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Abstract
Many multipoint iterative methods without memory for solving non-linear equations
in one variable are found in the literature. In particular, there are methods that provide
fourth-order, eighth-order or sixteenth-order convergence using only, respectively,
three, four or five function evaluations per iteration step, thus supporting the Kung-
Traub conjecture on the optimal order of convergence. This paper shows how to find
optimal high order root-finding iterative methods by means of a general scheme based
in weight functions. In particular, we explicitly give an optimal thirty-second-order
iterativemethod; as long asweknow, an iterativemethodwith that order of convergence
has not been described before. Finally, we give a conjecture about optimal order
multipoint iterative methods with weights.

Keywords Multipoint iterative methods · Simple root · Order of convergence · Kung
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1 Introduction andMain Results

Solving nonlinear equations is a basic and extremely valuable tool in all fields of
science and engineering. Given a function f : D ⊂ C → C defined on a region D in
the complex plane C, one of the most common methods for finding simple roots x∗
of a nonlinear equation f (x) = 0 is Newton’s method (or Newton–Raphson method)
which, starting at an initial guess x0, iterates by means of

xn+1 = N f (xn) := xn − f (xn)

f ′(xn)
, n ≥ 0. (1)
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Under suitable conditions, this sequence will converge to the root x∗.
For an iterative method xn+1 = I f (xn) to find a root x∗ of f (x) = 0, an important

concept is the order the convergence. We say that the method converges with order
p > 1 if, starting at suitable points near the root, we have

lim
n→∞

|x∗ − xn+1|
|x∗ − xn|p = C �= 0. (2)

For instance, Newton’s method (1) has order 2, and Chebyshev’s method

xn+1 = C f (xn) := xn −
(
1 + f (xn) f ′′(xn)

2 f ′(xn)2

)
f (xn)

f ′(xn)
, n ≥ 0,

has order 3. In principle, the larger is the order, the faster is the convergence, i.e., the
less iterations are necessary to approximate the root with a desired precision. However,
it is important to take into account the cost of each iteration step (measured by the
number of evaluations of f and its derivative). This is done by defining the efficiency
index. The efficiency index of an iterative method of order p requiring d function
evaluations per iteration step is E(d, p) = d

√
p, see [23]. The unproved conjecture by

Kung and Traub [18] states that a method which uses d evaluations could achieve, at
most, a convergence order p = 2d−1. Methods that reach this bound, whose efficiency
index is therefore E(d, 2d−1) = d

√
2d−1, are known as optimal. Newton’s method has

d = 2 and p = 2, so it is optimal. Chebyshev’s method has d = 3 and p = 3, so it is
not optimal (there are methods that reach order p = 4 using just d = 3 evaluations).

Although order 2 (that is, Newton’s method) is in general enough for typical situ-
ations, high order methods are very useful for high precision computations, and the
theoretical and practical interest of these methods are huge.

ConsideringKung-Traub’s conjecture,manyoptimal two-pointmethods (3 function
evaluations and order 4) and three-point methods (4 function evaluations and order 8)
have been presented in the recent mathematical literature. In particular, the paper
[7] considers twenty nine optimal eighth-order methods, i.e., their efficiency index is
4
√
8 
 1.68179. Some optimal four-stepmethods (5 function evaluations and order 16)

have been considered also; we will mention them later in this paper.
There are several techniques which can be used to increase the convergence order

of an iterative method; see, for instance, [8, 16]. Let us start with an optimal (order 4)
two-step iterative method for solving nonlinear equations f (x) = 0, namely

⎧⎪⎪⎨
⎪⎪⎩

yn := xn − f (xn)

f ′(xn)
,

xn+1 := yn − f (xn)2

( f (xn) − f (yn))2
f (yn)

f ′(xn)
.

Adding an extra Newton evaluation we obtain the three-step scheme
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

yn := xn − f (xn)

f ′(xn)
,

zn := yn − f (xn)2

( f (xn) − f (yn))2
f (yn)

f ′(xn)
,

xn+1 := zn − f (zn)

f ′(zn)

(3)

which has order 8 (notice that if an iterative method xn+1 = F(xn) of order α is
composed with an iterative method xn+1 = G(xn) of order β, the order of the new
method xn+1 = G(F(xn)) is αβ), but it requires five functional evaluations so it is
not optimal.

The idea for obtaining an optimal method is to apply suitable approximations of
f ′(zn) to avoid an evaluation without loss of order. To this end, we can approximate

f ′(zn) ≈ f ′(xn)
W (tn, sn)

,

with tn = f (yn)
f (xn)

and sn = f (zn)
f (yn)

for a suitable function W , which is often called

weight function. Thus, writing f (xn)2/( f (xn) − f (yn))2 in the central part of Eq. (3)
as 1/(1 − tn)2, we have

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

yn := xn − f (xn)

f ′(xn)
,

zn := yn − 1

(1 − tn)2
f (yn)

f ′(xn)
,

xn+1 := zn − W (tn, sn)
f (zn)

f ′(xn)
.

(4)

For instance, this has been analyzed in the interesting paper [8], although not for
generalW (t, s) but for 3-variableweightsW (t, s, u) = H(t, s)G(u) andW (t, s, u) =
H(t, s) + G(u) with u = ts.

We can put a weight function Q(tn) instead of 1/(1 − tn)2 at the central part of
Eq. (4) and look for functions Q(t) and W (t, s) for which

⎧⎪⎪⎨
⎪⎪⎩

yn := xn − f (xn)

f ′(xn)
,

xn+1 := yn − Q(tn)
f (yn)

f ′(xn)

(5)
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is an optimal 4th order method and

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

yn := xn − f (xn)

f ′(xn)
,

zn := yn − Q(tn)
f (yn)

f ′(xn)
,

xn+1 := zn − W (tn, sn)
f (zn)

f ′(xn)

is an optimal 8th order method.
At this point, we can prove the following:

Theorem 1 Let f : D ⊂ C → C be a nine times continuously differentiable function
with a simple zero x∗ ∈ D, and let Q : C → C and W : C2 → C be sufficiently
differentiable functions on a neighborhood of the origin, with Q(0) = 1 and Q′(0) =
2. If the initial point x0 is close enough to x∗, then the method defined by

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

yn := xn − f (xn)

f ′(xn)
,

zn := yn − Q(tn)
f (yn)

f ′(xn)
,

xn+1 := zn − W (tn, sn)
f (zn)

f ′(xn)
,

(6)

with tn = f (yn)/ f (xn) and sn = f (zn)/ f (yn), converges to x∗ with order 8 if the
following conditions hold:

W (0, 0) = 1, Wt (0, 0) = 2,

Wtt (0, 0) = 2 + Q′′(0), Wttt (0, 0) = −24 + 6Q′′(0) + Q′′′(0),
Ws(0, 0) = 1, Wts(0, 0) = 4.

(7)

We postpone the proof of this theorem to Sect. 4. Of course, as in the case of [8],
[19] or [21], the use of symbolic computation packages is of great help to get the
proofs (Mathematica version 12 has been used in this paper).

A very simple pair of functions satisfying the conditions of Theorem 1 is Q(t) =
1 + 2t ,

W (t, s) = 1 + 2t + t2 − 4t3 + s + 4ts.

Other choices for Q are Q(t) = 1/(1−2t) = ∑∞
k=0 2

k tk or, for a ∈ C, the parametric
examples

Q(t) = 1 + at

1 + (a − 2)t
, Q(t) = t3 − at − 1

(2 − a)t − 1
,
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for which suitable functions W can be easily found.
These functions Q and W are just mere examples. Choosing functions Q and

W which include another kind or parameters is not difficult, and it allows to create
families of parameter-dependent iteration methods, all of them with convergence of
order 8, 4 evaluations, and efficiency index 4

√
8 
 1.68179. We can take the Taylor

expansions of Q and W and introduce parameters in some terms not involved in (7).
In particular, most of the methods of the survey [7] have convergence of order 8 and
could be analyzed (with suitable adjustments of the notation) as particular cases of
Theorem 1.

Of course, we can try to do the same again. The method

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yn := xn − f (xn)

f ′(xn)
,

zn := yn − Q(tn)
f (yn)

f ′(xn)
,

wn := zn − W (tn, sn)
f (zn)

f ′(xn)
,

xn+1 := wn − f (wn)

f ′(wn)

has order 16 with 6 evaluations at every step. Then, the idea is to approximate, in the
equation which gives xn+1,

f ′(wn) ≈ f ′(xn)
H(tn, sn, un)

,

with tn = f (yn)
f (xn)

, sn = f (zn)
f (yn)

and un = f (wn)
f (zn)

without loss of the sixteenth order. In this
way, we would have an optimal 16th iterative method, that is, with 5 evaluations at
every step and efficiency index 5

√
16 
 1.74110. Actually, there are not many optimal

16th order iterative methods in the mathematical literature, but some of them can be
found in [2, 4–6, 10, 11, 19, 20, 26–30].

With our strategy of using a weight H(t, s, u), this can be done as follows. We
choose the simplest weights Q and W satisfying the conditions (7), i.e., with all the
derivatives not involved in (7) equal to 0. This avoids unnecessary complications in the
notation and in the computational effort for finding the relations among the derivatives
of Q, W , and H .

Let us write the partial derivatives of H(t, s, u) at the origin as

Hi, j,k = ∂ i+ j+k H(t, s, u)

∂t i ∂s j ∂uk

∣∣∣
(t,s,u)=(0,0,0)

. (8)

Theorem 2 Let f : D ⊂ C → C be a 17 times continuously differentiable function
with a simple zero x∗ ∈ D, and let

Q(t) = 1 + 2t, W (t, s) = 1 + 2t + t2 − 4t3 + s + 4ts, (9)
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and H : C3 → C a sufficiently differentiable function on a neighborhood of the origin.
If the initial point x0 is close enough to x∗, then the method defined by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yn := xn − f (xn)

f ′(xn)
,

zn := yn − Q(tn)
f (yn)

f ′(xn)
,

wn := zn − W (tn, sn)
f (zn)

f ′(xn)
,

xn+1 := wn − H(tn, sn, un)
f (wn)

f ′(xn)
,

(10)

with tn = f (yn)/ f (xn), sn = f (zn)/ f (yn) and un = f (wn)/ f (zn), converges to x∗
with order 16 if the following conditions hold:

H0,0,0 = 1, H0,0,1 = 1, H0,1,0 = 1, H1,0,0 = 2,

H0,1,1 = 2, H0,2,0 = 0, H1,0,1 = 2, H1,1,0 = 4, H2,0,0 = 2,

H0,3,0 = −6, H1,1,1 = 8, H1,2,0 = 4,

H2,0,1 = 2, H2,1,0 = 2, H3,0,0 = −24,

H1,3,0 = −24, H2,2,0 = 4, H3,0,1 = −24, H3,1,0 = −24, H4,0,0 = 0,

H3,2,0 = −72, H4,1,0 = −72, H5,0,0 = 0,

H5,1,0 = 720, H6,0,0 = 0, H7,0,0 = 0.

(11)

In this theorem, if we take Hi, j,k = 0 for all the derivatives not involved in (11)
and use the 3-variable Taylor expansion

H(t, s, u) = H(0, 0, 0) +
∞∑

m=1

∑
i+ j+k=m

Hi, j,k

i ! j ! k! t
i s j uk,

we get the polynomial

H(t, s, u) = 1 + u + s + 2t + 2su + 2tu + 4ts + t2

− s3 + 8tsu + 2ts2 + t2u + t2s − 4t3

− 4ts3 + t2s2 − 4t3u − 4t3s − 6t3s2 − 3t4s + 6t5s.

(12)

As commented above, several other sixteenth-order iterative methods appear in the
mathematical literature. But, as long as we know, no explicitly stated thirty-second-
order methods have been given; actually, optimal 2d methods have been proved to
exist for every positive integer d (see [18, 24, 25]), but explicit formulas in closed
form have not been provided. Thus, giving a simple thirty-second-order method was
a sort of a challenge.
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In this paper, the idea is to modify (10) taking an additional intermediate point hn
instead of xn+1 and then compute xn+1 using a new weight function J defined on a
neighborhood of the origin (in C

4).
With this aim, we take Q andW as in (9), and H as in (12), which are the “simplest”

weights to reach order 16. Let us write the partial derivatives of J (t, s, u, v) at the
origin as

Ji, j,k,l = ∂ i+ j+k+l J (t, s, u, v)

∂t i ∂s j ∂uk ∂vl

∣∣∣
(t,s,u,v)=(0,0,0,0)

.

Then, we have the following:

Theorem 3 Let f : D ⊂ C → C be a 33 times continuously differentiable function
with a simple zero x∗ ∈ D, let Q and W as in (9), H as in (12) and J : C4 → C a
sufficiently differentiable function in a neighborhood of the origin. If the initial point
x0 is sufficiently close to x∗, then the method defined by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yn := xn − f (xn)

f ′(xn)
,

zn := yn − Q(tn)
f (yn)

f ′(xn)
,

wn := zn − W (tn, sn)
f (zn)

f ′(xn)
,

hn := wn − H(tn, sn, un)
f (zn)

f ′(xn)
,

xn+1 := hn − J (tn, sn, un, vn)
f (wn)

f ′(xn)
,

(13)

with tn = f (yn)/ f (xn), sn = f (zn)/ f (yn), un = f (wn)/ f (zn) and vn =
f (hn)/ f (wn), converges to x∗ with order 32 if the following conditions hold:

J0,0,0,0 = 1, J0,0,0,1 = 1, J0,0,1,0 = 1, J0,1,0,0 = 1, J1,0,0,0 = 2,

J0,0,1,1 = 2, J0,0,2,0 = 0, J0,1,0,1 = 1, J0,1,1,0 = 2, J0,2,0,0 = 0,

J1,0,0,1 = 2, J1,0,1,0 = 2, J1,1,0,0 = 4, J2,0,0,0 = 2, J0,0,3,0 = −6,

J0,1,1,1 = 4, J0,1,2,0 = 2, J0,2,0,1 = 0, J0,2,1,0 = 0, J0,3,0,0 = −6,

J1,0,1,1 = 4, J1,0,2,0 = 0, J1,1,0,1 = 4, J1,1,1,0 = 8, J1,2,0,0 = 4,

J2,0,0,1 = 2, J2,0,1,0 = 2, J2,1,0,0 = 2, J3,0,0,0 = −24, J0,1,3,0 = −12,

J0,2,2,0 = 0, J0,3,0,1 = −6, J0,3,1,0 = −6, J0,4,0,0 = 0, J1,0,3,0 = −12,

J1,1,1,1 = 16, J1,1,2,0 = 8, J1,2,0,1 = 4, J1,2,1,0 = 4, J1,3,0,0 = −24,

J2,0,1,1 = 4, J2,0,2,0 = 0, J2,1,0,1 = 2, J2,1,1,0 = 2, J2,2,0,0 = 4,

J3,0,0,1 = −24, J3,0,1,0 = −24, J3,1,0,0 = −24, J4,0,0,0 = 0, J0,3,2,0 = −12,

J0,4,1,0 = 0, J0,5,0,0 = 0, J1,1,3,0 = −48, J1,2,2,0 = 8, J1,3,0,1 = −24,

J1,3,1,0 = −24, J1,4,0,0 = 0, J2,0,3,0 = −12, J2,1,2,0 = 0, J2,2,0,1 = 4,
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J2,2,1,0 = 4, J2,3,0,0 = 0, J3,0,1,1 = −48, J3,0,2,0 = 0, J3,1,0,1 = −24,

J3,1,1,0 = −24, J3,2,0,0 = −72, J4,0,0,1 = 0, J4,0,1,0 = 0, J4,1,0,0 = −72,

J5,0,0,0 = 0, J0,5,1,0 = 120, J0,6,0,0 = 0, J1,3,2,0 = −72, J1,4,1,0 = −48,

J1,5,0,0 = 0, J2,2,2,0 = 0, J2,3,1,0 = 12, J2,4,0,0 = 0, J3,0,3,0 = 144,

J3,1,2,0 = 0, J3,2,0,1 = −72, J3,2,1,0 = −72, J3,3,0,0 = 0, J4,0,2,0 = 0,

J4,1,0,1 = −72, J4,1,1,0 = −72, J4,2,0,0 = 0, J5,0,0,1 = 0, J5,0,1,0 = 0,

J5,1,0,0 = 720, J6,0,0,0 = 0, J0,7,0,0 = 0, J1,5,1,0 = 480, J1,6,0,0 = 0,

J2,4,1,0 = −48, J2,5,0,0 = 0, J3,2,2,0 = −96, J3,3,1,0 = −216, J3,4,0,0 = 0,

J4,1,2,0 = 0, J4,2,1,0 = −144, J4,3,0,0 = 0, J5,0,2,0 = 0, J5,1,0,1 = 720,

J5,1,1,0 = 720, J5,2,0,0 = 0, J6,0,0,1 = 0, J6,0,1,0 = 0, J6,1,0,0 = 0,

J7,0,0,0 = 0, J1,7,0,0 = 0, J2,6,0,0 = 0, J3,4,1,0 = 1440, J3,5,0,0 = 0,

J4,3,1,0 = −576, J4,4,0,0 = 0, J5,1,2,0 = 0, J5,2,1,0 = 1440, J5,3,0,0 = 0,

J6,0,2,0 = 0, J6,1,1,0 = 0, J6,2,0,0 = 0, J7,0,0,1 = 0, J7,0,1,0 = 0,

J7,1,0,0 = 0, J8,0,0,0 = 0, J3,6,0,0 = 0, J4,5,0,0 = 0, J5,3,1,0 = 2880,

J5,4,0,0 = 0, J6,2,1,0 = 7200, J6,3,0,0 = 0, J7,0,2,0 = 0, J7,1,1,0 = 0,

J7,2,0,0 = 0, J8,0,1,0 = 0, J8,1,0,0 = 0, J9,0,0,0 = 0, J5,5,0,0 = 0,

J6,4,0,0 = 0, J7,2,1,0 = −80640, J7,3,0,0 = 0, J8,1,1,0 = 0, J8,2,0,0 = 0,

J9,0,1,0 = 0, J9,1,0,0 = 0, J10,0,0,0 = 0, J7,4,0,0 = 0, J8,3,0,0 = 0,

J9,1,1,0 = 0, J9,2,0,0 = 0, J10,0,1,0 = 0, J10,1,0,0 = 0, J11,0,0,0 = 0,

J9,3,0,0 = 0, J10,2,0,0 = 0, J11,0,1,0 = 0, J11,1,0,0 = 0, J12,0,0,0 = 0,

J11,2,0,0 = 0, J12,1,0,0 = 0, J13,0,0,0 = 0, J13,1,0,0 = 0, J14,0,0,0 = 0,

J15,0,0,0 = 0.

The proof of this theorem is postponed to Sect. 5. To be honest, we must acknowl-
edge that we do not have a compete mathematical proof, but a rather satisfactory
heuristic proof with many computational evidences.

As in the case of (12), if we take Ji, j,k,l = 0 for all the partial derivatives not
involved in Theorem 3 and use the 4-variable Taylor expansion

J (t, s, u, v) = J (0, 0, 0, 0) +
∞∑

m=1

∑
i+ j+k+l=m

Ji, j,k,l
i ! j ! k! l! t

i s j ukvl ,

we get a polynomial J (t, s, u, v) with integer coefficients.
In general, for finding the roots of a function f : D ⊂ C → C we can think about

a multipoint method which, after starting at an initial guess x0, computes xn+1 from
xn by means of a (d + 1)-point iterative scheme with weights of the form
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x [1]
n := xn − f (xn)

f ′(xn)
,

x [2]
n := x [1]

n − W [1](t [1]n )
f (x [1]

n )

f ′(xn)
,

x [3]
n := x [2]

n − W [2](t [1]n , t [2]n )
f (x [2]

n )

f ′(xn)
,

. . . := . . .

x [d]
n := x [d−1]

n − W [d−1](t [1]n , . . . , t [d−1]
n )

f (x [d−1]
n )

f ′(xn)
,

xn+1 := x [d]
n − W [d](t [1]n , . . . , t [d]

n )
f (x [d]

n )

f ′(xn)
,

(14)

with t [i]n = f (x [i]
n )/ f (x [i−1]

n ), i = 1, . . . , d, and where x [0]
n = xn . Here, the weights

W [i] must be functions W [i] : Ci → C sufficiently differentiable in a neighborhood
of the origin.

In this scheme, the case d = 2 corresponds to Theorem 1 (4 function evaluations
per iteration step and order 8), d = 3 corresponds to Theorem 2 (5 evaluations and
order 16) and d = 4 corresponds to Theorem 3 (6 evaluations and order 32). In general,
(14) has d + 2 evaluations of f or f ′ per iteration step. Then, according to the Kung-
Traub conjecture [18], the optimal order of convergence could be, at most, 2d+1, and
the efficiency index would be 2(d+1)/(d+2).

The papers [18, 24, 25] prove the existence of several families of multipoint optimal
methods which attain the convergence order 2d+1 using d + 2 function evaluations
per iteration, but none of these families are based on weight functions (a typical tool
for proving the existence is the use of inverse interpolatory polynomial or Hermite
interpolation polynomial).

In Theorems 2 and 3, the equations involved in the computation of the Taylor coef-
ficients of the weights are rather complicated, but they always have integer solutions.
Based on that, we conjecture the existence not only of families of optimal multipoint
methods based on weights, but the following:

Conjecture For every positive integer d there exists an optimal multipoint method of
the form (14) (that is, with order 2d+1) where the weights W [i] are polynomials (in i
variables) with coefficients in Z.

It is clearly impossible to prove this conjecture using the computer-aided proofs of
this paper (Sects. 4 and 5).

Besides this introductory section and the above mentioned sections with proofs,
this paper has two additional sections. In Sect. 2 we experimentally measure the 32nd
order of convergence given in Theorem 3 by means of several tests; this is always an
important point for preventing errors in the proofs or in the numerical implementations.
Finally, in Sect. 3 we give a couple of examples showing how the process to increase
the order of convergence influences the basins of attraction of the roots for a common
nonlinear equation f (x) = 0.
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Let us finally mention that, in this paper, we have not tried to find a practical method
to solve nonlinear equations, or compare its advantages with respect to the many other
numerical methods published in the mathematical literature. Instead, the idea has been
to explore a theoretical general scheme to find optimal methods (in the Kung-Traub
sense), to compare its dynamical behavior through some examples, and to use it for
finding the first 32nd optimal method, a nice challenge.

2 Experimental Checking of the Order of Convergence

Given an iterative method, computing experimentally the order of convergence in
several examples is a good test to detect theoretical errors in the deduction of the
method or practical errors in the implementation of the method in a computer. Using
the definition (2) to compute experimentally the order of convergence is not practical;
that is why suitable approximations were introduced.

The computational order of convergence (COC), defined in [32], is given by the
formula

COC ≈ ln |(xn+1 − x∗)/(xn − x∗)|
ln |(xn − x∗)/(xn−1 − x∗)| . (15)

When x∗ is unknown, which is usual in practice (unless the method is checked in a
equation whose root is already known), we can use the approximated computational
order of convergence (ACOC), defined in [9], as

ACOC ≈ ln |(xn+1 − xn)/(xn − xn−1)|
ln |(xn − xn−1)/(xn−1 − xn−2)| . (16)

For a comparison among several convergence orders, see [12].
We are going to compute both COC and ACOC for checking the accuracy of our

32nd-order iterative method (13). This is particularly important in this case, because
we do not have a complete proof of Theorem 3 (see more details in Sect. 5). If our
numerical experiments find that the method has order 32 for a suitable collection of
nonlinear equations, then we will have good empirical evidence in favour of thinking
that the result is correct.

We make this kind of numerical experiments using the four test functions f j (x),
j = 1, . . . , 4, given in Table 1. The mathematical literature contains a big amount of
examples; for instance, the authors of [14] collected, from previous papers, 125 test
functions including our f2 and f4. In each case, we arrive at the root x∗ starting from
the point x0.

The results of these numerical experiments can be found in Table 2. Notice that, to
estimate the COC and the ACOC, it has been enough to use n = 3 in (15) and (16)
to get excellent approximations of the order of convergence 32 stated in Theorem 3.
To obtain high accuracy and to avoid the loss of significant digits, we have employed
multi-precision arithmetic with 100,000 significant decimal digits in the programming
package Mathematica.
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Table 1 Test functions f1, . . . , f4, root x∗, and initial guess x0
Test function f j Root x∗ Initial guess x0

f1(x) = ln(1 + x2) + ex
2−3x sin x 0 0.35

f2(x) = 1 + e2+x−x2 + x3 − cos(1 + x) −1 −0.3

f3(x) = (1 + x2) cos πx
2 + ln(x2+2x+2)

1+x2
−1 −1.1

f4(x) = x4 + sin π

x2
− 5

√
2 1.5

Table 2 Errors, COC, and ACOC when the iterative method (13) is applied to find the root of test functions
f1, . . . , f4 given in Table 1

f , x0 |x1 − x∗| |x2 − x∗| |x3 − x∗|

f1, x0 = 0.35 3.271333877 · 10−13 1.597059963 · 10−380 1.731428109 · 10−12134

COC=32.00000000 ACOC=32.00000000

f2, x0 = −0.3 3.070089751 · 10−15 4.198894054 · 10−475 9.432307615 · 10−15191

COC=32.00000000 ACOC=32.02853564

f3, x0 = −1.1 8.906481816 · 10−25 1.578849004 · 10−760 1.427715840 · 10−24304

COC=32.00000000 ACOC=31.91939207

f4, x0 = 1.5 4.288950226 · 10−27 4.289681067 · 10−837 4.313133854 · 10−26757

COC=32.00000000 ACOC=32.01445638

3 Dynamics of theMethods

Given an iterative scheme F defined in the whole complex plane and a point x0 ∈ C,
the orbit of x0 is the sequence orb(x0) = {xn}∞n=0 defined by xn+1 = F(xn). The basin
of attraction of x∗ ∈ C is the set

basin(x∗) = {x0 ∈ C : orb(x0) → x∗}.

For a polynomial f and an iterative scheme F for solving the nonlinear equation
f (x) = 0, it is well known that the boundary among the basins of attraction of
different roots of f shows, in general, an intricate fractal structure. Assigning a color
to each basin of attraction, we usually get very nice pictures illustrating the behavior
of the iterative method F .

In the case of several iterative methods for a common problem f (x) = 0, the visual
comparison of the graphics corresponding to the different methods allow to observe
some aspects of the behavior of these methods. This has been widely used at least
since the paper [31] was published in 2002, in such a way that it is common to use
the pictures of the basins of attraction to graphically compare these methods. More
recent papers carrying out this kind of studies are [1, 3, 13–15, 22]; and, of course, we
cannot forget the book [17] and its nice fractal images.
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In particular, here we have root-finding iterative methods of order 2 (Newton’s
method (1)), order 4 (Eq. (5) with Q(t) = 1 + 2t), order 8 (Theorem 1), order 16
(Theorem 2) and order 32 (Theorem 3). The aim of this section is to visually compare
them when they are applied to the same problem f (x) = 0. In practice, let us observe
that, although high order methods can be useful for high precision computation, they
are much more demanding with respect to the initial point to reach a root of the
function f . (Thus, if one wants to use a high order iterative method to obtain a root
with a high precision, a good practical idea is to previously approximate the root by
applying several initial steps with Newton’s method.)

To illustrate the behavior of the five methods, we use a 600×600 grid of the square
D = [−3, 3] × [−3, 3] ⊂ C and assign a color to each point x0 ∈ D according to
the simple root to which the corresponding orbit of the iterative method starting at x0
converges. We mark the point as black if the orbit does not converge to a root in the
sense that after at most 25 iterations its distance to any of the roots is larger than 10−3.
In this way, we distinguish the attraction basins by their color.

We have done this comparison with a couple of functions. First, we have chosen
the typical polynomial

f (x) = x3 − 1

of degree three, whose three complex roots are

e2kπ i/3, k = 0, 1, 2.

The pictures in Fig. 1 present the corresponding basins of attraction. Independently
of the beauty of the graphics, the situation is as expected: increasing the order of
convergence changes the aspect (in the dynamics) of the picture, decreasing the size
of the basins of attractions.

Secondly, we have chosen the polynomial

f (x) = (10x5 − 1)(x5 + 10)

of degree ten, whose ten complex roots are

(
1

10

)1/5

e2kπ i/5, −101/5e2kπ i/5, k = 0, . . . , 4.

The basins of attraction are shown in Fig. 2.
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Fig. 1 From left to right and from top to bottom, basins of attraction for f (x) = x3 − 1 using methods of
order 2 (Newton), 4 (Eq. (5) with Q(t) = 1 + 2t), 8 (Theorem 1), 16 (Theorem 2) and 32 (Theorem 3)

Fig. 2 From left to right and from top to bottom, basins of attraction for f (x) = (10x5 − 1)(x5 + 10)
using methods of order 2 (Newton), 4 (Eq. (5) with Q(t) = 1 + 2t), 8 (Theorem 1), 16 (Theorem 2) and
32 (Theorem 3)
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4 Proof of Theorems 1 and 2

Proof of Theorem 1 Let us write Qi = diG(t)
dti

∣∣∣
t=0

and Wi, j = ∂ i+ j W (t,s)
∂t i ∂s j

∣∣∣
(t,s)=(0,0)

.

Then, the conditions in (7) become

W0,0 = 1, W1,0 = 2, W2,0 = 2 + Q2,

W3,0 = −24 + 6Q2 + Q3, W0,1 = 1, W1,1 = 4.

Let en := xn − x∗, en,y := yn − x∗, en,z := zn − x∗, and c� := f (�)(x∗)
�! f ′(x∗) for n ∈ N

(recall that f ′(x∗) �= 0 because the root x∗ is simple). Since f (x∗) = 0, the Taylor
expansion of f at x∗ yields

f (xn) = f ′(x∗)
(
en + c2e

2
n + c3e

3
n + · · · + c8e

8
n

) + O(e9n) (17)

and

f ′(xn) = f ′(x∗)
(
1 + 2c2en + 3c3e

2
n + 4c4e

3
n + · · · + 9c9e

8
n

) + O(e9n). (18)

Therefore, from (17) and (18),

f (xn)

f ′(xn)
= en − c2e

2
n + (2c22 − 2c3)e

3
n + (−4c32 + 7c2c3 − 3c4)e

4
n

+ (8c42 − 20c22c3 + 6c23 + 10c2c4 − 4c5)e
5
n

+ (−16c52 + 52c32c3 − 28c22c4 + 17c3c4 − c2(33c
2
3 − 13c5) − 5c6

)
e6n

+ O(e7n)

and

en,y = yn − x∗ = c2e
2
n + (−2c22 + 2c3)e

3
n + (4c32 − 7c2c3 + 3c4)e

4
n

+ (−8c42 + 20c22c3 − 6c23 − 10c2c4 + 4c5)e
5
n

+ (
16c52 − 52c32c3 + 28c22c4 − 17c3c4 + c2(33c

2
3 − 13c5) + 5c6

)
e6n + O(e7n).

For f (yn), we have the representation

f (yn) = f ′(x∗)
(
en,y + c2e

2
n,y + c3e

3
n,y + · · · + c8e

8
n,y

) + O(e9n,y). (19)

Then, we obtain from (17) and (19) that

tn = f (yn)

f (xn)
= c2en + (−3c22 + 2c3)e

2
n + (8c32 − 10c2c3 + 3c4)e

3
n

+ (−20c42 + 37c22c3 − 8c23 − 14c2c4 + 4c5)e
4
n

+ (
48c52 − 118c32c3 + 51c22c4 − 22c3c4 + c2(55c

2
3 − 18c5) + 5c6

)
e5n + O(e6n).
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Now, let us use

Q(tn) = Q0 + Q1tn + Q2t
2
n /2 + Q3t

3
n/6 + Q4t

4
n /24 + · · · .

Then, the central Eq. in (6) gives

en,z = zn − x∗ = (
c32(5 − Q2

2 ) − c2c3
)
e4n

+ (
c42(5Q2 − Q3

6 − 36) + c3c
2
2(32 − 3Q2) − 2c4c2 − 2c23

)
e5n

+
(−1

24 c
5
2(744Q2 − 52Q3 + Q4 − 4080) + 1

3c3c
3
2(111Q2 − 4Q3 − 786)

+ 3
2c4c

2
2(32 − 3Q2) − 3c2

(
2c23(Q2 − 11) + c5

) − 7c3c4
)
e6n + O(e7n)

where we have already used that Q0 = 1 and Q1 = 2 to cancel the coefficients of e2n
and e3n (this is equivalent to saying that the first two lines of (6), with xn+1 in the place
of zn , provide a fourth-order method; by this reason, we have already fixed Q(0) = 1
and Q′(0) = 2 in the hypothesis of the theorem).

Using the representation

f (zn) = f ′(x∗)
(
en,z + c2e

2
n,z + c3e

3
n,z + · · · + c8e

8
n,z

) + O(e9n,z), (20)

from (19) and (20), we get

sn = f (zn)

f (yn)
= (

c22(5 − Q2
2 ) − c3

)
e2n

+ (
c32(4Q2 − Q3

6 − 26) − 2c3c2(Q2 − 10) − 2c4
)
e3n

+
(−1

24 c
4
2

(
492Q2 − 44Q3 + Q4 − 2232

) + 1
2c3c

2
2

(
43Q2 − 2(Q3 + 130)

)

+ c4c2(29 − 3Q2) + c23(19 − 2Q2) − 3c5
)
e4n

+
(
c52(85Q2 − 73Q3

6 + 7Q4
12 − Q5

120 − 284)

+ 1
6c3c

3
2(−828Q2 + 81Q3 − 2Q4 + 3480) + 1

2c4c
2
2

(
62Q2 − 3(Q3 + 120)

)
+ c2

(
c23(38Q2 − 2Q3 − 212) + 2c5(19 − 2Q2)

) − 6c3c4(Q2 − 9) − 4c6
)
e5n

+
(

1
120 c

6
2

(
10

(
3(Q2 − 1260)Q2 + 754Q3 − 57Q4 + 9840

) + 17Q5

)

+ 1
24c3c

4
2(16500Q2 − 2544Q3 + 131Q4 − 2Q5 − 51600)

+ 1
6c4c

3
2(−1170Q2 + 118Q3 − 3Q4 + 4770)

− 1
2c

2
2

(
c23(687Q2 − 74Q3 + 2Q4 − 2668) + c5(−81Q2 + 4Q3 + 462)

)
+ c2

(
c6(47 − 5Q2) + c3c4(109Q2 − 6Q3 − 581)

)
+ 1

2c
2
4(76 − 9Q2) + 2c3c5(35 − 4Q2)

+ c33(22Q2 − 4Q3
3 − 113) − 5c7

)
e6n + O(e7n).
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To use the third Eq. in (6), let us expand W at (0, 0), that is,

W (tn, sn) = W0,0 + W1,0tn + W0,1sn + 1

2
W2,0t

2
n + 1

2
W0,2s

2
n + W1,1tnsn

+1

6
W3,0t

3
n + · · · .

Substituting these expressions into (6) gives

en+1 = xn+1 − x∗ = R4e
4
n + R5e

5
n + R6e

6
n + R7e

7
n + R8e

8
n + O(e9n),

with

R4 = 1

2
c2(W0,0 − 1)(c22(Q2 − 10) + 2c3)

and some expressions for R5, R6, R7 and R8 that will be considered successively.
By taking

W0,0 = 1

we get R4 = 0. Assuming this value, we have

R5 = 1

2
c22(W1,0 − 2)

(
c22(Q2 − 10) + 2c3

)

(without the assumption W0,0 = 1, the expression for R5 is much more complicated,
and the same happens in what follows). The choice

W1,0 = 2

leads to R5 = 0 and

R6 = −1

4
c2

(
c22(Q2 − 10) + 2c3

)

×
(
c22

(
(Q2 − 10)W0,1 − W2,0 + 12

) + 2c3(W0,1 − 1)
)
.

Similarly, taking

W0,1 = 1, W2,0 = 2 + Q2

gives R6 = 0 and

R7 = − 1

12
c22

(
c22(Q2 − 10) + 2c3

)(
c22

(
3Q2(W1,1 − 2)

− 30W1,1 − W3,0 + Q3 + 96
) + 6c3(W1,1 − 4)

)
.
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Finally, the choices

W1,1 = 4, W3,0 = −24 + 6Q2 + Q3

result in R7 = 0 and thus the convergence is (at least) of order eight.
Actually, a close look at the representation

R8 = 1

48
c2

(
c22(Q2 − 10) + 2c3

)(
c42

(
3Q2

(
(Q2 − 20)W0,2 − 2W2,1 + 36

)

+ 60(5W0,2 + W2,1 − 18) + W4,0 − 8Q3 − Q4

)

+ 12c3c
2
2

(
Q2(W0,2 − 1) − 10W0,2 − W2,1 + 38

) + 12c23(W0,2 − 2) − 24c4c2
)

shows that it is no longer possible to obtain R8 = 0 in general independently of the
values c�, so the order eight cannot be improved in general. 
�
Proof of Theorem 2 In a mathematical sense, the proof can be done like in Theorem 1,
with an intermediate additional pointwn (instead of xn+1) in every step of the iterative
method, and with the use of the additional weight H to compute xn+1. Of course, we
must take the expansions (17) and (18) (and similar expansions) up to O(e17n ), but this
is not a significative mathematical difference.

However, from a computational point of view, the computations involved are much
larger and demanding of memory and computer time (and the same can be said about
the space needed to explain them in a paper). To minimize this and simplify the
expressions which appear in the process, we fix Q and W as in (9) (that is, taking all
the derivatives not involved in (7) as 0).

Finally, we must have

en+1 = xn+1 − x∗ +
16∑

�=8

R�e
�
n + O(e17n )

and find the values of Hi, j,k which make R� = 0 for � = 8, . . . , 15. Anyway, the
mathematical process is very similar, so for the sake of brevity we omit the details.

In practice, it is a good idea to do it in several steps. For instance, we can take (17),
(18) and similar expressions only up to O(e10n ), and follow the iterative method only to
find the Hi, j,k whichmake R8 = 0, and so on.This strategy requires less computational
power, but it allows to proof that (11) guarantees order 16. (Actually, these conditions
are also necessary, because otherwise it is impossible to get R8 = · · · = R15 = 0
independently of the c�.) 
�
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5 Heuristic proof of Theorem 3

As in Sect. 4, we can try to start taking

f (xn) = f ′(x∗)
(
en +

32∑
�=2

c�e
�
n

)
+ O(e33n ). (21)

with general coefficients c�. Then, the original purpose can be to follow a similar
process to achieve

en+1 = xn+1 − x∗ +
32∑

�=16

R�e
�
n + O(e33n )

and to find the values of Ji, j,k,l which make R� = 0 for � = 16, . . . , 31. But, now,
the computational complexity of the process is much greater than in the proofs of
Theorems 1 and 2, and it has not been possible to follow the corresponding symbolic
procedure to find the equations R� = 0 which we want to solve. This also happens if
we try to do it step by step, firstly taking (21) only up to O(e18n ) to find the equation
R16 = 0, and so on.

The idea is, then, to try to simplify the problem, analyzing cases with only a few of

the coefficients c� not null. Recalling that c� := f (�)(x∗)
�! f ′(x∗) with f ′(x∗) �= 0, and because

we can assume that x∗ = 0, this is equivalent to studying Theorem 3 for functions of
the form

x + c2x
2, x + c3x

3, x + c2x
2 + c3x

3, x + c2x
2 + c4x

4, . . . (22)

and other simple cases (binomials or trinomials). With this kind of simplifications,
the symbolic procedure using the weights Q, W , H (prefixed) and a generic weight
J with partial derivatives Ji, j,k,l is already computationaly possible.

Now, let us imagine that we follow the procedure with the first example in (22)
(that is, only with c2 �= 0). Then, we find R16 which will be an expression involving
c2 and some of the Ji, j,k,l (this kind of expressions are not simple, so we do not write
it here, but the reader can imagine some like the descriptions of the R� in the proof of
Theorem 1). We want to solve the equation R16 = 0 assigning to the involved Ji, j,k,l
values independent of c2; this gives one or several expressions of combinations of
Ji, j,k,l ’s that must be null (something like, for instance, the coefficients of c22 and c3
in R7, in the proof of Theorem 1). If these equations give a uniquely determined value
for a Ji, j,k,l , we assign to it this value (of course, this becomes one the conditions
in the list of values of Theorem 3). If there still were in R16 some Ji, j,k,l without an
assigned value, we could repeat the procedure with another of the examples in (22),
to get more combinations of Ji, j,k,l ’s that must be null.

Once we have done it with a reasonable quantity of examples like those in (22),
we fix a reasonable quantity of coefficients Ji, j,k,l that we can hope are enough to
get order of convergence 17 for a general function f . With this procedure, we do not
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have a mathematical proof for it, but we can check the order using test functions like
those of Table 1; if the procedure with the already assigned Ji, j,k,l ’s gives COC and
ACOC equal to 17 (something like in Table 2), we can assume that we have already
succeeded in identifying the conditions for order 17; otherwise, we repeat the process
with more examples like in (22) to fix more Ji, j,k,l ’s.

Once the previous process has been done for the order of convergence 17, we do
it again, that is, we identify a new set of Ji, j,k,l ’s to get order 18, and we check it by
means of test functions. And so on, up to reach order of convergence 32.

In this way, some weeks of symbolic experiments with Mathematica have allowed
to find the suitable values for the Ji, j,k,l ’s that appear in Theorem 3, a total of 166
conditions! This has been the most difficult task.

Then, we have not only checked that these conditions give order 32, but also that
they are necessary. With this aim, we have checked what happens if we compute COC
and ACOC after changing only one of the Ji, j,k,l ’s in Theorem 3; in any of those
experiments, it turns out that the corresponding COC and ACOC are ≤ 31. On the
other hand, we have also checked what happens if we assign a not null value to any of
the Ji, j,k,l ’s not involved in Theorem 3 (up to a reasonable degree in the subindex);
we have seen that, in all those cases, the corresponding COC and ACOC remain 32,
so it is not necessary to fix more Ji, j,k,l ’s.

Thus, this is not a complete mathematical proof, but the result is experimentally
very well justified and it is not plausible to think that it can be incorrect. (Actually, we
have not only used the test functions detailed in Table 1 to experimentally check the
order of convergence, but some other ones, which is not necessary to detail.)
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