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RESUMEN | Los ácidos grasos de cadena muy larga (˃ C24) (VLC-FA) juegan un papel 

crítico durante el desarrollo temprano de los vertebrados, ya que estos compuestos se 

acumulan en los tejidos neurales que se forman rápidamente, asegurando su función 

normal. La funcionalidad de los VLC-FA ha despertado el interés científico, centrándose 
en el estudio de las proteínas elongasas 4 de ácidos grasos de cadena muy larga (Elovl4), 

que son responsables de su biosíntesis a partir de ácidos grasos más cortos (precursores). 

Para comprender mejor el metabolismo y los potenciales requisitos a nivel tisular de los 

VLC-FA en teleósteos marinos, el presente estudio tuvo como objetivo determinar el 
patrón de expresión tisular de los genes que codifican las isoformas de Elovl4, es decir, 

elovl4a y elovl4b, en diferentes ventanas del desarrollo (larvas y adultos) de dorada 

(Sparus aurata) y lenguado senegalés (Solea senegalensis). Los resultados indicaron que 

en las larvas de S. aurata, elovl4a se expresa ampliamente en la región cerebral, mientras 
que elovl4b se expresa intensamente en los ojos. Curiosamente, en las larvas de S. 

senegalensis se observó un patrón de expresión tisular opuesto, siendo elovl4a y elovl4b 

fuertemente expresado en ojos y región cerebral, respectivamente. En adultos de ambas 
especies, aunque se detectaron transcritos de elovl4 en la mayoría de los tejidos 

analizados, los mayores valores de expresión de elovl4a y elovl4b se observaron en el 

cerebro y en los ojos, respectivamente. Es importante destacar que el diferente patrón de 

expresión tisular observado para ambos genes elovl4 asociados a la etapa pre y 
posmetamórfica de S. senegalensis podría ser indicativo de las necesidades particulares 

de VLC-FA vinculadas a la funcionalidad de los tejidos neurales en cada etapa de 

desarrollo. Estos hallazgos pueden contribuir a una mejor comprensión del metabolismo 

de VLC-FA específico en función de la especie de teleósteo marino. 
  

 

ABSTRACT | Very long-chain (˃ C24) fatty acids (VLC-FA) play critical roles during 

early development of vertebrates, since these compounds are accumulated in the rapidly 
forming neural tissues, ensuring their normal function. The functionality of VLC-FA has 

aroused scientific interest, focusing on the study of elongases protein 4 of very long chain 

fatty acid (Elovl4), which are responsible for their biosynthesis from shorter fatty acids 

(precursors). For a better understanding of the metabolism and the potential tissue-
specific requirements of VLC-FA in marine teleosts, the present study aimed to determine 

the tissue-expression pattern of the genes that encode for Elovl4 isoforms, i.e. elovl4a and 

elovl4b, in different windows of development (larval and adult stages) of Gilthead 

seabream Sparus aurata and Senegalese sole Solea senegalensis. The results indicated 
that in S. aurata larvae, elovl4a is widely expressed in the head, while elovl4b is strongly 

focused in the eyes. Interestingly, in S. senegalensis larvae an opposite tissue-expression 

pattern was observed for both elovl4 isoforms. In adults of both fish, although elovl4 

transcripts were detected in most tissues analyzed, elovl4a and elovl4b genes were 
strongly expressed in brain and eyes, respectively. Importantly, the differential tissue-

expression pattern of both elovl4 isoforms associated to the pre- and post-metamorphic 

stage of S. senegalensis could be indicative of the VLC-FA particular needs linked to 

neural tissues functionality in each development stage. These findings can contribute to a 
better understanding of the species-specific VLC-FA metabolism in marine teleosts. 
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INTRODUCTION 

 

Very long-chain (˃ C24) fatty acids (VLC-FA) play critical roles during early development of 

vertebrates, since these compounds are accumulated in the rapidly forming neural tissues, ensuring their 

normal function. However, despite their putative importance, the study of VLC-FA in fish is scarce. Their 

biosynthesis is carried out by the so-called elongation of very long-chain fatty acid 4 (Elovl4) proteins 

through the successive elongation reactions from pre-existing long-chain fatty acids (LC-FA) (Monroig et 

al., 2018). Consequently, the complement and function of these enzymes determine the capacity that a 

given species has for satisfying the physiological demands for VLC-FA, especially during its early 

development (Deák et al., 2019; Torres et al., 2020a, b).  

 

Virtually, all teleost fish possess at least two Elovl4 isoforms termed as Elovl4a and Elovl4b (Castro et 

al., 2016; Monroig et al., 2010). Both Elovl4 are associated to VLC-FA biosynthesis (Monroig et al., 2018. 

Morais et al., 2020). However, the capability of each isoform to efficiently participate in the VLC-FA 

production can differ in function of the fish species studied (Betancor et al., 2020; Jin et al., 2017; Monroig 

et al., 2010; Morais et al., 2020; Oboh et al., 2017). Thus, Elovl4a is mostly involved in the very long-chain 

saturated fatty acids (VLC-SFA) biosynthesis, while Elovl4b mainly participates in the very long-chain 

polyunsaturated fatty acids (VLC-PUFA) production (Deák et al., 2019; Monroig et al., 2010).  

 

VLC-SFA and VLC-PUFA, are strongly connected with correct development and functionality of 

nervous system (Deák et al., 2019; Morais et al., 2020), being synthesized and incorporated into more 

complex lipids in a tissue-specific manner (Cameron et al., 2007; Deák et al., 2019). Generally, VLC-

PUFA are incorporated into phosphatidylcoline in the photoreceptor cells that make up the retina (Agbaga 

et al., 2010) participating in the photoreceptor protection (Bazan, 2018; Deák et al., 2019). VLC-SFA are 

mainly incorporated into sphingolipids in the brain (Deák et al., 2019) taking part in the membrane fusion 

of synaptic vesicles carried out during neurotransmission process (Hopiavuori et al., 2018, 2019). 

Moreover, Elovl4 seem to play also a significant role in the LC-PUFA biosynthesis pathway, elongating 

actively C18-20 PUFA up to DHA (Morais et al., 2020; Xie et al., 2016; Yan et al., 2018), which is the most 

abundant fatty acid in brain and retinal cells (Mourente, 2003).  

 

Resulting from the essential neurophysiological role and the tissue-specific generation/incorporation of 

their biosynthesis products (Agbaga et al., 2010; Aldahmesh et al., 2011; Dyall, 2015), elovl4 is considered 

a crucial gene strongly connected to neuronal function of vertebrates (Agbaga et al., 2010; Deák et al., 

2019; Monroig et al., 2011; Morais et al., 2020; Torres et al., 2020a). Thus, the knowledge of the elovl4 

tissue-specific expression along fish development can be essential to understand the metabolism and the 

potential role that VLC-FA play in fish. With this in mind, the present study aimed to determine the tissue-

expression pattern of genes that encode for both Elovl4 isoforms, elovl4a and elovl4b, in different windows 

of development (larvae and adults) of S. aurata and S. senegalensis. Both species display different LC-

PUFA biosynthesis strategies, since S. aurata possesses one sole Fads2 enzyme with Δ6 activity (Seiliez et 

al., 2003; Zheng et al., 2004), while S. senegalensis possess a Fads2 with Δ4 activity (Morais et al., 2012). 

These enzymatic differences in LC-PUFA biosynthesis, along to other characteristics, like their specific 

larval development, and the different post-larval feeding habits, i.e. pelagic or benthonic, are of special 

interest to assess the tissue-expression pattern of elovl4 genes from a comparative point of view. 

 

MATERIALS AND METHODS 

 

Spatial expression of elovl4 genes in S. aurata and S. senegalensis early larvae  

 

Larvae: sample preparation 

 

In order to study the spatial expression of elovl4 genes (elovl4a and elovl4b) during the early larvae 

development of S. aurata and S. senegalensis by whole mount in situ hybridization (WISH) analyses, 

triplicate pools of 24 hours post hatching (hph) larvae were collected (~50 individuals per sample). Larvae 

were fixed overnight at 4 ºC in 4 % paraformaldehyde (PAF) in 1x phosphate buffered saline (PBS), 
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washed in PBS, and dehydrated by immersion in methanol series to subsequently be frozen at -20 ºC in pure 

methanol. 

 

Cloning and spatial expression of elovl4 genes by whole-mount in situ hybridization (WISH)  

 

To determine the spatial expression of S. aurata and S. senegalensis elovl4a and elovl4b, WISH was 

performed on 24 hph larvae using Digoxygenin (DIG)-labelled antisense riboprobes as described in Rotllant 

et al. (2008) and Thisse and Thisse (2008). Antisense riboprobes were made from linearized partial length 

S. aurata and S. senegalensis elovl4a and elovl4b plasmids, using pGEM®- T Easy Vector Systems I 

(Promega Biotech Ibérica S.L., Madrid, Spain). To prepare in vitro mRNA synthesis, a Riboprobe® 

Combination System - SP6/T7 RNA polymerase was used (Promega Biotech Ibérica S.L.). Finally, 

digoxigenin-tagged RNA probes were isolated using mini Quick Spin RNA Columns (Roche Diagnostics 

GmbH, Mannheim, Germany) and stored to -80 ºC until required. Primers used for RNA probe synthesis in 

spatial expression of S. aurata and S. senegalensis elovl4 genes by WISH are shown in Table 1. 

 

Table 1. Sequences of the primer pairs used, size of the fragment produced and accession number of the sequences 

utilized for RNA probe synthesis employed in spatial expression of S. aurata and S. senegalensis elovl4 genes by 

whole-mount in situ hybridization. 

 

Sparus aurata 

Transcript Primer Primer sequence Fragment Accession No 

elovl4a 
F 5’-GCCCAAGTACATGAAGAACAGAG-3’ 

563 bp MK610320 
R 3’- GGTGACCTACGTGATGAGGG -5’ 

elovl4b 
F 5’-GTCAAGTACTCCAACGATGTCAA-3’ 

394 bp MK610321 
R 3’- TGTGTCCGACGGGTAAGG -5’ 

Solea senegalensis 

Transcript Primer Primer sequence Fragment Accession No 

elovl4a 
F 5’-CTTTCCAGCTCCGCAAAACC-3’ 

645 bp MN164537 
R 3’-GAGGAGGAGGTTTCGTTCGT -5’ 

elovl4b 
F 5’-GATCGCCAGGCCTACACA-3’ 

559 bp MN164625 
R 3’-TCACCCGAGACTAACCAATGC -5’ 

 

 

Gene expression analysis by reverse transcription PCR (RT-PCR) and quantitative real-time PCR 

(qPCR) in adult fish 

 

The expression of elovl4 isoforms in each tissue from one specimen of gilthead seabream and 

Senegalese sole was analyzed by reverse transcription PCR (RT-PCR) using GoTag Polymerase (Promega 

Biotech Ibérica S.L.). 18s ribosomal RNA (18s) was used a reference gene. A random set of RT-PCR 

samples were purified and sequenced to confirm the identity of the amplicons. 

 

The expression of elovl4a and elovl4b was analyzed by qPCR in selected tissues, i.e. brain, eye, and 

gonad from three individuals of each species. Table 2 shows the primers used in PCR analyses. The 

efficiency of the primer pairs was assessed through a standard curve that was obtained by serial dilutions of 

standard solutions of the studied genes with known copy numbers, which also allowed for the conversion of 

threshold cycle (Ct) values to copy numbers. The amplification was carried out, as previously described in 

(Torres et al., 2020a) using β-actin as gene for expression normalization.  
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Table 2. Primers used for reverse transcription PCR (RT-PCR) and real-time quantitative PCR (qPCR) of Sparus 

aurata and Solea senegalensis genes. Sequences of primer pairs used (Forward: F; Reverse: R), annealing temperatures 
(Ta) of primer pairs, size of fragments produced, and accession number of the sequences used for primer design are 

showed. 

 

Sparus aurata 

Aim Transcript Primer Primer Sequence (5’-3’) Ta Fragment Accession No 

RT-

PCR 

elovl4a 
F GCCCAAGTACATGAAGAACAGAG 60 

°C 
563 bp MK610320 

R GGGAGTAGTGCATCCAGTGG 

elovl4b 
F GTCAAGTACTCCAACGATGTCAA 60 

°C 
394 bp MK610321 

R GGAATGGGCAGCCTGTGT 

18s 
F TCCTTTGATCGCTCTACCGT 60 

°C 
460 bp AY993930.1 

R TGCCCTCCAATTGATCCTCG 

qPCR 

elovl4a 
F GCCCAAGTACATGAAGAACAGAG 60 

°C 
169 bp MK610320 

R ACCTGATGAGTCTGCTGGGG 

elovl4b 
F GTCAAGTACTCCAACGATGTCAA 60 

°C 
247 bp MK610321 

R GAGAAGGTAGGTACACGAGT 

Actb 
F TGCGTGACATCAAGGAGAAG 60 

°C 
190 bp X89920 

R AAGGAGCCATACCTCAGGAC 

Solea senegalensis 

Aim Transcript Primer Primer Sequence (5’-3’) Ta Fragment Accession No 

RT-

PCR 

elovl4a 
F TGCACTACTCCCTCATCTGC 60 

°C 
497 bp MN164537 

R TGAAAACAGCCACCTTAGGC 

elovl4b 
F CCTCTGCCTTGTCCAGTTTC 60 

°C 
175 bp MN164625 

R TCCTTGACCCGTAGTTTAAC 

18s 
F TCAGACCCAAAACCCATGCG 60 

°C 
464 bp EF126042.1 

R CCCGAGATCCAACTACGAGC 

qPCR 

elovl4a 
F AGGTGAGGTAGGGCCTTGTT 60 

°C 
220 bp MN164537 

R CGGATTCCACCGACAAAAGT 

elovl4b 
F CCTCTGCCTTGTCCAGTTTC 60 

°C 
175 bp MN164625 

R TCCTTGACCCGTAGTTTAAC 

Actb 
F ACAATGAGCTGAGAGTCGCC 60 

°C 
132 bp DQ485686 

R ATGGGGGCGGTACATACAAC 

 

Statistical analysis 

 

The homogeneity of variances of the data associated to gene expression values determined by qPCR was 

checked using Levene’s test. Statistical differences were analyzed by one-way analysis of variance 

(ANOVA) (p ≤ 0.05), followed by Tukey HSD post-hoc tests using the statistical software SPSS 26.0 

(SPSS Inc., Chicago, IL, USA). 

 

RESULTS 

 

Spatial expression of elovl4 genes in 24 hph larvae 

 

Sparus aurata 

 

WISH results for 24 hph S. aurata larvae revealed that elovl4a was widely distributed in the head region 

(Fig. 1B). Moreover, elovl4b was specifically expressed in the eyes (Fig. 2C), showing a strong signal in the 

retinal epithelium (Fig. 2D). No signal was detected for sense control probes of elovl4a (Fig. 1A) and 

elovl4b (Fig. 2A, B) genes. 



  
Tissue-expression pattern of elovl4 genes in marine fish      AquaTechnica (2021) 3(1):16-24 

 

 

|20| 
 

 
Figure 1. WISH showing the tissue-expression pattern of 

S. aurata elovl4a in 24 hph larvae. Larvae were 

hybridized with either sense (A) or antisense (B) probes. 
 

Figure 2. WISH showing the tissue-expression pattern of 

S. aurata elovl4b in 24 hph larvae. Larvae were 

hybridized with either sense (A, B) or antisense (C, D) 
probes.  

 

 

Solea senegalensis 

 

WISH results for 24 hph S. senegalensis larvae denoted that, curiously, elovl4a expression signal was 

located in the eyes (Fig. 3C, D). Contrary to the tissue-expression pattern shown by S. aurata larvae, 

elovl4b expression signal was widely distributed in the cephalic region (Fig. 4B). As expected, no signal 

was detected for sense control probes of elovl4a (Fig. 3A, B) and elovl4b (Fig. 4A) genes. 

 

 
Figure 3. WISH showing the tissue-expression pattern of S. 

senegalensis elovl4a in 24 hph larvae. Larvae were 
hybridized with either sense (A, B) or antisense (C, D) 

probes. Black arrow denotes a strong expression signal in 

retinal epithelium. 

 Figure 4. WISH showing the tissue-

expression pattern of S. senegalensis 
elovl4b in 24 hph larvae. Larvae 

were hybridized with either sense 

(A) or antisense (B) probes. 

 

Tissue expression of elovl4 genes in adult fish 

 

In adults of both fish, RT-PCR results denoted a differential elovl4a and elovl4b tissue-specific 

expression pattern (Fig. 5A, B). As expected, qPCR results confirmed a similar elovl4 expression pattern 

between S. aurata larvae and adults, with elovl4a being mostly expressed in brain (Fig. 5C), and elovl4b in 

eye (Fig. 5E). For S. senegalensis, in contrast with what was found in 24 hph larvae, elovl4a was highly 

expressed in brain (Fig. 5D), and elovl4b in eye (Fig. 5F). 

 



 
Torres-Rodríguez et al. AquaTechnica (2020) 3(1):16-24 

 

| 21 | 

 

 
 

Figure 5. Tissue-expression pattern of elovl4a and elovl4b genes in adults of gilthead seabream (A) and Senegalese 

sole (B) determined by RT-PCR (n=1 fish). Expression of housekeeping gene 18s is also shown. Expression of gilthead 

seabream elovl4a (C) Senegalese sole elovl4a (D), gilthead seabream elovl4b (E) and Senegalese sole elovl4b (F) 
transcripts in brain, eye and gonads determined by q-PCR. The results, shown as relative index, are β-actin normalized 

values (gene copy number/β-actin copy number). Bars represent means and standard deviations (n=3 fish). Different 

letters (a, b, c) denote significant differences (ANOVA and Tukey HSD test, P ≤ 0.05) among tissues. 

 

DISCUSSION 

 

WISH results denoted the existence of a differential elovl4a and elov4b tissue-expression pattern 

between S. aurata and S. senegalensis 24 hph larvae. Remarkably, an opposite tissue-expression pattern 

was observed between these 24 hph marine fish larvae for elov4 genes. Thus, elovl4 spatial expression 

results found in S. aurata larvae are in agreement with those observed in zebrafish larvae (Monroig et al., 

2010), which denoted that elovl4a expression signal was extensively distributed in the head region, while 

elovl4b was specifically detected in the eye. These results agree with the elovl4a and elovl4b expression 

values detected in adults of both species (Fig. 5), and with the results described in adults of other fish 

(Betancor et al., 2020; Carmona-Antoñanzas et al., 2011; Monroig et al., 2010), whose elovl4a and elovl4b 

results showed a strong signal expression in brain and eye, respectively. Curiously, for S. senegalensis, an 

opposite elovl4 tissue-expression pattern was observed between the pre- (Fig. 3, 4) and post-metamorphic 

stages (Fig. 5). Why in S. senegalensis larvae both elovl4a and elovl4b, unlike to what it was observed in S. 

aurata, presented an opposite tissue-expression pattern with respect to those found in adult fish, is a 

question that requires further exploration. It is tempting to hypothesize linking these specific-tissue 

expression patterns, associated to developmental events, with the important neural tissue remodeling carried 

out during the metamorphosis process, after which, the cognitive system and feeding habits of S. 
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senegalensis are consequently adapted to the strong nocturnal activity developed in the post-metamorphic 

stage (Sarasquete et al., 2019). These neurophysiological changes could modify the VLC-FA requirements 

associated to neural tissues and, consequently, remodel the elovl4 expression pattern to be adapted to the 

new conditions. 

 

Different assays, carried out in larval and post-larval stages of both species (Torres et al., 2020a; 

2020b), suggest that elovl4 isoforms show a specific-expression pattern in function of the different VLC-FA 

requirements associated to each species, developmental stage and precursors availability, highlighting the 

independent expression pattern and regulation of both elovl4 isoforms. So, our results are in agreement with 

those obtained in recent studies carried out in late larvae (40 days after hatching) and post-larvae of both 

fish (Torres et al; 2020a; 2020b), where both elovl4 isoforms were strongly and preferentially expressed in 

the head. Independently to the species-specific expression differences observed, these results suggest a role 

of Elovl4a/b enzymes in the local biosynthesis and incorporation of VLC-FA in fish neural tissues, 

especially during their early development (Morais et al., 2020; Torres et al., 2020a). 

 

Thus, due to the cell-specific incorporation of VLC-FA in vertebrates (Agbaga et al., 2010; Deák et al., 

2019; Hopiavuori et al., 2018, 2019), their focused tissue functionality, and the specific elovl4a and elovl4b 

tissue-expression pattern detected in fish, we can conclude that, similarly to what it has been described in 

mammals, neural tissues are the major site of elovl4 expression in marine teleosts. Moreover, in contrast to 

what is found for S. aurata, the elovl4a and elovl4b tissue-expression pattern seems to be stage-specific in 

S. senegalensis. These results suggest that the investigation of elov4 genes, and consequently that of their 

encoded Elovl4 proteins in teleosts, requires a species-specific approach. 
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