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Abstract

In the current work, we employed the elegant tool of Bopp's shift and standard perturbation theory methods to obtain a new relativistic and
nonrelativistic approximate bound state solution of deformed Klein-Fock-Gordon and deformed Schrddinger equations using the modified equal
vector scalar Manning-Rosen potential and Yukawa potential model. Furthermore, we have employed the improved approximation to the
centrifugal term for some selected diatomic molecules such as (N2, 12, HCI, CH and LiH) in the symmetries of extended quantum mechanics to
obtain the approximate solutions. It is seen that relativistic shift energy AE;% (0,0, x,n, j,1,s,m) and the perturbative nonrelativistic corrections
AENS(©,0,b,A, a,Vy,m, j, 1,5,m) are sensitive to the quantum numbers (n, j, I, s, m), the potential range b, two dimensionless parameters (A and
a), the strength of the potential V, in addition to the parameters of noncommutativity (©, o, ). We have highlighted three physical phenomena
that automatically generate a result of the topological properties of noncommutativity, the first generated physical phenomena are the perturbative
spin-orbit coupling, the second the magnetic induction while the third corresponds to the rotational proper phenomena. In both relativistic and
nonrelativistic problems, we show that the corrections on the spectrum energy are smaller than the main energy in the ordinary cases of quantum
field theory and quantum mechanics. A straightforward limit of our results to ordinary quantum mechanics shows that the present result under
modified equal vector scalar Manning-Rosen potential and Yukawa potential is consistent with what is obtained in the literature. In the new
symmetries of NCQM, is not possible to get the exact analytical solutions for | = 0 and | # 0, the approximate solutions are available. We have
observed that the deformed Klein-Fock-Gordon equation under the modified equal vector scalar Manning-Rosen potential and Yukawa potential
model has a physical behavior similar to the Duffin—-Kemmer equation for meson with spin-1, it can describe a dynamic state of a particle with
spin-1 in the symmetries of RNCQM. The NRNCQM and RNCQM results obtained within Bopp's shift and standard perturbation theory methods
overlap entirely with the results obtained by ordinary NCQM, and it displays that the theoretical investigation in this study is excellent.

Keywords: Klein-Fock-Gordon equation, Schrodinger equation, Manning-Rosen, Yukawa potentials; the diatomic molecules, Noncommutative
geometry, Bopp's shift method and star products.

Resumen

En el trabajo actual, empleamos la elegante herramienta de los métodos de teoria de perturbaciones estandar y de desplazamiento de Bopp para
obtener una nueva solucion de estado ligado aproximado relativista y no relativista de las ecuaciones de Klein-Fock-Gordon deformadas y de
Schrodinger deformadas utilizando el potencial escalar de Manning-Rosen de vector igual modificado. y modelo potencial de Yukawa. Ademas,
hemos empleado la aproximacién mejorada al término centrifugo para algunas moléculas diatémicas seleccionadas como (N2, 12, HCI, CH y
LiH) en las simetrias de la mecéanica cuantica extendida para obtener las soluciones aproximadas. Se ve que la energia de desplazamiento
relativista AE; % (0,0, x,n, j, 1, s, m)y las correcciones perturbativas no relativistas AE,,"{§ (©,0,b,A,a,Vy,n,j,1,s,m)son sensibles a los ntmeros
cuanticos (n, j, I, s, m), el rango de potencial, dos pardmetros adimensionales (A y a), la fuerza del potencial ademas de los parametros de no
conmutatividad (O, o, y). Hemos destacado tres fenémenos fisicos que generan automaticamente un resultado de las propiedades topoldgicas de
la no conmutatividad, el primer fendmeno fisico generado son el acoplamiento perturbativo espin-orbita, el segundo la induccién magnética
mientras que el tercero corresponde a los fendmenos rotacionales propios. Tanto en problemas relativistas como no relativistas, mostramos que
las correcciones en la energia del espectro son menores que la energia principal en los casos ordinarios de la teoria cudntica de campos y la
mecéanica cuantica. Un limite directo de nuestros resultados a la mecanica cuantica ordinaria muestra que el resultado actual bajo el potencial
escalar vectorial igual modificado de Manning-Rosen y el potencial de Yukawa es consistente con lo que se obtiene en la literatura. En las nuevas
simetrias de NCQM, no es posible obtener las soluciones analiticas exactas para | = 0y | # 0, las soluciones aproximadas estan disponibles.
Hemos observado que la ecuacion de Klein-Fock-Gordon deformada bajo el modelo escalar de vector igual modificado de potencial de Manning-
Rosen y potencial de Yukawa tiene un comportamiento fisico similar a la ecuacién de Duffin-Kemmer para mesén con espin-1, puede describir
un estado dindmico de una particula con spin-1 en las simetrias de RNCQM. Los resultados de NRNCQM y RNCQM obtenidos dentro de los
métodos de teoria de perturbacién estandar y de desplazamiento de Bopp se superponen completamente con los resultados obtenidos por NCQM
ordinario, y muestra que la investigacién teérica en este estudio es excelente.

Palabras clave: Ecuacion de Klein-Fock-Gordon, Ecuacién de Schrédinger, Manning-Rosen, Potenciales Yukawa, Moléculas diatomicas,
Geometria no conmutativa, Método de cambio de Bopp y Productos estrella.
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I. INTRODUCTION

It is well known that for searchers the physical phenomena at
low energies requires the investigation of the nonrelativistic
wave equation in the dynamics of quantum mechanics in the
context of the Schrédinger equation [1], which can be applied
to study fermionic or boson particles, regardless of the spin
value. In the context of quantum field theory, at high energies,
the role of the spin becomes a major reason for determining
the type of relativistic equation used in the physical
investigation, for a neutral or charged particle with spin-0, the
ordinary Klien-Fock equation [2, 3, 4] is required, the Duffin—
Kemmer equation [5] for meson with spin-1 while the Dirac
equation [6] is suitable for particles such as electron and anti-
particle (positron) with spin-1/2. The solutions to these
equations are not always exact, but rather approximate in
many potentials such as Coulomb potential [7, 8], Pdschl-
Teller potential [9], Eckart potential [10], Rosen—Morse
potential [11], The Manning-Rosen potential [12], Yukawa
potential [13] and others among potentials. In our paper, we
are interested in these two potentials. The Manning-Rosen
potential one of the most important and oldest known to the
searchers, it can be applied to many areas, for example,
atomic field, condensed matter, particle, and nuclear physics
in both relativistic and non-relativistic regimes [14, 15, 16,
17]. Also, this potential can be used to describe the vibrations
of diatomic molecules such as N2, 12, HCI, CH and LiH [18].
Many researchers have investigated this potential in the
nonrelativistic case, in both the s and I-waves cases (see for
example [18, 19, 20]). Furthermore, it was also studied in the
relativistic regimes of Klein—Gordon, and Dirac equations
[20, 21, 22, 23].

The Yukawa potentials is another type of exponential-
potentials (also known as static screened Coulomb potentials)
that have received a great deal of attention, in many fields of
physics such as nuclear physics, atomic physics, solid-state
physics, and astrophysics and it was studied in both
relativistic and non-relativistic quantum mechanics it is used
to describe the interactions of Hydrogen-like atoms and
neutral atoms [24, 25, 26, 27, 28, 29, 30, 31, 32].

Currently, there has been great interest in combining two or
more potentials to have a large range of applications, for
example, the Manning-Rosen plus a Class of Yukawa
potential [33]. This combined is useful to examine the
interactions of deformed-pair of the nucleus and spin-orbit
coupling for a particle in the potential field, also, to the
description of vibrations in the side of the hadronic system
[33] (subatomic particles made of two or more quarks, for
example, the proton (uud) and the neutron (udd) and
mesons qq). It should be noted that there is another
combination between the family of the same potential that
extended to the class of Yukawa potential known by the linear
combination of Manning-Rosen plus a class of Yukawa
potentials. This combined studied under the nonrelativistic
Schradinger equation and relativistic Klein-Gordon and Dirac
equations with the Nikiforov-Uvarov, SUSYQM methods
and the approximation scheme proposed by Greene and
Aldrich [34, 35, 36, 37].
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As a result of several considerations and many physical
problems apparat at the level of the non-renormalizable of the
electroweak interaction, the non-regularization of quantum
field theories, quantum gravity, string theory, where the idea
of non-commutativity resulting from properties of
deformation of space-space (W. Heisenberg in 1930 is the
first to suggest the idea and then it was developed by H.
Snyder in 1947) was one of the major solutions to these
problems.

In the past two decades, in particular, it has attracted a
great attraction by researchers [38, 39, 40, 41, 42, 43, 44, 45,
46, 47, 48, 49]. Naturally, the topographical properties of the
noncommutativity space-space and phase-phase have a clear
effect on the various physical properties of quantum systems
and this has been a very interesting subject in many fields of
physics as mentioned previously.

In the last few years, we have investigated many
interesting studies concerned the Yukawa potential in a
nonrelativistic and relativistic regime [50, 51, 52, 53, 54] due
to the importance of its applications in many fields, as
previously indicated. From what we have seen so far that
most of the studies concerning Manning-Rosen and Yukawa
potentials were within the framework of ordinary quantum
mechanics.

The above works motivated us to investigate the
approximate solutions of the 3-dimensional deformed Klein-
Fock-Gordon equation and deformed Schrédinger equation
for the modified equal vector scalar Manning-Rosen potential
and Yukawa potential offered by A.l. Ahmadov et al. [33] in
RQM. The potential focus of study and interest can be applied
for some selected diatomic molecules such as (N2, 12, HCI,
CH and LiH) in RNCQM and NRNCQM symmetries. We
hope to discover more investigation in the sub-atomic scales
and from achieving more scientific knowledge of elementary
particles in the field of nano-scales. The relativistic and
nonrelativistic energy levels under the modified equal vector
scalar Manning-Rosen potential and Yukawa potential have
not been obtained yet in the RNCQM and NRNCQM
symmetries, we hope to find new applications and profound
physical interpretations using a new version model of this
potential modeled in the new symmetries of NCQM as
follows:

/] ala—1)e™ Ae™b
me(T') = 2 2 T
2Mb (1_6_%) 1—eb
Vo exp(—6r)
7" )

-
Vmy(r) LO

—+ 0(6%), (1)

= Viny (e) = Viny (r)
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0Sm (T)L@ 2
—r=—+0(0%), ()

- Smy (rnc) = Smy (T') -
where the parameter b relates to the potential range while (4
and «) are two dimensionless parameters, V, is the strength of
the potential and 1/§ is its range, 7, and r is the distance
between the two particles in NCQM and QM symmetries. The

coupling LO  equalsL,®;, + L,0p3 +L,0:5  with
Ly,LyandL, are present the usual components of angular

momentum operatorL. while the new noncommutativity
parameter ©,, equals 6,, /2. The new algebraic structure of
covariant noncommutative canonical commutations relations
NCNCCRs in the three representations of Schrodinger,
Heisenberg, and interactions pictures, in the new symmetry of
NCQM, as follows [55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65,
66, 67, 68, 69, 70]:

[fp(tS,H,I)f PV(S,H,I)] = J,C\lES,H,I) . PV(S,H,I) _ pv(S,H,I) N J?lSS,H,I) _
lherrbyy, (3.1)

and
S HIx ~(SH,I — ~(HI ~(S,H,I ~(S,H,I ~(SH,I
RN gGHD] = pOHD , GSHD _ gSHD  p(SHD
=i6,,.(3.2)

with %540 = (25 v £ (1) v2L(©) and psH1)

(ﬁ; v B (£) v BI()). Itis important to note that Eq. (3.2) is
a covariant equation (the same behavior ofx,) under Lorentz
transformation, which includes boosts and/or rotations of the
observer’s inertial frame. We generalize the NCNCCRs to
include Heisenberg and interaction pictures. It should be
noted that, in our calculation, we have used the natural
unitsc =2 =1. Here h.sr ~ his the effective Planck
constant, 64V = £*v0 (@ is the non-commutative parameter),
which is an infinitesimals parameter if compared to the
energy values and elements of antisymmetric 3 x 3 real matrix
and §,,is the identity matrix. The symbol (x) denotes the
Weyl Moyal star product, which is generalized between two
ordinary functions f(x)g(x) to the new deformed form
f(®)g (%) which expressed with the Weyl Moyal star product
f(x)*g(x) in the symmetries of NCQM as follows
[66,67,68,69,70,71]:

F@FR@) = (f * 9)(0) = exp (10" 0, 0,,,) f(x,) 9 ()
= fg()—2=0ifo5g|  +0(6%).(4)

u=xv

The indicesy, v = 1,3 and 0(6?%)stand for the second and
higher-order terms of the NC parameter. The second term

e 6"f6

in the above equation gives the effects

X=Xy
of space-space noncommutativity properties. Furthermore, it
is possible to unify the operators 9% (t) = (£, v p,,)(t)and
94(0) = (&, v pl,)(©) in Heisenberg and interaction pictures
using the following projection relations, respectively:
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O (t) = exp(iH;”T) 95 exp(—iH”T),
= 91 () = exp(iHyp , T) *95* exp(—ifHye , T), (5.1)
and
01(t) = exp(iHy T) 95 exp(—iHy ' T),
= 94(t) = exp(ilpe o T) *95* exp(—iHpg o T). (5.2)

Where 19,7 = %,0r P, is the operator in Schrodinger picture,
T =t—t, while 95 = (x, vV p,), 9 = (x, v p,)(©®
and 92(t) = (x} v pl,)(t) are the corresponding unified
operators in the ordinary QM symmetries. Moreover, the
u( )

dynamics of new systems can be described from the

following motion equatlons |n the deformed Heisenberg
picture as follows:

HO! 09, (1)
—a ORI g
O Brem]+ T @

Here (H.”andH;"”) are the free and total Hamiltonian
operators for equal vector scalar Manning-Rosen potential
and Yukawa potential while (Hy.,.andH,>,) the
corresponding Hamiltonians in the symmetries of NCQM.
The present investigation aims at constructing a relativistic
noncommutative effective scheme for the modified equal
vector scalar Manning-Rosen potential and Yukawa potential
model. On the other hand, the choice of these combined of
Manning-Rosen and Yukawa potentials stems from the fact
that it exhibits an almost exact behavior similar to the Morse
[72] and Deng- Fan-Eckart [73] potentials and so considers it
an excellent choice for the study of atomic interaction for
diatomic molecules such as N2, 12, HCI, CH and LiH. Our
current work is structured in six sections. The first one
includes the scope and purpose of our investigation while the
remaining parts of the paper are structured as follows. A
review of the Klein-Fock-Gordon equation with equal vector
scalar Manning-Rosen potential and Yukawa potential is
presented in Sect. 2. Sect. 3 is devoted to studying the
deformed Klein-Fock-Gordon equation by applying the
ordinary Bopp's shift method and improved approximation of
the centrifugal term to obtain the effective potential of
Modified equal vector scalar Manning-Rosen potential and
Yukawa potential. Besides, via perturbation theory we find
the expectation values of some radial terms to calculate the
energy shift produced with the effect of the perturbed
effective potential of modified equal vector scalar Manning-
Rosen potential and Yukawa potential. Sect. 4 is devoted to
present the global energy shift and the global energy spectra
produced with Modified equal vector scalar Manning-Rosen
potential and Yukawa potential in the RNCQM symmetries.
In Sect. 5, we apply our study for determining the energy
spectra of some selected diatomic molecules such as (N2, 12,
HCI, CH and LiH) under the modified equal vector scalar
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Manning-Rosen potential and Yukawa potential in the
RNCQM. In Sect. 6, the Summary and conclusion are
presented.

Il. REVIEWED OF KLIEN-FOCK-GORDON
EQUATION UNDER EQUAL VECTOR AND
SCALAR MANNING-ROSEN AND YUKAWA
POTENTIAL IN RQM SYMMETRIES

The vector and scalar Manning-Rosen and Yukawa potentials
in the symmetries of ordinary relativistic quantum mechanics
are given by [33]:

_ n? [a(a—1)e~27/b Ae~T/b Voexp( 1)
Vny (1) = 2Mb? [ (1-e-7/b)? T 1—eT/B| (7.1)
and

_ h® Ja@a-1e?/b Be~"/P]  syexp(=6r)
Smy(1) = 703 (e 1A T (7.2)

The first two terms are the vector and scalar Manning-Rosen
potential while the third term is the standard Yukawa
potential. The 3-dimensional Klein-Fock-Gordon equation
with a scalar potential S,,, () and a vector potential V,,,, (1)
for the diatomic molecule with reduced mass M and wave
function ¥(r, 8, ¢) is given as

{V’Z +(E

= Vo) 1 9,0,0) =

(M+ Spy () ¥r,0,4).  (8)

The vector potential ;,,,(r) due to the four-vector linear
momentum operator A#(V,,, (), A = 0) and the space-time
scalar potentialS,,, () whereas the interaction of scalar and
vector bosons are considering by usual substitutions (M —
M + S, and p# - p* — A¥), E,, is the relativistic energy

eigenvalues, V is the ordinary 3-dimensional Nabla operator
while (n =0,1,2... and [) are represents the principal and
orbital quantum numbers, respectively. Since equal vector,
scalar Manning-Rosen and Yukawa potentials have spherical
symmetry, allowing the solutions of the time-independent
Klein-Fock-Gordon equation of the known formW¥(r, 8, ¢) =

X%(T)Ylm(ﬂ) to separate the radial y,;(r) and Y™ (Q)is the

angular component of the wave function, thus Eg. (8)
becomes:

dTZ (MZ il) -

+Vrr21y (T‘) S‘r%ly( ) -

( nl my(r) + MSmy(r))

z(z+1) X (r) =

0. (9)

The shorthand notation lé’;;’(r) =2 ( EpiViny (1) +
My (1)) ~Vi2, () + S2, (1) + S andE?™. = M2 -
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EZ,, we obtain the following second-order Schrédinger-like
equation:

(”’— (B2 + v (r)))xnl =0 (10

When the vector potential is equal to the scalar potential
Viny(r) = Sy (r) the effective potential leads to the
following simple form:

l(l+1)

eff (T) = 2(Enl + M)me( ) + (11)

A. I. Ahmadov et al. [33] derived analytical expressions for
the wave function and the corresponding energy values for the
vector and scalar Manning-Rosen and Yukawa potentials
using both Nikiforov-Uvarov, SUSYQM methods and the
approximation scheme proposed by Greene and Aldrich as,

Cnl F(n + Zgnl + 1)
P(r,0,p) = —stni(l—s)t —— T °
(.8, . 1=9 n e, +1)

S (—nn 4+ 2e, + 2k 1+ 26, 5)Y(0, ), (12)
and

2
2 _ nys — Lt a?
M2 Tzll 6[3,11 LI+ ="Yrn(n+1)-2n+1) [IA+D+%+ay,;

n+ ’/2+\/l(l+1)+%+a,211

(13)
M- -EZ, _
Wheres = exp(— 28r), &, = P kg =1/2+
Eni+M 2682%a(a-1)
\/% +Il+ 1) +ay, any = ( rzllgz )V01v Vo1 = —aMa .

B2 = (P2 Vosg, Vogs = 224+ 26Vwhile oFy(—n,n +
2&y + 2k;; 1 4 2¢,;, s) are the hypergeometric polynomials.
From the definition of Jacobi polynomials [74], we use the
following relation:

JFi(—nn 4 2ey + 2k — 1+ 1,1+ 2g,,5) =

nll2ep+1) (e, 2kn—1) _
I(n+2eq+1) T (1-2s). (14)
To rewriting the wave function Eq. (12) as follows:

_ S)knl nyzsnl-anl_l)(l _
25)Y,"(Q), (15)

¥(r,0,¢) = 2stu(l

while C,; is the normalization constant is given by [33]:

C. = 28ni(n+kpi+en)l 2eq+1)In+2en+kn;—1)
= (ntkn)T2en)I(n+2kny) '

(16)
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I11. SOLUTIONS OF DEFORMED KLIEN-FOCK-
GORDON EQUATION UNDER MODIFIED
EQUAL VECTOR AND SCALAR MANNING-
ROSEN AND YUKAWA POTENTIAL IN RNCQM
SYMMETRIES

A. Review of Bopp's shift method

At the beginning of this section, we shall give and define a
formula of the deformed equal vector scalar Manning-Rosen
potential and Yukawa potential in the symmetries of
relativistic noncommutative three-dimensional real space
RNCQM symmetries. To achieve this goal, it is useful to
write the deformed Klein-Fock-Gordon equation by applying
the notion of the Weyl Moyal star product which have seen
previously in Eqg. (3), on the differential equation that satisfied
by the radial wave function y,,;(r) in Eq. (9), Thus, the radial
wave function y,,;(r) in RNCQM symmetries becomes as
follows [75, 76, 77, 78, 79, 80, 81, 82, 83, 84]:

(5= (M2 = EZ) = 2(Eni + M)Vyy (r) —
)@ =0 @)

r2

Itis established extensively in the literature and in a basic text
[84, 85, 86] that star products can be simplified from Bopp's
shift method. The physicist Fritz Bopp was the first to
consider pseudo-differential operators obtalned from a

symbol by the quantization rules x - x — ——and p->p+
Eamstead of the ordinary correspondence x — xand p —

%% [85, 86]. In physics literature, this is known by Bopp’s

shifts. This quantization procedure is called Bopp
quantization. It is known to the specialists that Bopp's shift
method [84, 85, 86], has been applied effectively and has
succeeded in simplifying the three basic equations: deformed
Klein-Fock-Gordon equation [50, 54, 57, 78, 79, 81],
deformed Dirac equation [60, 82], deformed Shrodinger
equation [51, 53, 55, 56, 70] and Duffin—-Kemmer—Petiau
equation [80]. With the notion of star product to the Klein-
Fock-Gordon equation, the Dirac equation and the
Schrédinger equation with the notion of ordinary product.
Thus, Bopp's shift method is based on reducing second order
linear differential equations of the deformed Klein-Fock-
Gordon equation, the deformed Dirac equation, and the
deformed Schrédinger equation with star product to second-
order linear differential equations of Klein-Fock-Gordon
equation, Dirac equation and Schrodinger equation without
star product with simultaneous translation in the space-space.
The CNCCRs with star product in Egs. (2) and (3) become
new CNCCRs without the notion of star product as follows
(see, e.g., [75, 76,77,78, 79, 80, 81, 82, 83, 84, 85, 86]):

SSHD (SHD] — oSHDo(SHD _
[xu X =x,7%,

[y

QSS‘H‘I)QE,S'H‘I) — iQ,W )
(18)
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The generalized positions and momentum coordinates:
(1D, pEHDY, in the symmetries of RNCQM are defined

in terms of the corresponding coordinates (x(*", p$**") in

the symmetries of RQM via, respectively [76, 77, 78, 79, 80,

81, 82, 83]:
A(SHI) SHID  Ouv_(SHI)
(51D SHDY T TP ) )
'Pu A(s HI) _  (SHI) ’
Py m

This allows us to find the operator ;2. equal r%> — LO (see LO
in the introduction) in NCQM symmetries [76, 77, 78].

B. New effective potential in RNCQM symmetries

According to the Bopp shift method, Eq. (17) becomes similar
to the following like the Schrodinger equation (without the
notions of star product):

2
(55 — (M? = E2) = 2(Eny + M)Vyny () =
) tu(@) = 0. (20)

1 .
The new operators V},,,(1,.) and — are expressed as in
nc

RNCQMsymmetries as follows:

L@ Wiy
Vny (Fac) = Viny (1) = =224 0(67),  (21.1)
1 1 Ea
Zratat 0(6?). (21.2)
So we can rewrite:
(Enl + M)me (rnc) - (Enl + M)me (T‘)
~(Epy + M) @"V’"y(” +0(6?). (22)

Moreover, to illustrate the above equation in a simple
mathematical way and attractive form, it is useful to enter the
following symbolV,"? (), thus the radial Eq. (20) becomes:

pert

<;_r22 - (E;;?ji + VTLTZyeff(T))> Xu(@) =10, (23)

with:
Vieserr (1) = V57 (1) + Vg (). (24)
Moreover, pm Y (r) is given by the following relation:
) = ((C2 (B + ) 2 D) Lo, (25)
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It should be noted that when [ = 0 Eq. (10) with Manning-
Rosen and Yukawa potentials can be exactly solved, but for
the case [ # 0, A. I. Ahmadov et al. they had approximatively
solved the equation using Eg. (10) using the Greene-Aldrich
approximation scheme in RQM symmetries. In the new form
of radial like-Schrddinger equation written in (23), we have

terms including % and %4 which make this equation impossible

to solve analytically for [ = Oand [ # 0, it can only be solved
approximately. From this point of view, we can consider the
improved approximation of the centrifugal term proposed by
M. Badawi et al. [86], this method proved its power and
efficiency when compared with Greene and Aldrich
approximation [87]. The approximations type suggested by
(Greene and Aldrich) and Dong et al. for a short-range
potential is an excellent approximation to the centrifugal term
and allows us to get a second order solvable differential
equation. Unlike the following approximation used in the
previous work [33, 34, 35, 36, 77, 82]:

2 2
1 Ad%exp(-26r) _ 43 S (26.1)

r2 (1—exp(—281))2 (1-5)2

It is important to mention here that the above approximations
are valid when §r<<1. This allows us to obtain:

1
1 28exp(=6r) _ E
o 1-exp(-26r)  1-s° (262)
Now we rewrite the Manning-Rosen potential and Yukawa

potentials under the assumption of% = 26 as follows:

Vo () = H? (a(a —1Dexp(—46r) Aexp(—26r) )

2Mb%\ (1 — exp(—26r))? 11— exp(—26r)
Vo exp(—67)
- (27)
. . . any(r)
After straightforward calculations we obtain 5y
follows:
OV, (1) 863 exp(—46r)
S aa - 1)( 2
or (1 —exp(—267))
exp(— 66r) 4634 exp(—267)
(1 —exp(—261))3 M 1 —exp(—26r)
4634  exp(—46r) 8 exp(—6r)
M (1 —exp(—267))>?
+, 220 (28)

We apply the approximations of Greene and Aldrich on the

expression ay( Dleads the following formula :

OWVmy(r) _ B1s? B2s3 @ ﬁ45
ar  (1-s)? + (1-5)3 + + (1-5)2’ (29)
with g, _M—A‘Fﬁz'ﬁz 8‘5“—(“1) B =45_A+2V052

and g8, = 4V082 Simplifying further Eq. (29) becomes
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(Epi + M) 0V (1) Bus®?
- - 26(Ey; + M)(W

B2s7/? 3353/ Bas?
(1-5)* + (1—5)2 (1- 5)3) (30)

By making the substitution Eq. (30) into Eq. (25), we find the
perturbed effective potential generated from
noncommutativity properties of space-space V;,’zryt(r) in the

symmetries of RNCQM as follows:

16

pert(r) B1532  Bps?/? BasdZ B
1-5)%  (A-9)*  (1-%  (1-s)3

2 7= 28(E + M) o
LO. (31)

1(+1) . N
We have replaced the term ( " )Wlth the approximations of
Greene and Aldrich. The Manning-Rosen potential and

Yukawa potentials are extended by including new terms
s2 s3/2 g7/2 s3/2
proportlonal to the radial S =3 o5 aos® Gos)? and

- become the deformed Manning-Rosen potential and

(1
Yukawa potentials in RNCQM symmetries. The generated

new effective potential I@Tgﬁ’t(r) is also proportional to the

infinitesimal vectorG) This allows us to consider V., (r)as a
perturbation potential compared with the main potential
(parent potential operatorV7? (r) in the symmetries of

ef f
RNCQM, that is, the inequality V72 (r)<<V,;?(r)has

pert
become achieved. That is all the physical justifications for
applying the time-independent perturbation theory become
satisfied. This allows us to give a complete prescription for
determining the energy level of the generalized n® excited
states.

C. The expectation values in RNCQM symmetries

In this sub-section, we want to apply the perturbative theory,

in the case of RNCQM, we find the expectation values of the
dial s2 §3/2 s7/2 $3/2 d s2 Ki .
radia terma(1 5" oo e oo taking into
account the wave function which we have seen previously in
Eq. (12). Thus, after straightforward calculations, we obtain

the following results:

< 52 > _sz anl(l_
(1-9)* nlm !

2d
s)Pent [pEent2m=1 (1 — 2 )] @)

s3/2 _ 2 s2&n
(15)3(1 le nl(1 —
n

3/2
)anl [P(Zgnl 2kn1— 1)(1 25 )] s/ “dr (322)

-5)¥

7/2
<(f or >( i — Czlf 2£nz(1 —
n,

s7/2ar
-s)¥

§)2Hn [p<2£n12’<nl V(1 - 2s )] (32.3)
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s3/2 +o
(m)u f%fo s*eni(1 -
n,im

2 3/2
2kn; (2en1,2kpn—1) _ s2/edr
§)2kn [Pn 1 25)] o~

(32.4)

i — (2 +eo 2&p —
<(1 S) >(nl ) Cnlf S (1

2kpy | p(2&n12kn—1) s dr
s)?nt [ (1-25)] 22

(32.5)

We have used useful abbreviations (n,l,m|D|n,l,m)=
(D), myt0 avoid the extra burden of writing equations.

Furthermore, we have applied the property of the spherical
harmonics, which has the form
[ Y™, )Y (6, ) sin(0) ddde = 838 We haves =
exp(— 26r), this allows us to obtaindr = —%E After
introducing a new variablez = 1 — 2s, we haves = Tz,dr =
1 dz z+1

51 and1 — s = —. From the asymptotic behavior of s =

exp(— 26r) andz = 1 —2s,whenr - 0 (z » —1) andr —»
+00 (z - 1), this allows to reformulating Egs. (32,i = 1,6)
as follows:

s? +1 2en+1
(1-s5)3 (nLm) 225nl+2kn15f (1 ) (1 +
nlm

2)%ni=3 [Prfzgnlizknl_l)(z)] dz, (33.1)

3/2 2¢, +1 2ep+s
<(1_S)3>(nlm) T p2eppt2kyti/2g f—l (1 - Z) 2(1 +

2
z)Pu=3 [pEntnD ()| dz,  (332)

7/2 C +1
<(1 -s)* >( 1,m) - zzsnl“’r‘lrlu“/zs - (1 — )Pt (1 +
n,

Z)anl -4 [P(ZEnIanl 1)(2)] dz (33. 3)<

(1-5)? >(nlm)
C +1 2
e ), (1 2) (1 +

g2 [pCnn V()| 4z, (33.4)

s? _ +1 2641
(1-5)3 (lm) - 22£nl+2kn15f (1 ) n (1 +
nlm

7)2kni=3 [Pn(zg""Zk"’_l)(z)] dz. (33.5)
For the ground staten = 0, we have P22k () — 1

thus the above expectation values in Egs. (33,i =1,6) are
reduced to the following simple form:

s? 5 +1 260141
(), = s L (= 2@+

z)*koi=3 dz,  (34.1)
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ZCOZ 1 2801+1 1
2250[+zkol+1/25f1( —z) 2(1+

z)?k0=3 dz, (34.2)

$3/2
<(1 -s)3 )(0 ILm

s7/2 c? +1
<(1—S)4>(0 I ) 22801+2£él+3/26~f 1 (1 - Z)ZSOI+5/2 (1 +
m

z)?koi=* dz, (34.3)

s3/2 c? +1
<W>(oz m) mf , - z) ot 12 (1 +

z)?k01=2 dz, (34.4)

52 Col 2gq1+1
<(1—s)3>(0[ ) 22501+2k015f (1 z)*0orti(1 +

z)*ko1=3 dz, (34.5)

M2-E%

where gy, = *——, =1/2+J%+ 11+ 1) +a?,

a = (E‘”JrM) Vo1, and Eg,determined from the following

=

formula:
BE—L(+1)~%— l(l+1)+%+al
M? — E2 = §%|— ‘ (35)
Tt l(l+1)+%+aol

with 2 = (E°’+M) Voa3. Comparing Egs. (34,i = 1,3) with
the integral of the form [87]:

+1
(1 — 0 (1 + 0P ()PP (x)dx
-1
_ 2P (nta+ DI+ B +1)
_(2n+a+ﬂ+1)r(n+a+ﬂ+1)n| mn
f+1(1 )n+a (1 + x)"+ﬁdx
22"+“+5+1r(n+a+1)r(n+/3+1)
T @n+a+B+DIr2nta+f+1) for (TL =01, ) (36)

A direct calculation gives the expectation values in Egs.
(34,i = 1,5)as follows:

s? C2 (2eq;+2)[(2kg;—2)
S = ZolZ froiman Lerolm 2] 7.1
<(1_S)3>(0,l,m) 28 (o-DIyo-1) '’ (37.1)

s3/2 €2 I'(2eq;+3/2)[(2kg1—2)

= = oL 7.2

<(1_s)3>(0,l,m) V28 (vor=3/I(vo1~-3/2) (37.2)
< $7/2 ) _ €3 I(2&01+7/2)I (2ko1—3) (37.3)
A=* o 1my 48 or=1/DIroi=1/2)’ '

< $3/2 > _ € I(2£01+3/2)I(2kg1—1) (37.4)
A=92[(g1m) 26 Qor=1/21(ror=1/2)" '

s2 _ C§ r(2eqi+2)I(2kgi—2)

<<1—S)3>(o,z,m) T 28 omDIyeimD) (37.5)
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Where y,; = 2gy; + 2kg;. For the first excited state n = 1,

the Jacobi polynomial reduced to P,fii“’z"”_l)(z) =Ny +
All(l - Z), here Nll = Zkll’ All = _(Zgll + 2kll + 1),

JM2-ER
, ku=1/2 +J%U+I1+1) +a?,

with &, = =
a? = (%) Vo1 while E;; presenting the energy of first

excited states:

MZ—Efl:é‘

2
R 531—1(1+1)—5/2—3m‘ (38)

3/2+\/l(l+1)+’/4+af,

En+M

And g2, = (F2L
(33,i = 1,5) are reduced to the following simple form:

) Vy23. Thus, the expectation values in Egs.

2
N
<(1—_ s)3> = A0+ 2+ A,
(1,1,m)

§3/2
a7 =2 + 2% + 2
(1,L,m)

7/2
() =420 429, (39.0)
(1,L,m)
And
S3/2 1 3
<7(1 _S)2> =AM+ 23 +29,
(1,L,m)
s? _ 20, @ 4,03
<(1_y)3>(1,l,m) AD 42D 429, (39.2)
The 15-factors A% (i = 1,5, = 1,2,3) are given by:
1
2
2|
AP | =
3
AP

N3, f_+11(1 — z)%8utl(1 4 z)2ku=3 dz

c? +1 -
m 2Ny 44 f—l 1- Z)2811+2(1 + Z)2kll 3dz
A [T = 2)?5%3 (1 + 2) 23 dg
(40.1)
(1)
2'2
@ | =
A7 =
(3)
/12
2N [11(1 — 2)%+ 12 (1 4 2)2ku3 dg
c? +1 _
m 4-N11/111 f—l (1 - Z)2811+3/2(1 + Z)Zk“ 3 dz

2431 f—+11(1 — z)2EutS/2(1 4 7)Zni=3 4z
(40.2)
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50
pre
2
( Noy [11(1 = 2y S/2(1 4 2y dz \
c? +1 _
m 2Ny 44 f—l 1- Z)2€11+7/2(1 + Z)ZKU *2dz
A2 f_+11(1 — 7)2eut%/2(] 4 Z)2ku=4 gy
, (40.3)
2
A2 | =
Q)
( N [F11 = 2221 4 gy dg \|
c? +1 _
m 2Ny 44 f—l (1- Z)2£11+3/2(1 + Z)Zkll 2dz
/1%1 f_+11(1 — 7)2eut5/2(1 4 z)2ku=2 24y
, (40.4)
and
A
A2 =
25
N3, f_+11(1 — z)%8utl(1 4 z)%ku=3 4z
c? +1 _
7228113"116 2Ny Ay [, (1 = 2)%5142 (1 + 2)%ku=3 2dy

A3, f_+11(1 — z)%8ut3(1 4 z)2ku=3 dz
(40.5)

To evaluate the above differential equations, we will apply
the special integration relationship that we saw in Eq. (32) one
get:

N2 1(2611+2)
2(Q1-DI'(Qq-1)
_ CHIr(2ky-2) | 2Nyudul(2€41+3)
- 8 Q9210
A2 T(2e1,+4)
2(Qq+1)I(Q41+1)

(1)
A4

@
)'1

®)
Al

,(41.1)

N2 1(2611+3/2)
2(941-3/2)1(241,-3/2)
_ CHI(2kqy—2) | 2Nydnl(2e11+5/2)
- s (Q1-1/2)r(Q11-1/2)
2421 (2611+7/2)
(Q11+1/2)I(Qq;+1/2)

&)
/‘12

()
A3

(3)
A3

, (41.2)

N2 1(2611+7/2)
4(Q1-1/2)1(Q1,-1/2)
N4 (2€11+9/2)
(Q11+1/2)I(Q41;+1/2)
/123) \ A3 1(2811+11/2)
(Q11+3/2)(241;+3/2)

(1)
/13

)]
/‘13

_ CHIr(2kq-3)

. , (41.3)
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N2 I(24;+3/2)
AELI) , 2(Qqy4,-1/2)1(Q1-1/2)
@) _ CllF(Zkll—l) 2N1A1 17 (2€41+5/2)
A= s (Q11+1/2)1(Q1+1/2) (414)
/1&” \ 2431(2€1+7/2)
(Q11+3/2)'(Q11+3/2)
and
N2 I(2811+2)
A 2(Q1~ DI (@1-D)
@ | _ Chl@ky=2) | 2Nudyil (261 +3)
AS 8 Q111(Q11) (41.5)
iy 242128, +4)

(2Q1+1)I(Qq+1)

WithQ,; = 2&;; + 2k,;. On substitution of Egs. (41) Into Egs.
(39), we obtain the following expectation values in the first
excited state (1, [, m)as follows:

Sz C—IZIF(Zk _ 2)( N%[F(ZSH + 2)
A=y & 2@Qu=DI@u D)
+
2Nq1Aq 11 (2€11+3) Ailr(251l+4—)
Q@) z(guﬂ)r(gﬂﬂ)), (42.1)

< §3/2 > C”r(Zk
1— 3 11
( S) (1,L,m)
2 N3 T (2ey; +3/2)
2(Qy, —3/2)I'(Q2y, —3/2)
2Ny 4110 (2811+5/2) 2421 (2€11+7/2) ) (42.2)
(Q1-1/2)I(Qq-1/2) ~ (Qu+1/2)[(21+1/2)”" '

572 C”r 2k
=L <2k
1,Lm

1—s5)%
3 Nflr(z‘?u +7/2)
~ G @, - 1@, - 1D

N1d111(2€41+9/2) A3 (281,+11/2) ), (42.3)
(Qu+1/2)I(Qq+1/2) — (Qq+3/2)[(Q11+3/2)"’

L R e
1 =5 =5 (2ky,
(1,Lm)

_1 N} T (2€y; + 3/2)
)(Z(Qull —1/2)I(Qy, — 1/2)

2Ny dq 1 (2817+5/2) 242281 +7/2) ) (41.2)
(Qq1+1/2)I(Qq1+1/2) ~ (Q11+3/2)[(Q1;+3/2)"" '

and

52 _ —”F(Zk o N2 T(2ey, + 2)
(1-5)3 8 1 (Qu—-Dr@,; -1
(1,L,m)

2Ny A1 (284 +3) 2421 (2¢1+4)
Q21 (2Q+DI'(Qq+1)

). (42.5)
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D. The energy shift for the deformed equal vector scalar
Manning-Rosen potential and Yukawa potential in
RNCQM symmetries

The global energy shift for the deformed equal vector scalar
Manning-Rosen potential and Yukawa potential in RNCQM
symmetries is composed of three principal parts. The first one
is produced from the effect of the generated spin-orbit
effective potential. This effective potential is obtained by

replacing the coupling of the angular momentum operator L®

with the new equivalent coupling ©LS (with® = (0%, +
0%, + 02;)/2)). This degree of freedom came considering
that the infinitesimal vector @is arbitrary. We have chosen it

to a parallel of the spin of the diatomic molecules under
deformed equal vector scalar Manning-Rosen and of Yukawa

potentials. Furthermore, we replace OLS with the
corresponding physical form(©/2)G?2, with G2 = J2 — L? —

S$2. Moreover, in quantum mechanics, the operators
(H27.J? 1%, S%and J,) forms a complete set of conserved

nc—rr.

physics quantities, the eigenvalues of the operator G2 are
equal the values 7(j,L,s)=((G+1)—-I(l+1)—s(s+
1))/2, with j € [|l —s], |l + s|]. Consequently, the energy
shift AES,(n=0,0,j,1,5) = AE,(0,0,,1,5) and
AER,(n=1,0,j,1,s) =AE;,(1,0,j,1,s) due to the
perturbed effective potential produced I@Tgﬁ’t (r) for the ground
state and the first excited state, respectively, in RNCQM
symmetries as follows:

AE;,(0,0,),1,s) = (G +1) -1l +1)—s(s+
DIO/2)X)omy, (43.1)

AESS(1,6,j,1,5) = (GG + 1) = L(L + 1) — s(s +
DIO/2)XE 1m)-
(43.2)

The global expectation value (X){, , ,,yis determined from the
following expression:

XOoum = 168*1(1+ 1) s
(0,1,m) (1—s)*
(o,1,m)

$3/2
—28(Ey + M)(B, <W>

(0,l,m)
$7/2

§3/2 s2
+h2 <<1 s>4>(0_l_m) +Bs <(1—s)2>(0,l,m) Pa <(1—s>3>(0,l,m))
(44)

While (X)&1m) = (XYoo 1,um)- This allows us to generalize
the above results AE;Y, (n, 0, /, 1, 5) to the case of nt" excited
states in RNCQM symmetries as follows:

AEy, (1, 0,),L,s) = (U+ 1) - Ill+1)—s(s+
D)(O/2)X) G my- (45)
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We can express the general expectation value (X)¢, ;) as
follows:

XOfuimy = 16611+ 1)

s? >
(1 a 5)4 (n,L,m)
$3/2
—26(Eny + M)(By <W>( .

+ <s7/2> <3/2> <52> h
BZ (1-s)4 (Lm) 33 (1-5)2 '84 (1-5)3 (n,l,m)).

(46)
The second part of the relativistic energy shift is obtained
from the magnetic effect of perturbative effective potential
under the deformed equal vector scalar Manning-Rosen and
Yukawa potentials. This effective potential is achieved when

we replace both (LO and ©,,) by (¢ BL, and oB),
respectively, here (B and o) are symbolize the intensity of the
magnetic field induced by the effect of deformation of space-
space geometry and a new infinitesimal noncommutativity
parameter, so that the physical unit of the original
noncommutativity parameter 0,, (length)? is the same unit of
oB, we have also need to apply (n,I,m|L,|n',l'm") =
M8y Sy S (With (M, m*) € [—(L, 19, +(L, 1D]). Al of this
data allows for the discovery of the new energy shift
AER,(n=0,0,l,m) = E;,(0,0,l,m) and AER,(n=
1,0,l,m) = 4ER,(1,0,1,m) due to the perturbed Zeeman
effect which created by the influence of the deformed equal
vector scalar Manning-Rosen potential and Yukawa potential
for the ground state and the first excited state in
RNCQMsymmetries,s as follows:

AER,(0,0,L,m) = BX)G mom,  (47.1)
Epy(L,0,L,m) = B ymyom. (47.2)

Thus, we can generalize the above particular cases to the
general case AE};,(n,0,l,m) which correspond to the nth
excited states in RNCQMsymmetries as follows:
En,(n,0,l,m) = B(X)'(zn‘l‘m)am. (48)
Now, for our purposes, we are interested in finding a new
third automatically important symmetry for deformed equal
vector scalar Manning-Rosen potential and Yukawa potential
at zero temperature in RNCQM symmetries. This physical
phenomenon is induced automatically from the influence of a

perturbed effective potential V,;, (r) which we have seen in

Eq. (31). We discover these important physical phenomena
when our studied system consists of N non-interacting is
considered as Fermi gas, it is formed from all the particles in
their gaseous state (N2, 12, HCI, CH, and LiH) undergoing

rotation with angular velocity Q if we make the following two
simultaneous transformations to ensure that previous
calculations are not repeated:
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0 - xQ . (49)
Here y is just infinitesimal real proportional constants. We
can express the effective potential V7., ., () which induced
the rotational movements of the diatomic molecules as

follows:

166%1(1+1)s?

-

- 26(Enl + M)(

(1-5)* 1- 5)3
pert rot(T) s7/2g, 53/233 528, )
(1-s)* (1—5)2 (1-s)3

(50)

To simplify the calculations without compromising physical

content, we choose the rotational velocityQ = Qe,. Then we
transform the spin-orbit coupling to the new physical
phenomena as follows:

)(h(s).ai> - yh(s)QL,, (51)
with
Hs) = 168*1(1 + 1)s? 28, + M)
g g
zl—s[j; ;-gi ;-53 : ﬁ’4 ) (52)

All of this data allows for the discovery of the new energy

shift ~ AE[,(n=0,x1m) =AEL,(0,x,,m)  and

AES,(n =1,x,1,m) = 4E},, (1, x,1,m) due to the perturbed
Fermi gas effect which generated automatically by the
influence of the deformed equal vector scalar Manning-Rosen
potential and Yukawa potential for the ground state and the
first excited state in RNCQMsymmetries as follows:

AES, (0, x,1,m) = (R |y xQm(53.1)4E}, (1, x, 1, m) =
XOFLmxQm. (53.2)

Thus, we can generalize the above particular cases to the
general case AE,’;Ly(n, x,1,m) which correspond to the n®”
excited states in RNCQMsymmetries as follows:
AEfy(n xlLm) = (X)(nlm))(Qm (54)
It is worth mentioning that K. Bencheikh et al. [88, 89] were
studied rotating isotropic and anisotropic harmonically
confined ultra-cold Fermi gas in a two and three-dimensional

space at zero temperature but in this study, the rotational term
was added to the Hamiltonian operator in contrast to our case,

where this rotation term xh(s)QL automatically appears due
to the large symmetries resulting from the deformation of
space-phase.
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IV. RESULTS OF RELATIVISTIC STUDY

In this section of the paper, we summarize our obtained
results (AEx,(0,0,),1,5), AERR(1,0,),1,5)),
(AEZ,(0,0,1,m), AER,(1,0,1,m)) and (AE},(0,x L,m)
and AE,’,‘W(L x,1,m)) for the ground state and first excited
state due to the spin-orbital complying, modified Zeeman
effect, and perturb Fermi gas potential which induced by
Ve’;fy(r) on based to the superposition principle. This allows
us to deduce the  additive energy  shift
AE(0,0,%,0,j,1,s,m) and  AERN(O,0,x,1,),1,5,m)
under the influence of Modified equal vector scalar Manning-
Rosen potential and Yukawa potential in
RNCQMsymmetries as follows:

AERE(O,0,%,0,j,1,5,m) = (X)) (T, 1, $)O + Bom +
x92m}, (55.1)

AERNO,0,%,1,)j,1,5,m) = (X){ 1y (70, 1, $)O + Bom +
x9mj}. (55.2)

It is easily to generalized the above special cases to the nt"
excited states 4E.0(0,0, x,n,j,1,s,m) under the influence
of Modified equal vector scalar Manning-Rosen potential and
Yukawa potential in RNCQM symmetries as follows:

AERNO,0, x,1,),1,5,m) = (XN, m{T0, LSO +
Bom+ yQm}.  (56)

The above results present the global energy shift, which is
generated with the effect of nhoncommutativity properties of
space-space; it depended explicitly on the noncommutativity
parameters(0, g, y), the parameters of equal vector scalar
Manning-Rosen and Yukawa potentials(b,4,n,V;) in
addition to the atomic quantum numbers (n,j,[,s,m). We
observed that the obtained global -effective energy
AERE(0,0, x,1,j,1,5,m) under Modified equal vector scalar
Manning-Rosen potential and Yukawa potential has a carry
unit of energy because it is combined from the carrier of
energy (M2 —EZ2). As a direct consequence, the
energyE,;,.(0,0,x,b,A,a,Vy,n,j,1,5,m) produced with
Modified equal vector scalar Manning-Rosen potential and
Yukawa potential, in the symmetries of (RNC: 3D-RS),
corresponding the generalized nt" excited states, the sum of
the roots quart [AELE (O, 0,1, j, L, s, m)]l/2 of the shift energy
and E,; due to the effect of equal vector scalar Manning-
Rosen potential and Yukawa potential in RQM, which
determined from Eq. (12), as follows:

ET‘,"l)‘;lC(@' 0, X, b;A; a, VOlnljl ll Slm) = Enl -M

]1/2

+[<X>€n,l,m){r(i' [,s)O+ Bom + yQm}|"'". (57)

For the ground state and first excited state, the above equation
can be reduced to the following form:
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E:-r?;lc(@, ag, b,A,n; VO;n = Oﬂjl l!S!m) = EOl -M
HXOF {70, L 5)O + Bom + yom}]'?, (58.1)

and

E®..(0,0,b,A,a,Vo,n =1,j,l,s,m) =E;; — M

H[OF, 70, L 5)O + Bom + yom}]'2. (58.2)

Eqg. (57) can de describe the relativistic energy of some
diatomic molecules such as HCI, CH and LiH under the
deformed equal vector scalar Manning-Rosen potential and
Yukawa potential in RNCQMsymmetries.

After examining the bound state solutions of any I-state
deformed Klein-Fock-Gordon equation with a modified
modified Manning-Rosen potential and modified Yukawa
potential, now we discuss the particular cases below.

First : Settingg =1 or a =0, A=0and V, #0, as a
direct result, the parameters of perturbative effective potential
B1 = B, = 0and B, = 25 = 4V,62, allows us to obtain the
reduced perturbative effective potential as flows:

my yp _ 461(1+1)SZ
Voert (1) = Voo, (1) = 463{ (1-5)*
$3/2

M) (s + (1_5)3)} L.

- VO (Enl +

(59)

This perturbative potential induced the total energy shift for
the nt" excited states AELS%(0,0,x,n,j,1,s,m) under the
influence of modified equal vector scalar Yukawa potential in
RNCQM symmetries as follows:

AERN(O,0,x,1n,),1,5,m) = 4Ef5 (0,0, x,n,j,1,5,m)

= f{f’m){r(j, l[,s)O + Bom + yQm}, (60)
with
RYP  _ 4 s? ) _
OBy = 1661+ 1) (= o =

M)V, 53(< 53/2) +2< s’ ) ). (61)
0 (1-9)? (nl,m) (1-9)3 (n,L,m) .

This result identical to our model in reference [50] when the
third parameter y — 0, it is described the deformed Klein-
Gordon equation under modified Yukawa Potentials.
Second: SettingV, — 0, the potential turn to the deformed
Manning potential in RNCQM symmetries. The parameters

3
of perturbative effective potential S, EMTA+[S’2, B2 =
_883%a(a-1) 4534

and 5 = - allows us to obtain the reduced
perturbative effective potential as flows:
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4 2
R — 26(En + M) -
pert(r) pert(r) 5133/2 ﬁ'257/2 ﬁ353/2 L@
(1-5)3  (1-9)*  (1-9)?
(62)

This perturbative potential induced the total energy shift for
the n'" excited states AEL5E(O,0,x,n,j,1,s,m) under the
influence of modified equal vector scalar Yukawa potential in
RNCQM symmetries as follows:
AERS(O,0,x,1,j,1,5,m) = AEy3 (0,0, x,n,j,1,5,m)
= (N(m TG, 1,$)O + Bom + yQm}, (63)

with

& = 166411+ 1)

(n,lm

s? >
1 — 4
( S) (n,l,m)

§3/2
— 26(Ey + M)(By <W>
(n,L,m)

s7/2 s3/
+ﬁ2<@>(n,l,) B3<(1 s)2> ))' (64)

This result identical to our model in reference [under
publication].

V. NONRELATIVISTIC STUDY OF MODIFIED
MANNING-ROSEN AND YUKAWA POTENTI-
ALS

In this section, we want to derive the nonrelativistic spectrum,
which is produced with the effect of deformed equal vector
scalar Manning-Rosen potential and Yukawa potential for the
diatomic molecules such as N2, 12, HCI, CH and LiH. From
Egs. (1.1) and (7.1), we can write modified Manning-Rosen
and Yukawa potentials in the nonrelativistic noncommutative
three-dimensional real space NRNCQM symmetries as
follows:

Vie? (1) = Vi () + V2T (1) with V2T <<V, (). (65)

Where V27" (r) is the perturbative potential in nonrelativistic

noncommutative three-dimensional real space NRNCQM
symmetries:

pert( ) — _any(T) L@+ 0(92) (66)

or 2r

We have applied the approximations type suggested by
(Greene and Aldrich) and Dong et al. for a short-range
potential that is an excellent approximation to the centrifugal
term for Manning-Rosen and Yukawa potentials (see Eg.

(26.1)) and we calculate W”;—im (see Eqg. (29)). Now,
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substituting Eq. (29) into Eq. (66) and we replace %by its
corresponding approximation in Eqg. (26.2), we get the
perturbative potential in NRNCQM symmetries as follows:

3 7 3
pert _ |52 52, 523 s 34
Vi () =-6 RESE + 1os)? + sy +( L@+

0(@2). (67)

53/2 7/2

)4’ 1-5)3"(1-5)*'

to find the nonrelativistic energy corrections

N

Thus, we need the expectation values of
3
(1_/5)2and o
produced with the perturbative potentialV2y"*(r). By using
wave function in Eq. (15) and the expectations values in
Egs.(37,i = 1,5), and Egs.(42,i = 1,5) for the ground state
and first excited state, respectively, we get the corresponding
global expectation values (X)) and (X)¢15 ., as follows:

3

S2
(1—s)3> + 5 <(1 s)4>
(0,l,m) (0,l,m)

3
2
Bs <— > +ﬁ4 , (68.1)
(1-5)? (1 s)3
(o,L,m) ©m)

<X)I(\g,el,m) =-=6 Bl

and

< $3/2 $7/2 )
'81 (1—5)3>(1‘1‘m) + '32 <(1—S)4 (LLm)

(X)Lmy = =6 §3/2 52
3 <(1_S)2>(1,l,m) + B <(1_S)3>(1,l,m)
(68.2)

By following the same physical methodology that we devoted
in our relativistic previous study, the energy corrections
AER%(0,j,1,5,m) and AERX (1, ,1, s, m) for the ground state
and first excited state due to the spin-orbit complying,
modified Zeeman effect and nonrelativistic perturbed Fermin

gas potential which induced by V25" (r) under the influence
of Modified equal vector scalar Manning-Rosen potential and
Yukawa potential in NRNCQM symmetries as follows:

AERR(0,0,b,A,a,Vy,n = 0,j,1,5,m)

= (X)oum (. 1,$)@ + Bam + yQm},  (69.1)

and

AERR(©,0,b,A,a,Vo,n = 1,j,1,5,m)

= (X Bm (.1, )0 + Rom + yQm}.  (69.2)
It is easily to generalized the above special cases to the nt*

excited states AEn%(0,0,b,4A,a,Vy,n,j,1,s,m) under the
influence of the Modified equal vector scalar Manning-Rosen
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potential and Yukawa potential model

symmetries as follows:

in  NRNCQM

AERR(0,0,b,A,a,Vy,n, j,1,5,m)

= (X tm{tG,1L,$)O + Rom + yQm}.  (70)

With (X)¢i nyis given by:

3 7
s2 S2
Bl <(1—S)3> ﬁZ <(1 S)4> +
(n,l,m) (n,lm)
3 2
2 s
3\a-9? ) N9 (1. m)

The nonrelativistic energyE,,” ,.(0,0,b, A, a, Vo, 1, j, 1, s,m)
for the diatomic molecules (HCI, CH and LiH) produced with
Modified equal vector scalar Manning-Rosen potential and
Yukawa potential, in the symmetries of NRNCQM,
corresponding the generalized nt" excited states, the sum of
the nonrelativistic energy E;;/ due to the effect of equal vector
scalar Manning-Rosen potentlal and Yukawa potential in
NRQM, and the corrections produced with the perturbed spin-
orbit interaction and modified Zeeman effect, as follows:

<X)I(Vn1?l,m) =-6

(70)

EnY ..(0,0,b,A,a,Vo,n,j,l,s,m) = EN(n,1,V,, V)
X)) TG, 1, $)@ + Bam + yQm}. (72)

The nonrelativistic energy EJ (n, [, Vy, V) due to the effect of
equal vector scalar Manning-Rosen potential and Yukawa
potential in NRQM is determined directly from the study of
B.I. Ita et al. [90] given by:

2UC 20V _ (12, 1)
nr _ _a_Z =t g (n +n+2) (2n+1)> (73)
nl 2u (2n+1)+2x ’

D with @ » 61, p » — 4D

here X = a2 a2’ 2Mb2

to

match the notations used in the two references are identical.

Now, considering composite systems such as molecules
made of N = 2 particles of masses m,,(n = 1,2) in the frame
of noncommutative algebra, it is worth taking into account
features of descriptions of the systems in the non-relativistic
case, it was obtained that composite systems with different
masses are described with different noncommutative
parameters [91, 92, 93, 94]:

[A(sm)* ¢SHD] = pSHD , oSHD _ gSHD A(S,H,I)
; X, * Xy — X
l@ﬁv, (74)

the new noncommutativity parameter 6y;,, is determined from
the following relation:
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2
0 =3 _ uzee, (75)
n=

with u,, = szn , the indices (n = 1,2) label the particle, and
n
n
Hﬁﬁ) is the new parameter of noncommutativity,
corresponding to the particle of mass m,,. Note that in the case
of a system of two particles with the same mass m; = m,
such as the diatomic (N2 and 1) molecules under the Modified

equal vector scalar Manning-Rosen potential and Yukawa
potential model, the parameter@,iﬁ) = 0,,. Thus, the three

parameters ©, g and y which appears in Eq. (70) are changed
to the new form ©°¢, o€ andy¢ as follows:

2
6 = (22 2@(")) -

n=1

(& o) + (5, st o0

2 2 2
= (Z_l Hioyy ) (2_1 /«Wﬁ?) <Z—1 Hno-l(g)>
,(76.2)

2

2 2 2
= (Z ) M%szl)) +(Z u%)é?) +
n=
(z unx(")) (76.3)

As it is mentioned above, in the case of a system of two
particles with the same mass m; = m, , we have (9(”) Oy,

aﬂ) =g, and )(f]v‘) = Xuv- Allows us to generalize the
nonrelativistic global energy

Ey?Y ..(0,0,x b4 a,Vyn,j,1l,s,m) under the modified
Manning-Rosen and Yukawa potentials model considering
that composite systems with different masses are described
with different noncommutative parameters for the diatomic
molecules (HCI, CH and LiH) as:

E.;-. nc(@ o, x.bA aVyn,jls,m)=EY(nLV,V;)

+HX O kG, L, $)O + Bam + x°Qm).  (77)
The KGE, as the most well-known relativistic wave equation
describing spin-zero particles, but its extension in RNCQM
symmetries deformed Klein-Fock-Gordon equation under
modified Manning-Rosen and Yukawa potentials model has
a physical behavior similar to the Duffin-Kemmer equation
for meson with spin-1, it can describe a dynamic state of a
particle with spin one in the symmetries of relativistic
noncommutative quantum mechanics. This is one of the most
important new results of this research. Worthwhile it is better
to mention that for the two simultaneous limits (0, g, y) —
(0,0,0) and (6°,¢¢, x¢) — (0,0,0) , we recover the results of
the in Refs. [33, 90]. and it displays that the mathematical
implementation of SUSY quantum mechanics is quite perfect.
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VI. SUMMARY AND CONCLUSION

In this work, we have found the approximate bound state
solutions of deformed Klein-Fock-Gordon equation and
deformed Schrédinger equation using the tool of Bopp's shift
and standard perturbation theory methods of modified equal
vector scalar Manning-Rosen potential and Yukawa potential
in both relativistic and nonrelativistic regimes which
correspond to high and low energy physics. We have
employed the improved approximation scheme to deal with
the centrifugal term to obtain the new relativistic bound state
solutions E}™ (0,0, x,b, A, a,Vy,n,j,1,s,m) corresponding
to the generalized nt" excited states that appear as a sum of
the total shift energy AE.%(0,0,x,n,j,1,s,m) and the
relativistic energy E,,; of the equal vector scalar Manning-
Rosen and Yukawa potentials. Furthermore, we have
obtained the new nonrelativistic global energy
EnY ..(0,0,x,b,A a,Vy,n,j,l,s,m) of some diatomic
molecules such as (N2, 12, HCI, CH and LiH) in NRNCQM
symmetries as a sum of the nonrelativistic energy E;} and the
perturbative  correctionsAENS (0,0, b, A, a, Vo, n, j, 1, s,m).
Furthermore, we state that the new relativistic energy
eigenvalues the new relativistic bound state solutions
EX" .(0,0,xb,A, a,Vy,n,j,1,s,m)and the new
nonrelativistic global energy
En”Y ..(0,0,xb,A, a,Vy,n,j, 1, s,m) are quite sensitive with
potential parameters for the quantum states (b, 4, @, V) and
the discreet atomic quantum numbers (j, [, s, m) in addition
to noncommutativity three parameters (0,6 and y). This
behavior is similar to the perturbed both modified Zeeman
effect and modified perturbed spin-orbit coupling in which an
external magnetic field is applied to the system and the spin-
orbit couplings which are generated with the effect of the

perturbed effective potential V., (r) in the symmetries of

RNCQM and NRNCQM. Furthermore, we can conclude that
the deformed Klein-Fock-Gordon equation under the
modified equal vector scalar Manning-Rosen potential and
Yukawa potential model becomes similar to Duffin—Kemmer
equation for meson with spin-1, it can describe a dynamic
state of a particle with spin one in the symmetries of RNCQM.
Furthermore, we have applied our results to composite
systems such as molecules made of N =2 particles of
massesm,,(n = 1,2). Itis worth mentioning that, for all cases,
when to make the two simultaneous limits (0,0, y) —
(0,0,0)and (©°, 0% x°) — (0,0,0), the ordinary physical
quantities are recovered. Furthermore, our research findings
could also be applied in, atomic physics, vibrational and
rotational spectroscopy, mass spectra, nuclear physics, and
other applications. Finally, given the effectiveness of the
methods that we followed in achieving our goal in this
research, we advise researchers to apply the same methods to
delve more deeply, whether in the relativistic and
nonrelativistic regimes for others potentials.
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