integration of CT assessment
into non-STEM contexts has not been sufficiently developed either.

Another particularity of prior research on CT is that it mostly concentrated on certain
age groups. However, some researchers suggest that findings should be interpreted as inter-
related pieces of a whole. For instance, Grover and Pea (2013) refer to the path of devel-
oping CT elements in children; and Tang et al. (2020) underline the importance of finding
resources to ensure a complete developmental trajectory of students’ CT skills.

In addition, a vast majority of the studies focused on methods aimed to explicitly
improve students’ CT skills. The extent to which some CT skills of students latently develop
as they advance with their current CT-free curriculum —it includes no explicit attempts to
improve students’ CT— is a poorly researched area.

In the light of the research gap outlined above, we suggest testing and comparing the
CT skills of 3rd-, 5th-, 7th- and 9th-grade boys and girls (with no explicit prior experience
in CT) from two educational programs (STEM-oriented vs. non-STEM-oriented). The
following sections will serve to present the testing tool that we designed for this purpose.

3 CREATING A COMPUTATIONAL MODEL TO INVESTIGATE CT
ABILITY

Teaching curricula are nowadays confronted with the concept of CT and teachers strug-
gle with questions such as “What is exactly meant by CT?” and “How is CT measured or
taught?” Tang et al. (2020). CT has become more popular since J. Wing (2006) promoted its
introduction in K-12 education. According to her definition, CT is a “universally applica-
ble attitude and skill set that everyone, and not just computer scientists, would be eager to
learn and use” (p. 33). Aho (2012) in turn redefines the concept emphasizing that “models of
computation are the heart of computation and computational thinking” (p. 834). Finally,
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in an appraisal of Aho’s revised definition, Denning (2017) highlights the importance of
computational models and algorithms, describing the steps of the latter as the design of the
“way to control any machine that implements the model” (p. 35).

Regarding the nature of CT, it can be described as a skill rather than a knowledge set
of facts and information (Denning, 2017). Skills are considered tacit knowledge, abilities
that can be enhanced by regular practice. Accordingly, Zhang and Nouri (2019) positioned
CT at the intersection of computing and problem-solving. When measuring CT instead of
evaluating students’ knowledge, attention should be directed to their competences. Recent
research has focused on detecting CT through competence-based assessment (Feaster et
al., 2014; Shute et al., 2017). Some of these studies involved students who had not begun
to study programming yet. Román-González et al. (2018) stressed that CT ability can be
demonstrated not only bymeans of computer programming but also within unplugged con-
texts (Brackmann et al., 2017; Rodriguez, Kennicutt, Rader, & Camp, 2017). Along these
lines, an efficientmethod for the investigation of CTwould be to engage students with learn-
ing environments where CT skills can prevail.

Since algorithms are central to CT (Zhang & Nouri, 2019), the learning environment
created by us confronts students with “masked computer algorithms.” We chose dance as a
metaphor. Learners are asked to identify with a flamenco dancer looking for his match in
a dancer sequence. We took into account Denning’s (2017) reminder that algorithms must
control some computational model and that step sequences requiring human judgment
should not be considered algorithms in the context of CT. In addition, Katai (2014) empha-
sizes that algorithmvisualization systems should support the human user in assimilating the
algorithm-processing role of blind computers. He argues that visualizations showing infor-
mation with extra meanings for learners may obstruct them in following strict computer
algorithms and suggests that wisely applied hiding might result in more effective algorithm
visualization due to its higher epistemic fidelity. Accordingly, the dancer sequence mem-
bers wear on their back the numbers they represent and the boy has to ask different girls for
a dance to realize who his match is (the girl dancing the same choreography and wearing
the same number).

The environment was inspired by the AlgoRythmics videos, and more precisely, by the
dance choreography illustration of the linear search algorithm. A peculiarity of this video
lies in the fact that it also implements the above-suggested selective hiding (girls are wearing
numbers on their back). Once again, since the boy is forced to perform the comparing oper-
ations explicitly (by inviting girls to dance), the scheme can be perceived as a computational
model claimed by Aho (2012) and Denning (2009, 2017).

An attempt was made to investigate CT ability by measuring (1) to what extent students
intuit the linear search algorithm before viewing the AlgoRythmics video; and (2) how well
they could assimilate the algorithm they were introduced to. This algorithm includes most
of the algorithmic elements suggested in the CSTA standard with respect to the 3rd-to-5th
grade interval CSTA (2017). Furthermore, in order to be able to identify the differences in
students’ CT and to develop a suitable tool for each grade, the tasks included in the learning
environment involved different levels of abstraction Román-González et al. (2018).
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While designing specific tasks, we also drew on the definition that Shute et al. (2017)
gave to CT: “the conceptual foundation required to solve problems effectively and efficiently
(i.e. algorithmically, with or without the assistance of computers) with solutions that are
reusable in different contexts” (p. 151). These authors’ CT model comprised the following
facets: decomposition; abstraction; algorithms; debugging; iteration; and generalization.
The assignments incorporated in our testing instrument aim to reveal such components.
We accordingly assumed that students’ correct answers to the different tasks reflect their
CT skills, since these required them to decompose the algorithmic searching process into
a succession of dances (representing comparisons) and to iterate through the girl sequence
until the boy meets his match. As for the effectiveness and efficiency factor, some tasks
are built around the concept of algorithm complexity. These assignments required quite
advanced abstraction insofar as students needed to imagine and generalize the best- and
worst-case behaviors of an algorithm that was presented to them, as a dance choreography,
for a single specific input.

4 RESEARCH QUESTIONS
The main research question was: do any detectable differences exist in how 3rd-, 5th-, 7th-
and 9th-grade learners (with no explicit prior experience in CT) relate to learning tasks that
require a certain degree of CT? More specifically:

• What is the potential CT growth pace? (RQ 1)
• Do CT growth rate and pace depend on the characteristics of the current curriculum

(Art vs. Theoretical school)? (RQ 2)
• To what extent can students of different grades assimilate a basic computer algorithm

(linear search) (RQ 3)
• Does evidence of advanced CT exist at different grade levels? (RQ 4)
• Do CT growth rate and pace depend on learners’ gender? (RQ 5)

5 METHODS
5.1 Participants
The experiment took place in Romania, where K-12 education is divided into three stages:
primary school (grades 0-4); gymnasium (grades 5-8); and high school (grades 9-12). In
addition, the school curriculum revolves around three main lines: theoretical; vocational
(e.g. arts); and technological. Regarding CS teaching, this has been a mandatory subject for
many years in high school classes (9-12 grades) in the case of natural sciences, mathematics
and computer science and intensive computer science programs. Starting from the 2017-18
academic year, the ICT syllabus corresponding to the gymnasium level was enlarged with
CS concepts (algorithms, computing, etc.) too.

A total of 214 students (56% of them girls) from two public schools with a good rep-
utation in their region participated in this study. Since only theoretical (T) and art (A)
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specificities are available at the elementary level, the schools involved had these orientations
(School-T and School-A). Eight classes of grades 3, 5, 7 and 9 were invited to take part in the
experiment, with one class from both schools at each level: classes 3T, 3A (music); 5T, 5A
(fine arts); 7T, 7A (fine arts); and 9T, 9A (fine arts) (seeTable 1 for further details). We chose
to start with 3rd-grade classes for the same reasons as Settle, Goldberg, and Barr (2013).
This grade is considered the transition from “learning to read to reading to learn,” which
led these authors to suggest a corollary between reading comprehension and CT skills. It is
also our assumption that this two-year shift will reveal easily perceived advances regarding
students’ thinking and skills. This partitioning likewise harmonizes with the classification
provided in the CSTA standards (CSTA, 2017).

Table 1 Participants’ demographic profile

Grade 3
9-to-10-year-olds

Grade 5
11-to-12-year-olds

Grade 7
13-to-14-year-olds

Grade 9
15-to-16-year-olds

All

School T 32 (14 girls) 29 (13 girls) 29 (18 girls) 28 (13 girls) 118 (58
girls)

School
A

25 (12 girls) 20 (13 girls) 25 (21 girls) 26 (17 girls) 96 (63 girls)

5.2 Procedure
The experiment developed during the first semester of the academic year, and the testing
sessions took place in the computer laboratories of the participant schools with the excep-
tion of 3rd-grade classes. Since their curriculum does not include ICT classes and it is quite
hard to keep learners busy, we suggested meeting at university labs in the hope that such an
environment would help them stay more focused.

After a brief introduction, participants were requested to login to an online testing appli-
cation (Socrative) that included the items listed in Table 2.

Table 2 Questions and tasks included in the investigation procedure

Metacode Item
Question 1 What is your gender? (male/female)
Question 2 How much do you like computer science? (1-10)
Question 3 How much do you love music and dance? (1-10)
Task 1 Students were shown the picture in Fig 1 and asked to specify the number of dances required for the boy to identify his match. It

was emphasized that he does not see the numbers the girls are wearing and has to invite each girl for a dance to find out if she is
wearing his number.

Video Subjects were requested to watch the flamenco dance choreography illustrating the linear search algorithm (see Fig. 3). Since the
algorithm unfolds quite slowly (because of the choreography), the video was played at double speed. They were asked to focus
on the strategy applied by the boy in the video.

Question 4 To what extent did you understand the boy’s method (in your opinion)? (1-10)
Task 2.1 Students were shown a picture similar to that in Fig 1 with the difference that this one presented a girl sequence of length 10

(the girl wearing the boy’s number was the 7th or the 4th one depending on the position of the first one on the list). They were
once again asked to specify the number of dances required for the boy to identify his match (it was emphasized that they had to
implement the same method that the boy had applied).

Continued on next page
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Table 2 continued
Task 2.2 Students were shown the picture in Fig 2 and asked to give two sequences of length 5 that required theminimumnumber (subtask

2.2.1) and the maximum number (subtask 2.2.2) of dances needed for the boy to find his match.
Task 2.3 Students were requested to generalize the algorithm for a girl sequence of length x by giving the required number of dances for

the best-case (subtask 2.3.1) and worst-case (subtask 2.3.2) scenarios.

The testing sessions for all groups lasted ca. 30-35 minutes. In the remaining 10-15
minutes, students had to interpret their answers (verbal probing).

5.3 Materials
The testing process consisted of six consecutive tasks (1, 2.1, 2.2.1, 2.2.2, 2.3.1, 2.3.2), some
of which referred to pictures presenting the girl sequence from behind and the boy with his
number on his chest (see Fig. 1). Using this method allowed us to make students see not
only the number that the boy represents and the sequence personified by the girls but also
that the girls’ numbers are invisible to the boy. Other tasks required students to imagine the
best- and worst-case behavior of the algorithm by providing number sequences that entail
a minimum and maximum number of dances for the boy to find his match (see Fig. 2).

Figure 1 Students were asked to indicate the number of dances required for the boy to identify his match.

Task 1 aimed to reveal the extent to which students intuit the linear search algorithm
before viewing the AlgoRythmics video. The purpose of Task 2 consisted in checking how
deeply students had assimilated the algorithm they were introduced to (by watching the
video; see Fig. 3). An important detail about Task 2 was that students had no possibility to
indicate which end of the list their searching started at.

As mentioned above, abstraction arises as a critically important element of
CT (J. M. Wing, 2008), two of its key aspects being: (1) the act of leaving unimpor-
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Figure 2 Students were asked to provide best- and worst-case sequences.

Figure 3 The AlgoRythmics linear search video (https://www.youtube.com/user/AlgoRythmics)
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tant aspects out of consideration; (2) the process of formulating general concepts by
extracting common features from specific examples (Kramer, 2007). In addition to the
need for students to extract an algorithm from a dance choreography, the subtasks included
in Task 2 required different levels of abstraction.

• On the picture shown in Fig. 1 (included in Task 1) both the boy’s number and the
girl-sequence’s length were 7. The video presents a similar scenario: the boy is look-
ing for number 7 in a girl sequence with a length of 7. Instead, 10 corresponds to
the boy’s number and to the girl-sequence’s length too on the picture attached to Task
2.1. During these assignments, students had to ignore such coincidences as an unim-
portant detail. (Verbal probing revealed that some learners were disturbed by this
circumstance)

• We decided to establish neither that the sequence represented by the girls obligato-
rily contains the boy’s number nor that the girls’ numbers are different. In our view,
the ability of students to abstract from the given samples (both the video and the
pictures associated with Tasks 1 and 2.1 displayed different numbers including the
boy’s number) and, for example, to identify a sequence without the target value as
the worst-case scenario constituted signs of advanced CT.

• The students’ inability to indicate which end of the list their searching started at
turned out to be particularly important in the case of Task 2.2. Once more, we con-
sidered it a sign of advanced CT if they addressed this “left-to-right or right-to-left
dilemma” (as algorithms must operate correctly on any input data).

In Task 1, we regarded as correct answers the values which resulted from linear search,
2 corresponding to the right-to-left approach and 6 to the left-to-right one. The correct
answers for Task 2.1 were 7 and 4.

Task 2.2.1 requested students to give a best-case input of length 5.

• (Variant 1a) A majority of students placed the value the boy is looking for (the key
element) at one of the ends of the list. They simply assumed that the search began
at the end they had chosen (probably at the left end of the list either from the boy’s
perspective or from theirs).

• Nevertheless, other students addressed the left-to-right or right-to-left dilemma quite
ingeniously:

– (Variant 2) situating the key element at both ends of the list or giving a constant
sequence that contained only the searched value;

– (Variant 3a) inserting the key element in the middle of the list.

Participants faced Task 2.2.2 (to give a length-5 worst-case input) only after having finished
Task 2.2.1.

• (Variant 1b) Most students once again chose to put the key element at the end of the
list, usually the opposite end relative to their best-case sequence.
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• (Variant 3b) Some students gave a variant where the key element was in the middle
of the list as the worst-case answer.

• (Variant 4) A few students provided a list which did not contain the key element.

When asked (verbal probing) about their Variant 3 answers, participants provided argu-
mentations that resembled the key idea behind binary search optimization. The essence
of their answers was that the larger part of a segment (luck is against the boy, who starts
dancing at the “wrong end of the girl sequence”) becomes the smallest when the segment is
divided into two equal parts.

All variants (1a, 1b, 2, 3a, 3b, 4) were considered correct answers in relation to Task 2.2.
The correct answers for Tasks 2.3.1 and 2.3.2 were 1 (best case) and x/(x-1) (worst case),
respectively.

6 RESULTS
Statistical analysis was performed using R statistical software. Since students’ responses to
Task-1 were binary data (0: incorrect; 1: correct) we used Fisher’s exact test to compare
the performance of each corresponding group. As for Task 2, which included five subtasks
—2.1, 2.2.1, 2.2.2, 2.3.1, and 2.3.2— a decision was made to code students’ responses from 0
to 5 (0/1 for each incorrect/correct response). In this case, the statistical tests applied were
t-test and one-way or two-way ANOVA.

6.1 Results Grouped by Students' Grade
6.1.1 Intuiting the Linear Search Algorithm (RQ 1)
Agradual, albeitmoderate growth becomes visible (see Fig. 4) in view of the scores obtained
for Task 1 (the extent to which students intuit the linear search algorithm) by all learners
enrolled in grades 3, 5, 7 and 9 at both schools (see Table 3). While differences associated
with the two-year shifts (3-5, 5-7, 7-9) were negligible, four-year shifts resulted in significant
increases (Fisher’s exact test: shift 3-7, p=0.01<0.05; shift 5-9, p=0.01<0.05).

Table 3 All students’ Task-1 and Task-2 performance percentages (means and standard devi-
ations) grouped by grade (level)

Task 1
M

Task 2
(2.1, 2.2.1, 2.2.2, 2.3.1, 2.3.2)
M(SD)

Tasks 2.1, 2.2
M(SD)

Grade 3 0.32 0.65 (0.18) 0.83 (0.22)
Grade 5 0.43 0.80 (0.17) 0.84 (0.18)
Grade 7 0.56 0.80 (0.24) 0.85 (0.23)
Grade 9 0.67 0.79 (0.20) 0.89 (0.19)
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Figure 4 All students’ Task-1 performance percentages grouped by grade level.

6.1.2 Art vs. Theoretical School (RQ 2)
Investigating the two participant schools separately allowed us to check that, overall, stu-
dents enrolled in art programs performed slightly better than their counterparts from the-
oretical school (School A: 53%, School T: 46%; Fisher’s exact test: p=0.33>0.05). Moreover,
growth stages differed significantly (see Fig. 5). The following facts were taken into account
while interpreting the results from this perspective:

• The elementary level curriculum at School A includes only the music program. The
fine arts program starts on grade 5. Consequently, the students from class 5A (fine
arts) participated in an elementary level educational program (at different “theoretical
schools”) similar to that of their counterparts from class 5T. In accordance with this,
grade 5 classes performed equally well.

• A nationwide test is taken by all students at the end of the 8th grade. In order to reg-
ister for a high school, a student must choose a list of secondary education centers
they would like to study at. Afterwards, a national computer system carries out the
distribution of students according to the order of their preferences and their admis-
sion grades. Therefore, a possible reason for the minimal decrease from class 7 to
class 9 in School A could be that most of the students interested in CS move to classes
that offer a higher level of CS teaching. Instead, the substantial increase from class
7T to class 9T can be explained by the fact that only well-performing students (based
on their gymnasium final exam results) are admitted to School T’s 9th grade classes.
Once again, it becomes evident that classes 9A and 9T performed similarly.

In the light of the above-mentioned aspects, the most relevant comparisons from the
perspective of the “Art versus Theoretical program analysis” are those between classes 3A
and 3T, 7A and 7T and the growth from grade 3A to grade 7A vs. the one identified from
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Figure 5 All students’ Task-1 performance percentages grouped by grade and by the schools they belong to.

3T to 7T. Focusing on these pairs, we noticed that, while a significant growth took place
from grade 3 to 7 (32%) in School A (Fisher’s exact test: p=0.04<0.05) —mainly due to
the increase from grade 5 to 7— (28%), growth was relatively small (17%) in School T. It
additionally becomes evident that Class 3A clearly outperformed Class 3T (36% vs. 28%)
and also that Class 7A performed substantially better (68% vs. 45%; Fisher’s exact test:
p=0.1) than Class 7T.

6.1.3 Assimilating the Linear Search Algorithm (RQ 3)
Students’ performances at Task 2 can also be seen as CT measures, since the goal of these
assignments was to reveal the extent to which learners were able to extract the linear search
algorithm from the dance choreography presented to them.

Task-2 results (see Table 3) were analyzed using a one-way Analysis of Variance
(ANOVA) test where grade (3rd, 5th, 7th, 9th) acted as the independent variable and
Task-2 scores were the dependent variable (Levene’s test showed that equal variances
could be assumed: p=0.07>0.05). Results suggest significant differences: F(210,3)=7.79,
p=0.000<0.05, partial η2 = 0.1. As can be inferred from Table 3, 3rd-grade students (65%)
were lagging behind their 5th-, 7th- and 9th-grade colleagues, who performed equally
well (80%, 80%, 79%). An additional planned contrasts test (3rd grade vs. 5th, 7th and
9th grades) confirmed this observation (t(210)=4.83, p=0.000). Analyzing the responses
of 3rd-grade students allowed us to notice that their performance was significantly lower
than that of their higher-grade counterparts in Task 2.3.2 (only 12% of them answered x).
This seems plausible, since denoting an arbitrary value by a letter (for example x) is not an
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accessible concept yet for this age group (Kramer, 2007).
After eliminating Task-2.3 scores from our analysis we repeated the ANOVA test for stu-

dents’ Task-2.1 and Task-2.2 performances (Levene’s test showed that homogeneity of vari-
ance was achieved again: p=0.47>0.05). It surprised us that no significant differences (see
Fig. 6) were found between the four grade levels under study (F(210,3)=0.83, p=0.47>0.5).

Figure 6 All students’ Task-2 (subtasks 2.1, 2.2.1 and 2.2.2) performance percentages grouped by grade
(level).

Our analysis of students’ Task-2 scores (dependent variable) grouped by school (inde-
pendent variable: Art or Theoretical), revealed no significant differences either (inde-
pendent samples t-test; School A: 75%, SD=0.22; School T: 77%, SD=0.20; t(212)=0.74,
p=0.45>0.05). A two-way ANOVA was conducted in order to investigate whether A- and
T-students performed equally well at each grade. The two independent variables were
grade (3rd, 5th, 7th, 9th) and school (Art, Theoretical), the dependent variable being stu-
dents’ Task-2 score (Levene’s test showed equal variances: p=0.7>0.05). No interaction was
detected (p=0.12>0.05).

6.1.4 Detecting Advanced CT Ability (RQ 4)
Those variants which reflected that students addressed the “left-to-right or right-to-left
dilemma” (or gave a sequence without the searched value as worst-case input), were con-
sidered signals of advanced CT in Task 2.2. Based on Task-2.2 results, 23% of 3rd-grade
students, 17% of students enrolled in 5th grade, 36% of 7th-grade learners and 42% of their
9th-grade counterparts can be included in this promising category (students with advanced
CT skills).
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6.2 Results Grouped by Gender (RQ 5)
As the next step, we compared students’ performance according to their gender. We found
that male and female participants performed equally well in every task. For instance, the
Task-1 score of both male and female students was 49%, the corresponding results for Task-
2 being 74% and 77%, respectively. The examination of male and female students’ scores
for the two schools separately revealed no significant differences either. Interestingly, as for
Task 1, boys outperformed girls in School T (boys’ score: 52%; girls’ score: 40%) while girls
were more successful in School A (boys’ score: 45%; girls’ score: 57%); however, differences
were not significant (Fisher’s exact tests: for School T p=0.2>0.05; for School A p=0.3>0.05).
Concerning Task 2, female students performed slightly better in both schools (School T:
boys’ score: 76%; girls’ score: 78%; School A: boys’ score: 73%; girls’ score: 77%). A two-
way ANOVA served to investigate whether gender groups performed equally well at each
grade. The two independent variables were grade (3rd, 5th, 7th, 9th) and gender (male,
female), the dependent variable being students’ Task-2 score (Levene’s test showed equal
variances: p=0.55>0.05). No interaction was detected (p=0.3>0.05).

We also observed that, despite the similar performances, boys rated significantly higher
in questions 2 (How much do you like computer science?) and 4 (How much did you under-
stand the linear search method?) than girls. Two independent sample t-tests were conducted
with gender as the independent variable in both. The dependent variables were students’
Question-2 and Question-4 answers, respectively. Both tests showed significant differences
(Question 2: male score (M=8.77, SD=1.92), female score (M=7.73, SD=2.14), t(212)=3.68,
p=0.0002; Question 4: male score (M=8.24, SD=2.22), female score (M=7.40, SD=2.51),
t(212)=2.52, p=0.01). As could be expected, girls rated significantly higher in Question 3
(How much do you love music and dance?).

6.3 The Importance of Computational Model-Based Algorithms
Wefinally examined students’ wrong answers and noticed that some students (grade 3: 21%;
grade 5: 22%; grade 7: 7%; grade 9: 11%) gave value 5 (or 1) as their Task-1 response.
Similarly, some students provided for Task 2.1 value 6 (or 3). In both cases these students
gave one less value than the correct answer, although they could have seen in the video that
the boy’s last dance was with his match. These participants subsequently justified (during
verbal probing stage) their Task-1 (or Task-2.1) answers as follows: “After 5 (or 1) dances,
the girl that the boy was looking for was the next one.” This explanation suggests that such
students lost the boy’s point of view when they saw that the next girl was the searched one.
According to Katai (2014), this phenomenon probably suggests that these students might
also find it harder to identify with the computer’s perspective than those who answered
correctly (6 or 2 for Task 1 and 7 or 4 for Task 2.1).

7 DISCUSSION
These are themain contributionsmade with this paper: (1) A new testing tool (built around
the linear search dance choreography from theAlgoRythmics collection) is proposed to pro-
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vide some measure of young school students’ CT skills; (2) An examination has been made
of the pace at which some young students’ CT skills (girls vs. boys from Art vs. Theoreti-
cal schools) latently develop as they advance with their current CS free curriculum; (3) The
extent to which students of different ages can assimilate a basic computer algorithm (linear
search) has been investigated.

With regard to RQ-1 results, they revealed an implicit contribution of the current K-
9 curriculum to students’ CT, although that contribution is relatively low, since signifi-
cant increases could only be detected with respect to four-year shifts. This finding matches
those of previous studies which also examined students’ basic understanding of CS concepts
before they receive any formal instruction in this field Simon et al. (2006). By way of exam-
ple, Gibson and Kelly (2005) found that pre-college students showed algorithmic under-
standing of how to solve a variety of search problems (being able to consider and reflect on
the problem-solving process). In addition to the contributionsmade by the aforementioned
studies, our research reveals the pace at which young school students grow in CT.

The conclusions reached in another related study are even more consistent with our
results. Brackmann et al. (2017) investigated the effectiveness of unplugged activities in the
development of CT skills in 5th-grade (10-11-year-old) and 6th-grade (11-12-year-old) stu-
dents, none of whom had prior formal programming experience. Both classes were divided
into control and experimental groups. Whereas lessons involving CT unplugged activi-
ties were assigned to the experimental group (for five weeks), the control group did not
receive any intervention. The Computational Thinking Test proposed by Román-González,
Pérez-González, and Jiménez-Fernández (2017) was administered as pre- and post-test to
all participants with the following post-test results: (1) the experimental group performed
significantly better than the control one; (2) 6th-grade students (in both groups) moder-
ately outperformed their 5th-grade counterparts (though differences were not statistically
significant).

These findings likewise suggest, on the one hand, that students’ CT ability tends to
increase (moderately) with grades. If we admit that CT is mainly a problem-solving abil-
ity, it seems quite natural for students’ cognitive development and maturity to entail some
improvement in their CT skills too (Ackerman&Rolfhus, 1999). On the other hand, the sig-
nificantly better results obtained by the experimental group suggest that students’ CT skill
development can and should be accelerated by purposeful CT-oriented activities. While
these authors investigated only two consecutive grade levels, our study extends the analysis
to the entire K-9 educational process.

Regarding the “School T vs. School A comparison” (RQ 2) the differences detected
revealed that young school students’ progress in CT could be affected by factors such as
the educational program, additionally suggesting that art education may have extra poten-
tial to enhance students’ CT.This finding reminded us of several successful initiatives which
combine arts and CS education (Guzdial & Tew, 2006; Laamanen, Jormanainen, & Sutinen,
2015; Simon, Kinnunen, Porter, & Zazkis, 2010; Tew, Mccracken, & Guzdial, 2005; Wood,
Muhl, & Hicks, 2016).
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With respect to the excellent results obtained for RQ 3 in Task 2 (including lower-
grade learners’ ability to catch up with their higher-grade counterparts), they hint at a real
possibility to teach CS-based concepts successfully in primary and secondary education.
This finding is in accordance with numerous existing experiences which provide evidence
thereof Gander et al. (2013). For example, Atmatzidou andDemetriadis (2016) investigated
the development of students’ CT skills in the context of educational robotics learning activ-
ity with an experiment that involved students belonging to different age groups (15- and
18-year-olds) too. Participants carried out educational robotics learning activities for 11
weeks (2 hours per week) and their CT skills were evaluated at different phases throughout
the learning process. Results show that students reached the same level of CT skills devel-
opment regardless of their age. This result can be interpreted as meaning that 15-year-old
students were able to assimilate the content these authors elaborated as effectively as their
18-year-old counterparts. Similarly, our results reveal that some basic computer algorithms
can successfully be taught even to 3rd-grade students. Such findings will surely help teach-
ers and policymakers identify the lowest grade where some CT-oriented concepts can be
introduced.

Results regarding RQ 4 should be interpreted with caution. Román-González et al.
(2018) recently addressed the subject of detecting CT talent and came to the conclusion that
‘computationally talented’ students can be detected in middle school. Their study revealed
that these students have the ability to gain between 1 and 2 years in CSE standards com-
pared to regular learners. The fact that our research only addressed the “current status” of
students’ CT prevents us from drawing direct conclusions about their possible CT talent.
Our results should rather be seen as potential early signs (at primary and secondary levels)
of a promising CT ability.

Findings related to the gender dimension (RQ 5) are consistent with those obtained
in studies according to which no significant correlation exists between gender and pro-
gramming course outcomes (Ahadi et al., 2017; Byrne & Lyons, 2001; Werth, 1986). For
instance, Lau and Yuen (2009) did not find any significant gender differences in the pro-
gramming performance of two hundred and seventeen secondary school students aged 14
to 19. More recently, the authors of an already mentioned study (Atmatzidou & Deme-
triadis, 2016) checked that male and female students reached the same level of CT skills
development as well. Our findings, which extend such results to primary education too,
match the conclusions reached in the study by del Olmo-Muñoz et al. (2020).

Results regarding Questions 2 and 4 are also coherent with previous research that iden-
tified female learners’ self-conceptions in computing (e.g. self-efficacy) and their per-
ceived lack of confidence amongst peers (despite their obvious abilities and successes) as
important factors which discourage them from entering academic computing and staying
therein Ahadi et al. (2017); Stout and Tamer (2016).

Concerning our results on the importance of computational model-based algorithms
(Section 6.3) it is worth mentioning the study authored by Onorato and Schvaneveld
(1986). Their subjects’ assignment consisted in explaining how to find a name on a tele-
phone directory either to a person or to a computer. They analyzed the natural language
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descriptions of this task provided by naïve (with no programming experience), beginner
(CS1) and expert (with a good deal of programming experience) students. Considering the
explanations given to a computer, the authors found differences between all three groups.
These results not only emphasize the importance of computational model-based algorithms
in the context of CT (Denning, 2017) but also confirm the relevance ofKatai’s (2014) conclu-
sion that algorithm visualization systems should support non-blind learners in assimilating
the algorithm processing role of blind computers.

7.1 Limitations
The results of this study should be cautiously interpreted/generalized because the sample
size was moderate and only two specific institutions were involved. Another limitation
relates to its context: while 5th-, 7th- and 9th- grade participants performed the experi-
ment within their usual environment, 3rd-grade students were invited to visit the labs of
our university. In addition, the assessment tool covered a limited number of CT aspects.

8 CONCLUSIONS
A recent report by the Joint Informatics Europe & ACM Europe Working Group on Infor-
matics Education emphasizes that: (1) computational thinking is an important ability that
everyone should possess; (2) computer-science-based concepts, abilities and skills are teach-
able and must be included in the primary, and particularly in the secondary school cur-
riculum (Gander et al., 2013). In this spirit, we designed and developed a novel testing
method and tool to measure students’ CT skills at different grade levels (3rd, 5th, 7th, 9th)
across two different types of schools (art and theoretical) with both genders. Even though
our study revealed supporting evidence that the current K-9 curriculum, even without an
explicit focus on CS education, might contribute to students’ CT skills, such contribution is
in fact relatively low, since significant increases could only be detected with respect to four-
year shifts (from grades 3 to 7 and from grades 5 to 9). The detected progress took place
regardless of students’ gender, though it could be affected by factors such as the educational
program. Results suggest that art education may have extra potential to help develop stu-
dents’ CT skills. These findings emphasize the need for a purposeful and coordinated CS
infusion into K-9 education so that students’ CT development can be accelerated.

Another conclusion of this research is that choosing the right methods and tools make
it possible for certain CT-related concepts to be taught as effectively to younger students as
to older ones. This result supports the idea that CT promotion should start at the primary
level. Besides, confirmation has once again been obtained that girls perform as well as boys
in CT-oriented learning environments (although they continue to rate their interest in CS
and self-efficacy beliefs lower than their male counterparts).

Not only curriculum developers and the computing education research community but
also CS teachers can benefit from this research. The presented learning environment and
the attached testing tool could prove suitable both to promote CT and to notice signs of
advanced CT ability. Furthermore, the AlgoRythmics environment (including ten different
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complexity searching and sorting algorithms) provides an excellent opportunity to extend
the core idea of this method to other algorithms as well as to calibrate the resulting tool for
different learner categories.
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