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Abstract

B.E. Bravo-Ureta, R. Jara-Rojas, V.H. Moreira López, and P. Riveros Villegas. 2021. 
Data challenges in the measurement of agricultural productivity: Lessons from Chile. 
Int. J. Agric. Nat. Resour. 126-148. Productivity measurement and analysis have motivated 
considerable theoretical and empirical work in recent decades. Models that have enjoyed 
noticeable expansion are stochastic production frontiers for panel data. These models have 
proven very useful in total factor productivity (TFP) measurement and the analyses of its 
components. However, the related empirical literature in Latin America and the Caribbean has 
been limited, and a likely reason for this gap is data constraints. This article examines the 
setting surrounding the measurement and analysis of productivity in the Chilean agricultural 
sector. The specific objectives are to (1) provide a summary of key agricultural productivity 
measures and recent associated methodological advances; (2) present an overview of micro 
studies reporting technical efficiency and TFP in Chile; (3) portray the major sources of 
agricultural data available in the country; and (4) discuss salient features of the agricultural data 
systems used in Australia and the United States. The paper ends by identifying challenges and 
possible improvements to the prevailing data system that could strengthen the measurements 
and monitoring of productivity in Chile. The analysis suggests that the country needs substantial 
improvements in the collection and analysis of agricultural statistics to develop TFP and related 
research. This line of work is a critical step to enhance competitiveness and to foster adaptations 
to climate change, as well as to fully participate in efforts sponsored by the IFAD, FAO and 
the OECD to monitor progress toward the SDGs. On the positive side, several avenues are 
available to move toward a more robust agricultural statistical architecture.
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Introduction

Productivity growth is a necessary condition 
for enhancing competitiveness in an increas-
ingly globalized economy. Such growth is also 
the foundation for farm prosperity and is critical 
for reducing poverty, enhancing food security and 
deepening the participation of the agricultural sec-
tor in international trade (FAO, 2015; World Bank, 
2008). Moreover, the serious challenges imposed by 
climate change and the degradation of the natural 
resource base in many regions around the globe 
are serious considerations, as policymakers seek 
to increase agricultural productivity. Additional 
pressure arises from the need to feed a population 
that continues to grow along with rising incomes. 
The combined effect of income and population 
growth is expected to be a doubling in the demand 
for agricultural products over the next 50 years, 
which will necessitate substantial increases in 
agricultural productivity (Fuglie et al., 2020).

The critical role that agriculture plays in devel-
oping countries and the commitment from the 
international community to combat poverty, 
reflected in the Millennium Development Agenda 
(UN, 2016) and more recently the Sustainable 
Development Goals (SDGs) (UN, 2020), provide 
another impetus for accelerating the measure-
ment and analysis of farm productivity growth 
(GSARS, 2018). For example, Target 2.3 of SDG 
2 indicates that the goal by 2030 is to “…double 
the agricultural productivity and incomes of 
small scale-food producers…”, while Target 2.4 
states the need to “…ensure sustainable food 
production systems and implement resilient 
agricultural practices that increase productivity 
and production…” (UN, 2016, p. 11). Elaborate 
procedures have been set forth to construct the 
indicators required to document progress toward 
these and many other SDG targets, and this effort 
seeks to make these measures comparable across 
countries (FAO, 2020).

Major methodological innovations have been intro-
duced in the past few decades that make it possible 

to conduct informative productivity analysis (Fried, 
Lovell, & Schmidt, 2008; GSARS, 2017; O’Donnell, 
2018; Sickles & Zelenyuk, 2019). A crucial require-
ment, in addition to sound methodologies, for the 
estimation of models and making the calculations 
necessary to perform robust productivity analysis 
and implement sound policies is to have high-quality 
data. Unfortunately, suitable data are not available 
in many countries, particularly in the developing 
world (GSARS, 2018).

The general objective of this article is to examine 
the setting regarding the measurement and analysis 
of productivity in Chile’s agricultural sector. To 
achieve this overall goal, this paper pursues the 
following four specific objectives: (1) provide a 
summary of key agricultural productivity measures 
and recent associated methodological advances; (2) 
present an overview of studies reporting technical 
efficiency and total factor productivity in Chile; 
(3) portray the major sources of agricultural data 
available in the country; and (4) discuss salient 
features of the agricultural data systems used in 
Australia and the United States. The paper con-
tributes to ongoing efforts seeking to ascertain 
avenues to improve the prevailing agricultural 
statistical base with the intention of strengthen-
ing the measurement, analysis and monitoring of 
farm productivity in Chile.

The next four sections of the paper deal sequentially 
with each of the four objectives. The last section 
highlights challenges and offers recommendations 
that could reduce the information gaps identified 
in the context of ongoing international efforts at 
data collection and analysis.

Overview of productivity concepts and some 
methods

Productivity measurement and analysis has moti-
vated a wide spectrum of theoretical and empirical 
work in economics over the past century. In recent 
decades, there has been robust renewed interest 
in the study of productivity in general and in the 
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agricultural sector in particular (Christensen, 
1975; Fried, Lovell, & Schmidt, 2008; GSARS, 
2017; World Bank, 2008).

The most basic productivity measure is single 
input productivity (SIP), and a classic example 
in agriculture is yield, i.e., total production di-
vided by total area (e.g., tons of wheat per ha). 
SIP indicators are frequently used because they 
are simple to calculate and understand, but a 
serious limitation is that all other factors of pro-
duction are ignored (Headey, Alauddin, & Rao, 
2010; Morrison Paul, 1999). Recognizing the 
value and limitations of SIP measures, Njuki and 
Bravo-Ureta (2019) introduced an SIP approach 
incorporating multiple inputs while accounting 
for unobserved heterogeneity with the purpose of 
providing a simple productivity measure while in 
the background accounting for the complexities 
of the production environment. To more directly 
tackle the deficiencies of SIP measures, total factor 
productivity (TFP) indicators have been devel-
oped and are currently widely used in economic 
analysis (Coelli et al., 2005). TFP is given by the 
ratio between aggregate output to aggregate inputs, 
and such a ratio can be calculated in a number of 
different ways. TFP has become widely used to 
examine productivity change across space and 
time and to decompose such changes into vari-
ous elements. A detailed discussion can be found 
in Sickles and Zelenyuk (2019) and O’Donnell 
(2018), while examples of recent applications to 
agriculture include Njuki, Bravo-Ureta and Cabrera 
(2020) and Julien, Bravo-Ureta and Rada (2019).

TFP change (TFPC) represents the rate of change 
of the ratio of outputs over inputs, which can be 
separated into various components, including 
technical efficiency (TE), allocative efficiency, 
scale efficiency, environmental effects and 
technological change (Coelli et al., 2005). TFPC 
arises when products grow at a different rate 
(higher or lower) than inputs, and two central 
questions emerge: 1) How can these changes be 
quantified? and 2) What are the sources of these 
productivity changes? (Kumbhakar & Lovell, 

2000). The first question can be addressed 
using index numbers, and various options are 
available (Coelli et al., 2005). The calculation 
of index numbers does not require econometric 
estimation and is based on quantity and price 
data for inputs and outputs and assumptions 
about the technology and behavior. The first 
question can also be answered by estimating 
stochastic production frontiers (SPFs) or by 
applying nonparametric methods, such as data 
envelopment analysis (DEA). SPFs and DEA 
have the advantage of not requiring detailed 
price information or behavioral assumptions 
(GSARS, 2018; Kumbhakar & Lovell, 2000). 
Turning to the second question, index number 
methods cannot disentangle the sources of TFPC, 
while SPF and DEA approaches are well suited 
to do so. Moreover, recent SPF methods are able 
to account for unobserved heterogeneity and 
specification errors while identifying transient 
and persistent TE separately (Filippini & Greene, 
2016). Recent applications include Njuki, Bravo-
Ureta and Cabrera (2020), Njuki, Bravo-Ureta 
and O’Donnell (2018), and O’Donnell (2016).

We now turn to a brief discussion of SPF models. 
We emphasize the SPF approach because it is con-
sistent with the neoclassical notion of optimizing 
(i.e., maximizing, minimizing) underscoring the 
definitions of production, revenues, benefits, and 
cost functions. Another reason is the major recent 
refinements in the SPF methodology along with 
the ability to attribute TFPC to several compo-
nents, especially when panel data are available. 
Nishimizu and Page (1982), forerunners in TFP 
decomposition, noted that technological progress 
and TE were concepts grounded on the produc-
tion function model, but the associated empirical 
work had proceeded along separate paths. These 
authors estimated a deterministic parametric pro-
duction frontier following the linear programming 
approach developed by Aigner and Chu (1968) 
and incorporated technological progress along 
with TE as sources of productivity change. The 
decomposition approach introduced by Nishimizu 
and Page (1982) was later incorporated within 
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a stochastic framework by Ahmad and Bravo-
Ureta (1995). More recent work has expanded 
the components of TFPC to scale and allocative 
efficiency, environmental, agroecological and/or 
climatic conditions where different firms operate, 
and a statistical term that captures functional form 
and related errors (Kumbhakar & Lovell, 2000; 
O’Donnell, 2016).

Identifying and quantifying the distinct com-
ponents that underscore TFP is important for 
managerial decisions and public policy formu-
lation seeking to enhance performance (Fried, 
Lovell, & Schmidt, 2008). For example, TE 
refers to the distance of a firm’s operation from 
the frontier and is a measure of management 
effort or performance, which in turn is as-
sociated with improvements in human capital 
achievable chiefly through education, training 
and experience (Martin & Page, 1983; Triebs & 
Kumbhakar, 2018). In contrast, technological 
progress reflects jumps or shifts in the production 
frontier stemming from innovations resulting 
from investments in research and development, 
or R&D (Färe, Grosskopf, & Margaritis, 2008).

Before closing this section, it is important to state 
that TFP analyses of multi-input multioutput 
technologies, particularly when using econometric 
procedures, require aggregation. This aggregation 
necessitates the use of weights for individual inputs 
and outputs to derive the respective aggregate 
indices. The procedures employed for these ag-
gregations are a critical and controversial part of 
TFP work, but this matter is outside the scope of 
this paper. The interested reader can find in-depth 
discussions on these issues in O’Donnell (2018) 
and Sickles and Zelenyuk (2019) and in many 
references cited by these authors.

Empirical productivity measures for Chilean 
agriculture

In this section, we present evidence for Chilean 
agriculture concerning two critical measures of 

productivity, technical efficiency (Table 1) and 
total factor productivity growth (Table 2), that 
have been presented in the literature over the 
past few decades. The starting point in collecting 
the papers analyzed is the database developed by 
Bravo-Ureta et al. (2017). To complement these 
papers, we carried out a new search at the end of 
2020 using the following databases: EBSCOhost, 
Econlit, Academic Search Premier, Agricola, 
Scopus and Wiley Online Library. The terms used 
in this recent search were Chile, TE, farming, 
agriculture, productivity, and TFP.

Technical Efficiency (TE)

As noted above, TE is a proxy measure for mana-
gerial performance, which is typically calculated 
as the ratio between observed output and the 
maximum output achievable by the best perform-
ing farms in a sample given inputs, technology, 
and the environment. Table 1 shows the results 
from 15 studies, organized in chronological order 
according to year of publication, that report TE 
measures for Chilean agriculture using farm-
level data. We note that these studies include not 
only peer-reviewed publications but also several 
unpublished studies.

The first study is by Rivas (1996), which is based 
on two cross-sections, one for 1965-1966 and the 
other for 1970-1971. Ten years later, Moreira et 
al. (2006) and Santos, Foster and Ramírez (2006) 
reported TE measures for dairy and potato farms, 
respectively. For the 11-year period from 2009 to 
2020, we found 12 studies, revealing some modest 
growth in this literature. Of these 12 papers, 11 
were published in peer-reviewed journals. The 
average TE scores from all 15 studies ranged 
from 50% to 94.1%.

A salient feature of the studies in Table 1 is the 
heavy dependence on cross-sectional data, ob-
served in 11 out of the 15 studies. Moreover, three 
of the four panel studies rely on the same dataset. 
Therefore, the available farm data, particularly 
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panel data, are limited. A clear advantage of panel 
data is that they enable more robust econometric 
estimates and much richer productivity analyses 
(Bravo-Ureta et al., 2007; Coelli et al., 2005).

Total Factor Productivity (TFP)

The search for TFP studies with data from Chile 
was carried out, including works in English 
and Spanish. This search yielded 24 studies in 
total, 20 written in English and four in Span-
ish, and the majority were formal publications 
in journals. Most of the studies (20 of 24) use 
aggregate (macro) country-level data from the 
FAO, in some cases supplemented with other 
national sources. Four studies use only data for 

Chile: two consider agriculture as a whole, the 
third examines agriculture, forestry and fisheries, 
and the fourth analyzes dairy farms and is the 
only one that uses farm-level data. Most of the 
older studies use accounting methods along with 
Malmquist or Törnqvist indices, and more recent 
studies rely on production frontiers.

Table 2 presents salient features for the 24 TFP 
studies found, and here, we summarize the TFPC 
measures provided for Chile. Olavarría, Bravo-Ureta 
and Cocchi (2004) were the first to analyze TFP 
focusing only on Chile. Using different aggregate 
databases (FAO, Central Bank and ODEPA) and 
Törnqvist indices, these authors report a 2.78% 
average annual agricultural TFPC for the period 
1961-1996. Vergara and Rivero (2006), offering 

Table 1. Technical efficiency (TE) scores from Chilean farm-level data.

1rst Author year Region/Area Product Frontier study Data structure No. 
Obs Data year TE avg.

Rivas
(1996)

Chile Value of output Stochastic Cross section 
(2 rounds)

105
105

1965/1966
1970/1971

65.8
64.6

Moreira (2006) Paillaco Dairy Stochastic Panel data 92 1996/1997
1998/2002

77.0
72.0

Santos (2006) San Javier Potatoes Stochastic Cross-section 118 2003 73.7

Moreira
(2009)

Paillaco Dairy Stochastic Panel data 92 1996/1997
1998/2002

72.2

Moreira
(2010)

Paillaco, Chile, 
Argentina, and 

Uruguay

Dairy Stochastic Panel data 48 1996/1997
1998/2002

84.9

Jaime (2011) Biobío Wheat Stochastic Cross section 5,580 2006/07 61.0

Jaime (2011) Ñuble Wheat Stochastic Cross section 167 N/A 50.0

Moreira (2011) Central zone Wine grapes Stochastic Cross section 263 2005/06 77.2

Veloso (2015) Ñuble Cattle Stochastic Cross section 83 2007/08 79.5

von Cramon-
Taubadel (2014)

Chile Value of output Stochastic Cross section 109
342

2004 89.0
78.0

Moreira (2016) Biobío Region to 
Los Lagos

Dairy Stochastic Panel data 1,426 2005 to 2010 91.0

Riveros  (2016) Chile
Central

Value of Fruit 
Output

Stochastic Cross section 9,657 2013
2014
2015

59.9

Roco (2017) Chile
Central

Annual crops Stochastic Cross section 274 2011 67.8 
76.4 
72.3

Jara-Rojas (2018) Maule Raspberry Stochastic Cross section 139 2011 81.0

Bravo-Ureta 
(2020)

Different valleys, 
central zone

Wine grapes Stochastic Cross section 263 2005/06 72.4
79.7
94.1
85.9
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Table 2. Total Factor Productivity (TFP) measures for Chilean agriculture.
Author (s) publication 
year

Data (total 
countries) Source Product Annual TFPC Method Data year

Fulginiti and Perrin 
(1997)

Chile
(18 LIC) FAO and others Agriculture 1.10% Non-parametric 

Malmquist index 1961-1985

Arnade (1998) Chile
(70 countries) USDA, FAO Agriculture 1.25% Non-parametric 

Malmquist index 1961-1993

Fulginiti and Perrin 
(1998)

Chile
(18 LIC) FAO and others Agriculture 1.1%

Non-parametric 
Malmquist index

CD variable coeff.
CD conventional

1961-1985

Martin and Mitra 
(2001)

Chile
(50 countries) FAO and others Agriculture 2.70%

2.73%
Translog

Cobb–Douglas 1967-1992

Nin, Arndt and 
Preckel (2003)

Chile
(20 LIC) FAO Agriculture 0.6% Non-parametric 

Malmquist index 1961-1994

Nin et al. (2003)
Chile

(9 LIC and
23 MIC)

FAO
Agriculture

Cattle
Crops

0.87%
0.82%
2.25%

Malmquist index
Distance function 1965-1994

Trueblood and 
Coggins (2003)

Chile
(115 countries) FAO and others Agriculture 1.39% Malmquist index 1961-1991

Bravo-Ortega and 
Lederman (2004)

Chile
(77 countries) FAOSTAT 2002 Agriculture 1.2% Translog production 

function 1960-1997

Olavarría, Bravo-
Ureta and Cocchi 
(2004)

Chile FAO, Central 
Bank, ODEPA Agriculture 2.78% Törnqvist Index 1961-1996

Rao and Coelli 
(2004)

Chile
(97 countries) FAO Agriculture 1.90% Non-parametric 

Malmquist index 1980-1995

Coelli and Rao 
(2005)

Chile
(93 countries) FAO Agriculture 1.10% Non-parametric 

Malmquist index 1980-2000

Vergara and Rivero 
(2006) Chile National 

Accounts, INE Agriculture 5.92% Production Function 1996-2001

Dias and Evenson 
(2010)

Chile
(78 countries) FAO Agriculture 1.37% Accounting ratio 1961-2001

Headey, Alauddin and 
Rao (2010)

Chile
(88 countries) FAO Agriculture 1.10%

2.7% Production Function 1970-1985
1986-2001

Nin-Pratt and Yu 
(2010)

Chile
(63 countries) FAO Agriculture 2.20% Non-parametric 

Malmquist index 1967-2006

Astorga, Bergés and 
Fitzgerald (2011)

Chile (6 
countries) OxLAD Agriculture 1.30% Value added per 

head 1900-2000

Lachaud, Bravo-
Ureta and Ludena 
(2015)

Chile
(112 countries) FAO Agriculture 1.33%

Production Frontier 
with Climate 
adjustment

1961-2012

Lema (2015) Chile
(5 countries) FAO Agriculture 2.48% Accounting 1961-2012

Trindade and 
Fulginiti (2015)

Chile (10 
countries) FAO Agriculture 2.55%

1.89%

Production Function 
and Non-parametric 

Malmquist index
1969-2009

Nin et al. (2015) Chile
(134 countries) FAO Agriculture 2.30%

Production Function 
and Non-parametric 

Malmquist index
1961-2012

Moreira and Bravo-
Ureta (2016)

Biobío Region to 
Los Lagos CEGE Todoagro Dairy 2.25%

2.57%

Stochastic 
Production Frontier 

Translog
2005-2010

Lachaud, Bravo-
Ureta and Ludena 
(2017)

Chile
(28 countries) FAO Agriculture 1.82%

Production Frontier 
with Climatic 
Adjustment

1961-2012

Riveros (2019) Chile Central Bank, 
INE

Agriculture, 
Forestry and 

Fisheries
1.10% Growth Accounting 1996-2018

Lachaud and Bravo-
Ureta (2020)

Chile
(28 countries) FAO Agriculture 2.20%

Production Frontier 
with Climatic 
Adjustment

1961-2014

Simple Average -- -- -- 1.90% -- --
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the second study centering only on Chile, employ 
aggregate data and estimate the TFP of different 
sectors, including agriculture. The study reports 
a 5.92% TFPC, and this is the highest estimate 
included in Table 2. Moreira and Bravo-Ureta 
(2016) use micro data from a sample of dairy farms 
from southern Chile for the period 2005-2010 and 
estimate annual TFPC varying from 2.25% to 
2.57%. An analysis of TFPC components reveals 
that technological change is the most important 
contributor to productivity growth.

Fulginiti and Perrin (1997) use a nonparametric 
Malmquist index, with FAO information includ-
ing Chile along with 18 other countries, for the 
period 1961-1985. A salient result of the study is 
that at least half of the countries experienced a 
decrease in productivity, except for Chile, which 
enjoyed an average annual TFPC gain of 1.1%. In 
an extension of the previous paper, Fulginiti and 
Perrin (1998) estimate alternative Cobb Doug-
las specifications and find the same TFPC as 
the previous study. Arnade (1998) use a DEA 
nonparametric Malmquist index, with FAO and 
USDA information for the period 1961-1993 for 
70 countries, which corresponds with the period 
of the green revolution. This study reports a TFPC 
of 1.25% and finds that education, research and 
extension were important contributors.

Martin and Mitra (2001) analyze and compare TFP 
between the agricultural and manufacturing sec-
tors. Fifty countries of different income levels are 
included for the 1967-1992 period. Cobb–Douglas 
and translog production functions are used along 
with data from the FAO, World Bank and OECD. 
The TFPCs reported for the agricultural sector are 
2.70% and 2.73% for the translog and Cobb–Douglas 
functional forms, respectively. Bravo-Ortega and 
Lederman (2004) apply a methodology similar to 
that of Martin and Mitra and utilize FAO data for 
70 countries. The average TFPC for the period 
1960 to 1997 is 1.20%.

Nin, Arndt and Preckel (2003) use a Malmquist 
nonparametric approach and report an annual TFPC 

of 0.6% between 1961 and 1994. In a related paper, 
Nin et al. (2003) estimate distance functions and 
calculate Malmquist indices over the 1965-1994 
period. The TFPC values reported for Chile are 
as follows: agriculture 0.87%, cattle 0.82%, and 
crops 2.25%. Both papers use FAO data. True-
blood and Coggins (2003) utilize a larger FAO 
dataset than the previous authors, including 115 
countries for the period 1961-1991. A Malmquist 
index is applied, and the reported TFPC for Chil-
ean agriculture is 1.39%. Lema (2015) relies on 
FAO and World Bank data for five countries for 
the period 1961-2012 and observes that Chile’s 
TFPC was 2.48%. Rao and Coelli (2004) include 
97 countries from the FAO dataset from 1980 to 
1995 along with DEA to estimate a two-output 
distance function, considering livestock and 
crops, which they use to calculate Malmquist TFP 
indices. These authors report an annual TFPC of 
1.9%. In an extension of the previous study, Coelli 
and Rao (2005) cover 93 countries for 1980-2000 
and report a TFPC of 1.1%.

Astorga, Bergés and Fitzgerald (2011) analyze 
100 years of data (1900-2000) from OxLAD and 
measure TFPC as the variation in value added 
per inhabitant. They report an annual change of 
1.3% in Chile’s productivity. The study identi-
fies three statistically distinct periods (1900-36, 
1933-77, and 1978-2000), with substantial and 
sustained productivity growth in 1933-77. Dias 
and Evenson (2010) use FAO data for 78 countries 
and report a TFPC of 1.37% from 1961 to 2001. 
Headey, Alauddin and Rao (2010) investigate 
TFP employing SPF and DEA and examine 
the correlation between institutional and policy 
variables and TFP. This study uses FAO data for 
88 countries for two different periods, 1970-1985 
and 1986-2001, and reports TFPC values of 1.1% 
and 2.7%, respectively. Nin-Pratt and Yu (2010), 
using FAO data for 63 countries and a nonpara-
metric Malmquist index, report an annual TFPC 
of 2.2% for 1967 to 2006.

Trindade and Fulginiti (2015) analyze the pro-
ductivity of 10 South American countries again 
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using FAO data along with SPF and nonparametric 
models, and the TFPC for Chile is 2.55% and 1.89% 
according to each method. Chile is the best per-
forming country of all those included in the study. 
Nin et al. (2015) study the TFP of 134 countries 
with FAO data for the period 1961 to 2012. They 
employ nonparametric Malmquist indices and 
production functions and find a TFPC value of 
2.3%. Lachaud, Bravo-Ureta and Ludena (2015) 
also study the TFP of Latin American and Carib-
bean (LAC) countries and make comparisons with 
other regions of the world relying on FAO data from 
1961 to 2012. The authors estimate SPF models, 
incorporating climatic variables, and use the TFP 
decomposition proposed by O’Donnell (2014). A 
1.33% TFPC for Chilean agriculture is reported.

The recent study by Lachaud, Bravo-Ureta and 
Ludena (2017) applies a more refined methodology 
than the one used in their 2015 paper to analyze 
the TFP of 28 LAC countries with FAO data 
for the period 1961-2012. The results show that 
climatic variability has had negative productivity 
effects in most of the LAC countries analyzed, 
and such effects have been more severe in Central 
America. The authors report a TFPC of 1.82% 
for Chilean agriculture. Riveros (2019) uses data 
from the Chilean Central Bank and INE covering 
agriculture, forestry and fisheries for the period 
1996-2018 along with a growth accounting ap-
proach and finds a TFPC of 1.1%. Lachaud and 
Bravo-Ureta (2020) extend their previous work 
to examine catch-up and convergence patterns 
incorporating climatic effects and report a TFPC 
of 2.2% for Chilean agriculture.1

The studies presented in Table 2 and reviewed 
above reveal an overall annual average TFPC 
for Chile of 1.90%. This performance compares 
well to that of many countries around the world, 
particularly with LAC countries. A key point to 

note is that most of the available evidence comes 
from macrolevel studies, which makes it impos-
sible to examine in detail the heterogeneity that 
characterizes agriculture within a country across 
many dimensions, including types of produc-
tion, technological level, farm size, land tenure, 
socioeconomic features, location, agroecological 
characteristics, and environmental conditions, 
among others. In addition, to provide robust 
measures of TFP growth and to then decompose 
these measures into its various elements, panel 
data are critical but, unfortunately, limited.

In sum, to account for the heterogeneity of agri-
cultural producers, analysts require detailed farm-
level data. However, our overview of the Chilean 
productivity literature clearly reveals that this 
type of information is scant. Moreover, to derive 
robust TFPC measures that can be separated into 
various components and thus generate the insights 
needed for evidence-based policy formulation 
and implementation, we need not only farm-level 
data but also a panel structure and consistent data 
collection over time. Preliminary evidence of the 
vastly different productivity measures that can be 
obtained when using macro/country versus micro/
farm data is provided by Bravo-Ureta et al. (2021) 
for El Salvador. Moreover, the Salvadorean farm-
level analysis reveals considerable heterogeneity 
over time and across different geographies and 
farm types. The bottom line is that consistent 
high-quality farm-level panel data are essential 
in uncovering robust productivity patterns that in 
turn can be used to derive robust policy recom-
mendations.

Agricultural productivity statistics for Chile

This section first provides a summary of the basic 
variables that are needed to measure agricultural 

1   The USDA-Economic Research Service International Agricultural Productivity Accounts also provide TFP measures for 
Chilean agriculture, beginning in 1961 and updated periodically. The current online version of the dataset covers 1961 to 
2016. For additional information the interested reader can go to https://www.ers.usda.gov/data-products/international-agricul-
tural-productivity/.
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productivity. This summary is followed by an 
overview of the system currently used in Chile to 
generate agricultural production data and then a 
discussion of the crucial shortcomings that need 
to be addressed as we move forward.

Variables: outputs, inputs, other

A point of departure in developing robust productiv-
ity measures is a sharp definition of outputs, inputs, 
and other complementary variables. Agricultural 
output variables commonly used in efficiency and 
productivity studies include the physical output of 
annual and perennial crops, livestock and dairy 
production, total value of farm production and 
corresponding prices (Bravo-Ureta et al., 2017).

The input variables used to measure agricultural 
productivity are numerous, and here, we rely 
on various sources to classify inputs along six 
dimensions (Bravo-Ureta et al., 2017; GSARS, 
2017; Shumway et al., 2016). The first dimension 
corresponds to classic inputs and includes land, 
family and hired labor, seeds, chemical inputs 
(e.g., fertilizers, pesticides, fungicides), and water. 
This dimension also includes machinery, animal 
traction, fuel, and electricity.

The second dimension consists of environmental 
variables, and this can be divided into intrafarm 
(e.g., soil types and quality, slope) and extrafarm 
(e.g., climate, rainfall, temperature, altitude) 
variables. This dimension has gained consider-
able importance, as reflected by efforts from 
the OECD to create an international network 
on agricultural total factor productivity and the 
environment with the goal of developing “envi-
ronmentally adjusted” TFP (EATFP) indicators 
across countries. More generally, this initiative 
has documented the existing data heterogeneity 
and the dearth of input, output and environmental 
variables that are required to develop robust and 
consistent EATFP indicators. A concern is that 
omitting environmental effects can be a source 
of systematic bias in productivity estimates and 

thus lead to misguided policy formulation (Sauer 
& Moreddu, 2020).

The third dimension captures the agricultural 
system (e.g., technological level, irrigation systems, 
conservation practices, crop rotations, conventional 
versus organic production, cooling systems). 
The fourth category is the human and social 
capital dimension (e.g., education, gender, age, 
experience, and ethnicity of the farmer; family size 
and composition; social networks). The fifth dimen-
sion corresponds to financial capital, such as access 
to credit, subsidies, and public/private incentives. 
Six dimensions are devoted to specific livestock 
operations, including variables such as feed, herd 
(flock) size, and veterinary and medical expenses.

The list of dimensions and corresponding vari-
ables is not intended to be exhaustive. The idea is 
to highlight that farming is heterogeneous. This 
diversity and complexity must be kept in mind 
and fully understood when designing protocols to 
gather the information required to undertake robust 
measurement and analysis of farm productivity.

An important and expanding effort is the Guide 
for the Integrated Agricultural Survey (AGRIS), 
sponsored by the Food and Agriculture Organiza-
tion (FAO). The goal is to provide an international 
framework to improve data collection systems and 
statistics in four main areas: production units; crop 
and livestock production; cost of production; and 
national accounts for agriculture. AGRIS encour-
ages countries to generate open access and low-cost 
statistics using the best available technologies for 
data collection. The statistics generated by the 
AGRIS platform are intended to support policy 
formulation, market efficiency improvements, and 
research. A vital consideration is to assist govern-
ments in the development of economic, social and 
environmental models and indicators to document 
the evolution of the Sustainable Development Goals 
(SDGs) agenda (GSARS, 2018).

The AGRIS platform incorporates farm-level 
microdata and aggregates secondary data, 
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including national agricultural accounts based 
partially on administrative data for the value 
of imports, exports, and taxes. GSARS (2017) 
proposes a core module to gather data annually 
or more often depending on the product, captur-
ing the volume of agricultural production and 
inputs used at the farm level. The core module is 
complemented with data collected with the fol-
lowing four rotatory modules: Economy; Labor; 
Production Methods and the Environment; and 
Machinery, Equipment and Other Assets. Table 
3 shows the AGRIS modules and some details 

concerning the subject, section, and data col-
lection frequency.

Agricultural data collection in Chile

The National Institute of Statistics (INE for its 
acronym in Spanish) is the Chilean entity respon-
sible for collecting official statistics, including the 
agricultural sector. The Office of Agricultural 
Studies and Policies (ODEPA for its acronym 
in Spanish), under the Ministry of Agriculture, 

Table 3. AGRIS Modules, and data collection frequency.

Module Subject Sections
Years

1 2 3 4 5 6 7 8 9 10

Core Module Agricultural 
holding (AH) 
Roster
Crop+ 
livestock 
production
Other key 
variables

(1) The holding identification; (2) 
Characteristics of the holders and 
managers; (3) Crop Production; (4) 
Livestock production; (5) Economy; (6) 
Households of the holders and coholders; 
(7) Labor used by the holding; (8) 
Household dwelling and assets; and (9) 
End of survey.

x x x x x x x x x x

Rotating Module 1 Economy (1) Main characteristics of the agricultural 
holding, (2) Agricultural income, (3) 
Agricultural expenses (4) Investment, 
financial and insurance costs

x x x x x

Rotating Module 2 Labor (1) Overview of the holding activities 
and labor; (2) Household members: 
time worked, main activities, payments, 
and benefits for work on the holding 
(3) External workers: demographic 
characteristics, time worked, main 
activities, payments and benefits for work 
on the holding; (4) Contractors.

x x

Rotating Module 3 Production 
Methods 
and the 
Environment

(1) General information; (2) Use of 
natural resources; (3) Crop production 
methods; (4) Livestock production 
methods; (5) Certified organic farming 
and conversion to organic certification 
during the reference period; (6) 
Agroforestry; (7) Access to and use of 
information services, infrastructure, and 
communal resources; (8) Greenhouse gas 
and environmental issues; (9) Adaptation 
to climate change and mitigation 
strategies; (10) Waste management.

x x

Rotating Module 4 Machinery, 
Equipment, and 
Assets

(1) Machinery and equipment; (2) 
Nonresidential buildings or structures; (3) 
Selected assets owned by the household.

x x

Source: Elaborated by the authors based on GSARS (2017).
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is the agency charged with providing statistical 
information for the farm sector that can be used 
by public and private agents for decision-making 
and related activities (Law 19,147). The ODEPA 
has a coordinating role in the national agricultural 
statistical system and in interinstitutional agree-
ments with the INE that seek to provide official 
information. The Natural Resources Information 
Center (CIREN for its acronym in Spanish) is 
another agency of the Ministry of Agriculture 
and focuses mainly on gathering information for 
the fruit subsector, agroindustry, and biophysical 
characteristics of the territory.

According to INE (2015), there is a growing demand 
for statistical information by different stakeholders, 
which provides an impetus to improve the data 
collected and the methodologies utilized. The data 
currently collected and analyzed by the ODEPA 
with bearing on productivity measurement and 
monitoring include: A) annual surveys; B) Fruit 
Cadaster; and C) the National Agricultural and 
Forestry Census.

A) Annual surveys are focused on the following 
subsectors: industrial crops, vegetables, and live-
stock production. Industrial crops and vegetable 
surveys, administered annually by the INE, are 
designed based on a list sampling frame derived 
from Census information. Data for output quanti-
ties are collected exclusively for industrial crops. 
For livestock surveys, the INE also uses a list 
sampling frame, and every two years, it gathers 
information on herd size and on farm management 
and some sustainability practices. The informa-
tion for all subsectors has national coverage and 
regional representation, except for regions where 
the specific output is not significant. The data col-
lected annually are not uniform across subsectors, 
and this unfortunate feature restricts the scope 
of the economic analyses that can be performed. 
In the case of productivity, only single input 
measures can be generated for industrial crops. 
Another limitation of all these annual surveys is 
the absence of questions regarding intermediate 
inputs, labor, capital, and management practices. 

In addition, the micro (farm level) data collected 
are not available to researchers or other interested 
individuals, which precludes the undertaking of 
any type of econometric analysis.

B) The Fruit Cadaster, implemented by the CIREN 
and funded by the ODEPA, is a yearly survey 
conducted in specific regions of the country. The 
survey is applied according to a schedule set by the 
ODEPA, which usually rotates in two- to three-year 
intervals for each region. For example, in 2017 
and 2019, this cadaster was implemented in the 
Metropolitan and Valparaíso regions. In 2016 and 
2019, the following eight regions were covered: 
Arica and Parinacota, Tarapacá, Maule, Biobío, 
La Araucanía, Los Ríos, Los Lagos, and Aysén. 
In 2016, Aysén was incorporated into the cadaster 
for the first time due to the increasing planting 
of cherry trees, while Arica and Parinacota and 
Tarapacá, in northern Chile, were surveyed for the 
first time in 30 years. The cadaster is considered 
a census of all farms with 0.5 or more hectares 
devoted to fruit production. The variables available 
from the cadasters include geographical location, 
producer identification, name of the species and 
variety grown, area by plot, and total hectares 
planted. As a complement to the fruit-growing 
cadaster, the CIREN has implemented the Fruit 
Infrastructure Cadaster since 2014. This includes 
owner information, geographical location, cold 
storage facilities, packing plant installations, fu-
migation machinery, and infrastructure. As is the 
case with the annual surveys, the cadasters omit 
variables that are indispensable to measure TFP 
and to undertake related economic analyses, such 
as quantity produced and the quantities and type 
of labor, capital, and intermediate inputs used.

C) The National Agricultural and Forestry 
Census is a source of statistical data collected 
approximately every 10 years with the objective 
of characterizing the agricultural, livestock and 
forestry dimensions of the sector. An important 
application is upgrading the statistical frame 
for annual surveys and to identify and measure 
various attributes concerning production, land 
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tenure, employment, and socioeconomic fea-
tures of the farms. The last census conducted 
in 2007 also included technological variables 
(e.g., irrigation system) and the adoption of best 
management practices (INE, 2015). The data 
are available at the municipality level and are 
suitable to measure partial productivity indica-
tors. Again, the lack of detailed information for 
intermediate inputs, labor and capital impedes 
work on TFP. The National Agricultural and 
Forestry Census 2020 excludes output informa-
tion, which restricts the measurement even of 
partial productivity indicators.

Agricultural statistics can also be obtained from 
a few private organizations that operate in Chile, 
such as the Consorcio Lechero (Dairy Consortium), 
which has a benchmarking system that includes 
technical and economic information for dairy 
farms. Another source of data for the dairy sector 
is the International Farm Comparison Network 
(IFCN), which collects synthetic information for 
representative dairy farms prepared by participat-
ing institutions throughout a number of countries 
(https://ifcndairy.org). Chile has been an IFCN 
participant since 2003. The data are not available 
to the public but can be used in collaboration with 
participating institutions. An advantage of these 
data is the detailed inclusion of inputs (e.g., dif-
ferent types of feed, land, labor, capital) and the 
availability of repeated observations over time. 
Thus, single factor and TFP indicators could be 
calculated for individual countries, while econo-
metric models could be estimated by pooling the 
data for different countries, which would allow 
deeper production economic analyses.

Another international network that generates 
data similarly to the IFCN is Agri benchmark 
(http://www.agribenchmark.org/horticulture.
html) sponsored by the Thünen Institute of Farm 
Economics in Germany. This network includes 
agricultural economists, consultants and producers 
who collaborate in the generation of comparable 
quantitative information for several sustainable 
production systems and countries. Agri bench-

mark uses a representative farm-level approach 
to develop variable costs of production separated 
into various input classes, such as seeds, fertil-
izers, pesticides, labor (hired and family), land 
area and tenure, irrigation, rainfall distribution, 
soil type, land prices, capital assets, fixed costs, 
and subsidies (Chibanda et al., 2020).

Agricultural Data Systems: Examples from 
Australia and the United States

This section considers salient features of the 
agricultural information systems that are cur-
rently used in Australia and the United States. 
The purpose is to glean ideas that could help 
formulate policies to strengthen the Chilean 
statistics framework and thus generate data that 
could be used to develop solid measures of farm 
productivity applicable for research and policy 
formulation.

The Australian Bureau of Statistics (ABS) and 
the Australian Bureau of Agricultural and 
Resource Economics and Sciences (ABARES)

In 2014, ABS and ABARES (2014) developed a 
strategy to guide and coordinate long-term ac-
tions to improve the agricultural statistical system 
housed at the National Agricultural Statistics 
Review (NASR). The strategy recommended 
shifting from a direct data collection system based 
on surveys to one that relies on administrative 
information generated from business operational 
records. The aim was to improve accuracy, reduce 
costs and lessen the burden imposed on informa-
tion providers. The strategy, named Roadmap 
to Improve the Agricultural Statistical System, 
sought to transform the information system and 
enhance its value to stakeholders while facilitat-
ing research, policy design and decision-making 
(ABS, 2017).

The new components of the Australian agricul-
tural statistics architecture are aligned with the 
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strengthening of public and private data collection 
efforts to reduce coordination challenges; the 
inclusion of novel sources of information, mainly 
from administrative data; and the application of 
alternative data collection sources, such as big data, 
satellite images, industry reports, and manage-
ment software. Likewise, incorporating private 
stakeholders in the agricultural data collection 
process is crucial for detecting the multiplicity 
of information needs across different agricultural 
value chains (ABS, 2017).

Hughes et al. (2020) argue that combining the 
work undertaken by the ABS and ABARES 
is necessary to analyze, develop and integrate 
new longitudinal datasets at the farm level, an 
initiative called the Agricultural Data Integra-
tion Project (AgDIP). This project could be a 
particularly relevant reference for redesigning 
and implementing a more robust agricultural 
statistical system in Chile.

The USDA and the Economic Research Service 
(ERS)

The agricultural statistical system sponsored 
by the Economic Research Service (ERS) at the 
United States Department of Agriculture (USDA) 
is one of the most developed systems in the world, 
generating various products that provide a rich 
information base for individual and aggregate 
outputs (GSARS, 2017). This system is continually 
evolving through interactions with cutting-edge 
researchers and practitioners from public and 
private organizations, including universities and 
extension services. These interactions have allowed 
continuous improvements through ongoing reviews 
of the methods and data necessary to undertake 
a wide range of analyses (Shumway et al., 2016). 
The desired outcome is a modern agricultural 
system driven by high-quality data and analyses 
that substantiate well-articulated public policies 
while upholding carefully crafted confidential-
ity principles (Commission on Evidence-Based 
Policymaking, 2017).

Productivity measures at the state level have 
been an essential component underpinning US 
agricultural policy for decades (e.g., Ball et al., 
1999; Ball, Hallahan, & Nehring, 2004). However, 
in 2004, the National Agricultural Statistical 
Service (NASS) discontinued the farm labor 
survey, a key component used to construct the 
labor input. The lack of a suitable alternative to 
the farm labor survey means that the ERS TFP 
state-level series ends in 2004. The expectation 
is that a suitable alternative for constructing the 
labor input will be found and that the ERS TFP 
state-level series will be reintroduced (Shumway 
et al., 2016). Meanwhile, the ERS continues to 
update the national-level TFP series biennially. 
Except for the lack of an appropriate alternative 
to the farm labor survey, the existing information 
for both outputs and inputs remains useful for 
productivity analysis.

Another critical element in the USDA farm data 
infrastructure is the Agricultural Census, which 
dates to 1840 as part of the federal census. It 
was initially conducted every 10 years up to the 
1950s and then every four years up to 1982. The 
Agricultural Census is currently implemented 
every five years, with 2017 being the most recent 
census year (Powell, 2019). “The agriculture cen-
sus is the only source of statistics on American 
agriculture showing comparable data, by county 
and classifying farms by size, tenure, type of 
organization, primary occupation, age of opera-
tor, market value of agricultural products sold, 
combined government payments and market value 
of agricultural products sold, and North American 
Industry Classification System (NAICS) code” 
(USDA, 2011, p. 4).

The Agricultural Census data are used regularly 
by the USDA to prepare a wide-ranging set of 
reports. The data at the county level can be ac-
cessed readily online by individuals not associated 
with the USDA (USDA, 2021a). These data have 
been used in scholarly articles by several authors, 
including Njuki and Bravo-Ureta (2018), Key 
(2019), and Sneeringer and Key (2011).
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An additional important data component sponsored 
by the USDA-ERS and NASS is the Agricultural 
Resource Management Survey (ARMS). The ARMS 
survey is based on a multi-frame, stratified, and 
probability weighted sampling design, and the 
data collection considers a multiphase scheme. 
The ARMS statistical design uses area and list 
sampling frames to sample a total of approximately 
30,000 farms and ranching operations each year 
from across the 48 contiguous states using a strati-
fication that includes groups of farms by region 
or state, farm sales categories, and commodity 
specialization. Given that the ARMS survey is 
a stratified random sample, each observation has 
a different weight reflecting the probability of 
farm selection (ERS, 2020). Data collection on 
management practices, farm business structure 
and finance, and household characteristics is 
undertaken in three phases: (1) The year of data 
collection (usually in the summer) farmers are 
randomly selected and contacted to verify their 
production status; (2) During the following winter, 
a random sample from the farmers in phase 1 is 
interviewed regarding production practices and 
input use; and (3) In early spring, the farmers 
in phase 2 are interviewed to collect additional 
financial data (ERS, 2020).

ARMS data for single or multiple survey years 
are used extensively to investigate a variety of 
topics, including production, cost and financial 
analyses for several commodities, such as indus-
trial crops, fruits, dairy, livestock, and poultry. 
A detailed explanation of the suite of reports 
prepared by the ERS based on the ARMS data 
is available in MacDonald (2019), and a catalog 
of publications that rely on ARMS data can be 
found in USDA (2021b).

ARMS data are also employed regularly to prepare 
journal articles. An example of this is a recent 

paper by McFadden, Rosburg, and Njuki (2021), 
who focused on the connection between the use 
of yield and soil map data and the productivity of 
corn farming in the US Midwest. Another article 
dealing with corn production was published by 
Wechsler and Smith (2018). Sabasi, Shumway, 
and Astill (2019), Key and Sneeringer (2014), 
and Mosheim and Lovell (2009) published ar-
ticles focusing on different aspects of dairy farm 
productivity. Claassen, Duquette, and Smith 
(2018) use ARMS data to examine the possible 
additionality of conservation programs over the 
period 2009-2012 for various crops.

In summary, the USDA-ERS has a multilayered 
information system including the farm, county, 
state and national levels, and the associated da-
tasets are used to generate several informational, 
research and policy products. The data generated 
by the USDA are also complemented by surveys 
conducted by other agencies that provide informa-
tion on a variety of indicators related to the overall 
population, consumers, the labor force, market 
input and output prices and price indices. These 
data provide the critical ingredients required to 
generate the USDA agricultural TFP indices and 
to inform policymaking.

Recent Developments2

Before moving to the conclusion, it is important 
to mention the 2021 World Development Report 
and the 50×2030 Initiative. The World Bank 
(2021b) Report, entitled Data for Better Lives, 
provides a comprehensive analysis of challenges 
and opportunities associated with data genera-
tion, utilization, and governance. A core issue of 
the report is “(h)ow to turn data into information 
and information into insights that can help the 
poor….” (p. 24, World Bank, 2021b). The report 

2   Although it is not a recent development, we need to mention the Living Standards Measurement Study (LSMS) conduc-
ted by the World Bank (2021a). This has been a significant effort devoted to collect farm household data in many countries 
around the world. Over the last decade, this work has focused on several African countries under the LSMS-ISA (Integrated 
Surveys on Agriculture) initiative.
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also highlights potential benefits that geographic 
information systems and remote sensing along 
with data analytics can have for farm manage-
ment and the advancement of ‘smart agriculture’ 
while helping cope with production and financial 
risk. Several examples are mentioned to illustrate 
how information systems are being applied along 
different agricultural value chains in various 
developing countries. The issue of data protec-
tion and confidentiality is addressed at length in 
the report, with a full chapter devoted to data 
governance.

The 50×2030 Initiative (2021) has been generated 
as a cooperative effort between the International 
Fund for Agricultural Development (IFAD), the 
Food and Agriculture Organization (FAO) and the 
World Bank. This initiative is anchored on the 
notion that public policies and investment deci-
sions needed to promote agriculture and reduce 
poverty must have an ‘evidence-based foundation’. 
However, in many countries, the data required to 
develop such evidence are inadequate, and this 
information gap needs to be closed. Therefore, 
the 50×2030 Initiative “… aims to empower 
and support 50 low and lower middle-income 
countries (L/LMICs) to build strong national 
data systems that produce and use high-quality, 
timely agricultural survey data” (p. 4). The data 
to be collected will develop evidence for various 
Sustainable Development Goals, particularly for 
SDG2 (zero hunger), which is the key goal related 
to agriculture, and SDG 5 (gender equality).

Concluding Remarks

The specific objectives of this paper were to 
provide a broad discussion of crucial agricultural 
productivity measures and an overview of major 
related methodologies, summarize empirical 
evidence regarding technical efficiency (TE) and 
total factor productivity (TFP) in Chilean agri-
culture, discuss the main sources of agricultural 
data in Chile, and provide a summary of the good 
practices currently employed in Australia and the 

United States that could serve as a model as Chile 
moves forward with changes to its agricultural 
statistics system.

Moving forward with agricultural production 
statistics in Chile

Our overview of the agricultural data systems in 
Australia and the United States reveals several 
practices that deserve attention. A critical con-
tribution of an agricultural census is the ability 
to update the existing sample frame, which can 
then be used to guide the implementation of other 
agricultural surveys conducted between census 
years. In addition to updates in sampling frames 
and lists of farmers, the redesign of the Chilean 
agricultural statistical system must consider en-
riching the collection of data for outputs, capital, 
intermediate inputs, labor, and prices as well as 
other variables needed to investigate interactions 
between agricultural production, environmental 
features, and climate change. This information is 
essential to generate robust estimates and analyses 
of technical efficiency, total factor productivity 
and related economic studies that provide the 
basis for sound agricultural policy formulation, 
implementation and evaluation.

Considering that the Agricultural Census is car-
ried out every 10 years (or more), the statistical 
foundation developed from a particular census 
progressively loses relevancy as the intercensal 
period progresses. At the present, there are no 
alternative data sources to address this shortcom-
ing. One option to tackle this deficiency is the 
implementation of a rotating approach along the 
lines of the USDA ARMS. To this end, it would 
be desirable to evaluate the implementation of a 
list and area framework focusing on key outputs 
and/or farming systems designed to periodically 
capture the dynamism and heterogeneity of agri-
cultural production across different geographical 
areas. As suggested by GSARS (2017, 2018), the 
statistical base should be complemented with 
administrative information gathered by various 
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entities, and this information should be updated 
on a regular basis to ensure the usefulness of 
the data. An example in Chile is the livestock 
administrative registration undertaken by the 
Agricultural and Livestock Service (SAG for 
its acronym in Spanish), which could be used 
to update the statistical framework of dairy and 
livestock farming.

Another matter that deserves careful consideration 
is the design of annual surveys that collect detailed 
farm-level output and input data suitable for pro-
ductivity analysis. The statistical system should 
be reinforced with climatic and environmental 
variables using big data and machine learning 
methods to assemble and organize information 
that is currently available but dispersed across 
numerous Chilean agencies. These comprehensive 
datasets are needed in the estimation of economet-
ric and other types of models to generate robust 
productivity indicators and enhance the formula-
tion of evidence-based sustainable farm policies. 
Once the new agricultural statistical system is 
implemented, aggregate-level information needs 
to be well documented and widely available in 
formats that are easy to manipulate and to merge 
with other datasets. Moreover, a mechanism needs 
to be designed so that the microdata can also be 
made accessible to researchers while strictly ad-
hering to well-designed confidentiality protocols.

The case for the importance of good-quality 
agricultural data should be clear, yet the lack 
of such data in Chile and many other low- and 
middle-income countries is a matter of rising 
concern and attention. Several multilateral agen-
cies are actively involved in efforts to strengthen 
the collection, analysis and dissemination of farm 
data, including the FAO, the World Bank, the 
OECD and, most recently, the 50×2030 Initiative. 
A potential silver lining is the digital revolution, 
which is opening exciting opportunities in the 
data collection arena. Despite these opportuni-
ties, there are challenges, including concerns that 
prevailing institutional and policy settings could 
be a hindrance as digital technologies become 

more prevalent in agricultural policy formulation 
(OECD, 2019).

Specific challenges have been identified associ-
ated with the generation of the cross-country 
FAOSTAT data, which have been widely used 
in research projects, as documented above (see 
Table 2). These data are collected through a set 
of annual questionnaires sent to countries around 
the world. A noteworthy problem comes from 
incomplete reporting, which limits the ability 
to produce consistent data. These partial and 
incomplete responses are attributed to various 
reasons, such as the complexity and length of 
the questionnaires, budget constraints, lack of 
adequately trained staff, confidentiality, the ab-
sence of uniform data collection systems across 
countries, and inconsistent country-level data col-
lection efforts (Dubey & Mane, 2013). These issues 
clearly constrain the development of harmonized 
international datasets that can be used to evaluate 
performance across time and space. The FAO 
has made modifications to address some of these 
problems and has published revised agricultural 
production data for the 1991-2013 period as part 
of an ongoing process (FAO, 2016). To take full 
advantage of panel datasets, such as FAOSTAT, 
it is essential that the information be collected 
systematically over time and across countries (or 
other units of observation). Unfortunately, data 
collection instruments and systems can vary over 
time, and it is not always possible to adjust the 
entire time series so that consistency is ensured.

A final point is the need for closer coordination 
and integration among Chilean organizations 
(e.g., INE, CIREN, ODEPA) as well as with the 
international agencies involved in data collec-
tion and management. The goal should be to 
make the best use of national and international 
resources to harmonize efforts and enhance the 
overall Chilean agricultural statistics system. A 
strategy that provides leadership and incentives 
to promote this deeper collaboration is needed 
to foster efficiencies and improvements in the 
quality of the data collection process. It seems 
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reasonable to argue that the Ministry of Agri-
culture, through the work of the ODEPA, has the 
capacity to advance the required mechanisms 
so that a revamped agricultural statistics system 
can provide robust information to measure and 
monitor productivity and other performance 
indicators while ensuring recurrent updates of 
the databases. The end goal is to strengthen the 
process of designing, implementing, and evaluat-

ing agricultural policies based on solid evidence 
at a reasonable cost.
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agrícola y recientes avances metodológicos; (2) Presentar una visión general de estudios que 
reportan medidas de eficiencia técnica y PTF en Chile; 3) Examinar las principales fuentes de 
datos agrícolas disponibles en el país; y 4) Revisar características claves de los sistemas de datos 
agrícolas utilizados en Australia y Estados Unidos. El documento termina identificando posibles 
mejoras en el sistema de información que podrían fortalecer las mediciones y el monitoreo de 
la productividad en Chile. El análisis sugiere que el país necesita avances sustanciales en la 
recopilación y análisis de estadísticas agrícolas para desarrollar estudios de productividad. Esta 
línea de trabajo es un paso crítico para luego mejorar la competitividad y fomentar adaptaciones 
al cambio climático, así como para participar plenamente en los esfuerzos patrocinados por el 
FIDA, FAO y la OCDE para monitorear el progreso de los Objetivos de Desarrollo Sostenible. 
Afortunadamente, la literatura ofrece diferentes opciones para progresar hacia una estructura 
estadística agrícola más robusta.

Palabras clave: Chile, eficiencia técnica, productividad total de los factores, sistema de datos.
agrícolas.
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