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Abstract 
In this research, a modification of the particle swarm optimization method was proposed, which is based on an intervention technique for 
the design of antennas. The proposed method was tested through its application on typical benchmark functions. Moreover, it was applied 
to the optimal design of a narrow band antenna and two ultra-wideband antennas through shape and hybrid optimization. The objective 
function was based on minimizing the S11 magnitude in the desired frequency range to improve impedance matching. The modified method 
had a better performance than the original particle swarm optimization in the typical benchmark functions, and the best results were obtained 
for the antenna optimization process. Therefore, this method is a good alternative to be applied in these processes because it allows obtaining 
a better quality of solution and reducing the number of evaluations of the objective function.     
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Modificación del método de optimización de enjambre de 
partículas mediante la técnica de intervención y su aplicación en el 

diseño de antenas 
 

Resumen 
En esta investigación se propone un método modificado de optimización de enjambre de partículas, basado en una técnica de intervención 
para el diseño de antenas. El método propuesto se probó mediante su aplicación a funciones de prueba típicas. Asimismo, se aplicó en el 
diseño óptimo de una antena de banda angosta y dos antenas de banda ultra ancha mediante optimización de forma e híbrida. La función 
objetivo se basó en minimizar la magnitud de S11 en el rango de frecuencias deseado para mejorar el acoplamiento de impedancia. El 
método modificado presentó un buen desempeño en las funciones de prueba típicas y se obtuvieron los mejores resultados en el proceso 
de optimización de las antenas. De esta manera, el método propuesto es una buena alternativa para ser aplicado en estos procesos, ya que 
permitió obtener una mejor calidad de solución y reducir el número de evaluaciones de la función objetivo.  
 
Palabras clave: optimización de enjambre de partículas; PSO; PSO modificado; PSOit; técnica de intervención; optimización de antenas. 

 
 
 

1.  Introduction 
 
The design of antennas is a complex process that requires 

running electromagnetic simulations and depends on many 
variables that affect the bandwidth, losses, and gain of the 
antenna. Therefore, it is appropriate to apply optimization 
techniques to obtain the best results for a particular objective 
[1,2]. However, a small percentage of the antennas recently 
published in the literature are designed by means of 
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optimization to determine the size of their structure, which 
allows enhancing the optimal search according to the design 
premises of the selected application [3].  

The optimization methods employed in recent years for 
the antenna design are Genetic Algorithms (GA), Particle 
Swarm Optimization (PSO), Surrogate–Based Optimization 
(SBO), and Fractional Factorial Design (FFD). The GA, 
PSO, and SBO methods are heuristic, and they are based on 
the individual experiences or surrogate models, to resolve 
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design problems; whereas FFD is a probabilistic method 
based on the variance analysis for determining the optimal 
solution [3]. 

Among these methods, PSO is one of the fastest heuristic 
approaches for finding the optimal solution of a complex 
problem [4]; it is considered an artificial intelligence method. 
Therefore, it has been applied in multiple antenna 
optimization processes to reduce computation time by 
preventing next particle generations from being equal to 
previous iterations [5].  

PSO has been applied in many different fields, and 
several variants have been proposed with the modification of 
some of its parameters or steps for improving performance. 
For example, when a particle does not improve its result, it is 
helpful to intervene on it, so the algorithm can find the 
optimum faster. Also, the combination of different 
optimization techniques with PSO can enhance performance 
for particular applications [6].  

Regarding antenna optimization, some of its variants are: 
hierarchical PSO to enhance search space exploration, a self-
organizing hierarchy with time-varying acceleration 
coefficients [7]; neighborhood-redispatch PSO to avoid the 
premature convergence problem with a global search strategy 
through the inclusion of factors that modify the calculation of 
updated velocity [8]; PSO with velocity mutation to apply a 
mutation in the velocity of particles that do not improve its 
result at a given time [9]; and quantum-behaved PSO to 
reduce the number of controlling parameters where particle 
movement is described by the probability density function in 
terms of the wave function [10]. 

In the research works described above, different variables 
were optimized, including beam width [7], bandwidth, 
considering the standing wave ratio [8-10], and gain [9], in 
order to obtain the best performance according to the design 
premises. In any case, it is a priority to obtain the best 
performance in the desired bandwidth, which can also be 
done by achieving the lowest S11 magnitude possible to 
reduce the return losses produced by the matching impedance 
with the communication system; for example, in [11,12], the 
authors applied PSO to optimize this parameter.  

In this work, we present a new modified PSO method 
with a strategy based on the intervention in the global search 
for the worst particles, i.e., the particles that do not improve 
their response. This modification aims to enhance the 
performance of conventional PSO in terms of the search for 
the optimal solution, as well as to reduce the number of 
iterations needed. The proposed method is applied to 
benchmark functions and antennas of narrowband and ultra-
wideband to validate its operation. The objective function for 
the optimization is based on obtaining the lowest S11 
magnitude in the desired operating frequency range.   

 
2. Description of the proposed modification for the 

method of optimization 
 
In this section, the conventional and modified methods of 

optimization are explained, describing their algorithms, 
equations, and parameters to resolve problems with real and 
binary variables. 

 

2.1  Conventional particle swarm optimization 
 
The conventional PSO algorithm is shown in Fig. 1, and 

its parameters are the following: 𝑁𝑁 is the number of 
dimensions (real and/or binary); 𝑀𝑀 is the number of particles; 
𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  is the number of total iterations; 𝑤𝑤 is the inertial weight; 
𝑐𝑐1 and 𝑐𝑐2 are cognitive and social parameters; 𝜂𝜂1 and 𝜂𝜂2 are 
random values for each particle and iteration; and 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛  
represents the maximum velocity for each dimension 
calculated with eq. (1), where 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛  is the maximum position, 
and 𝑋𝑋𝑚𝑚𝑖𝑖𝑛𝑛𝑛𝑛  is the minimum position of dimension n [13]. 

 
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛 = 0.1(𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛 − 𝑋𝑋𝑚𝑚𝑖𝑖𝑛𝑛𝑛𝑛 ) (1) 

 
The convergence criteria are that the number of iterations 

(𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) must be equal to a determined maximum number, and 
that the best value of particle must not change in a 
consecutive number of iterations (𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐). When any of these 
two conditions is accomplished, the optimization process 
ends, and the best position of the swarm is obtained [14].  

To update the velocity of particle m and dimension n, eq. 
(2) is employed, where the value of the best response of the 
particle is 𝑃𝑃𝑏𝑏𝑖𝑖𝑐𝑐𝑖𝑖,𝑖𝑖

𝑚𝑚𝑛𝑛  for each iteration i and particle m; the best 
response of the swarm is 𝐺𝐺𝑏𝑏𝑖𝑖𝑐𝑐𝑖𝑖; and the position of the 
particle m, dimension n, and iteration i is 𝑋𝑋𝑖𝑖𝑚𝑚𝑛𝑛. This value 
must be between a maximum (𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛 ) and a minimum (−𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛 ) 
[14]. 

 
𝑉𝑉𝑖𝑖+1𝑚𝑚𝑛𝑛 = 𝑤𝑤𝑉𝑉𝑖𝑖𝑚𝑚𝑛𝑛 + 𝑐𝑐1𝜂𝜂1(𝑃𝑃𝑏𝑏𝑖𝑖𝑐𝑐𝑖𝑖,𝑖𝑖

𝑚𝑚𝑛𝑛 − 𝑋𝑋𝑖𝑖𝑚𝑚𝑛𝑛) +  𝑐𝑐2𝜂𝜂2(𝐺𝐺𝑏𝑏𝑖𝑖𝑐𝑐𝑖𝑖
− 𝑋𝑋𝑖𝑖𝑚𝑚𝑛𝑛) 

(2) 

 

 
Figure 1. Conventional PSO algorithm. 
Source: Authors. 
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The updated position for real dimensions is calculated 
through eq. (3), and it must be in a confinement interval 
between 𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑖𝑖𝑛𝑛

𝑛𝑛  and 𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚
𝑛𝑛  [13]. Meanwhile, eq. (4) is 

used for the binary dimensions, where S is the probability that 
a particle can change its state to a logical one, and 𝑟𝑟𝑖𝑖+1𝑚𝑚𝑛𝑛  is a 
random value in the range between 0 and 1. With that 
expression, a binary value (0 or 1) is obtained for each 
particle, which is discretized through the Sigmoid 
transformation in eq. (5) [15].  

 
𝑋𝑋𝑖𝑖+1𝑚𝑚𝑛𝑛 = 𝑋𝑋𝑖𝑖𝑚𝑚𝑛𝑛 + 𝑉𝑉𝑖𝑖+1𝑚𝑚𝑛𝑛  (3) 

 

𝑋𝑋𝑖𝑖+1𝑚𝑚𝑛𝑛 = �
1   𝑓𝑓𝑓𝑓𝑟𝑟 𝑟𝑟𝑖𝑖+1𝑚𝑚𝑛𝑛 < 𝑆𝑆(𝑉𝑉𝑖𝑖+1𝑚𝑚𝑛𝑛)
0   𝑓𝑓𝑓𝑓𝑟𝑟 𝑟𝑟𝑖𝑖+1𝑚𝑚𝑛𝑛 ≥ 𝑆𝑆(𝑉𝑉𝑖𝑖+1𝑚𝑚𝑛𝑛) (4) 

 
𝑆𝑆(𝑉𝑉𝑖𝑖+1𝑚𝑚𝑛𝑛) =

1
1 + 𝑒𝑒−𝑉𝑉𝑖𝑖+1𝑚𝑚𝑚𝑚 (5) 

 
2.2  Modification of particle swarm optimization through 

the intervention technique 
 
The modified Particle Swarm Optimization with 

Intervention Technique (PSOit) proposed in this work is 
based on following the best particle of the swarm. When any 
particle does not improve its result for a previously 
determined number of iterations, it is intervened, so it is 
attracted to the best particle and guided toward the region 
with more potential for improvement.  

 

 

 

(a) 

 

(b) 
Figure 2. Diagram of acceleration toward the location of the best response 
of the particle and the best response of the swarm for particles 1, 2, and 3 
with conventional (a) and modified (b) methods in a 2D parameter space. 
Source: Authors. 

Therefore, the intervened particle has the opportunity to 
benefit from the global experience of the swarm and can 
increase the speed of convergence of the algorithm. This 
intervention ends when the response of the particle improves. 
Then, the conventional method is applied to this particle until 
the conditions for another intervention emerge.  

In Fig. 2, a 2D parameter space acceleration diagram is 
presented to exemplify the proposed modification, it shows 
the acceleration of particles toward the location of the best 
response of the particle and the best response of the swarm 
using conventional and modified methods. In Fig. 2(a), the 
velocity of particle 1 in the next iteration (i+1) keeps pointing 
toward its best response, which is away from the region of 
the best solution of the swarm. However, Fig. 2(b) shows that 
the velocity of particle 1 (intervened particle) in i+1 is 
moving toward the best response of particle 3, which is the 
best particle from the swarm. Therefore, the intervention 
allows obtaining an acceleration toward the region with more 
potential for improvement, thus leading to a better response 
from particle 1.  

In this way, the PSOit aims to improve the performance 
of the swarm. The proposed algorithm is shown in Fig. 3, 
where the modifications to the conventional algorithm are 
marked in gray. The conditions for applying the intervention 
are as follows: that the number of iterations without change 
(𝑁𝑁𝑢𝑢𝑛𝑛𝑐𝑐ℎ𝑚𝑚𝑛𝑛𝑎𝑎𝑖𝑖𝑎𝑎𝑚𝑚 ) is larger than 1; and that the intervention factor 
of the particle m (𝐼𝐼𝐼𝐼𝐼𝐼𝑒𝑒𝑟𝑟𝐼𝐼𝑚𝑚) is larger than the random 
decision factor, whose characteristics are explained in 
Section 3.2.  

 

 
Figure 3. Algorithm for the PSOit modification.  
Source: Authors. 
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The intervention factor of the particle is calculated with 
eq. (6), where the sum in the denominator goes from 1 to M-
1 because the number of iterations without change from the 
best particle is excluded to prevent the modification from 
being applied to that particle. If both aforementioned 
conditions are met, the particle is intervened, which means 
that its updated velocity is determined through eq. (7), instead 
of using eq. (2), which is applied if there is no intervention.   

 

𝐼𝐼𝐼𝐼𝐼𝐼𝑒𝑒𝑟𝑟𝐼𝐼𝑚𝑚 =
𝑁𝑁𝑢𝑢𝑛𝑛𝑐𝑐ℎ𝑚𝑚𝑛𝑛𝑎𝑎𝑖𝑖𝑎𝑎𝑚𝑚

∑ 𝑁𝑁𝑢𝑢𝑛𝑛𝑐𝑐ℎ𝑚𝑚𝑛𝑛𝑎𝑎𝑖𝑖𝑎𝑎𝑚𝑚𝑀𝑀−1
𝑚𝑚=1

 (6) 

 
𝑉𝑉𝑖𝑖+1𝑚𝑚𝑛𝑛 = 𝑤𝑤𝑉𝑉𝑖𝑖𝑚𝑚𝑛𝑛 + (𝑐𝑐1𝜂𝜂1 + 𝑐𝑐2𝜂𝜂2)(𝐺𝐺𝑏𝑏𝑖𝑖𝑐𝑐𝑖𝑖 − 𝑋𝑋𝑖𝑖𝑚𝑚𝑛𝑛) (7) 

 
3. Performance of PSOit with benchmark functions 

 
To evaluate the performance of the proposed 

modification, six benchmark functions were used in the 
optimization with PSO and PSOit, four of them with real 
dimensions and two with hybrid (real and binary) 
dimensions. The methods were programmed using Matlab, 
on a PC with an Intel Core i7 2.4 GHz processor and 8GB 
RAM. The size of the population was 20 particles, the 
maximum number of iterations was 1000, and each 
benchmark function was optimized 100 times.  

The rest of the parameters of the methods were 
configured as follows: for the real dimensions, the inertial 
weight was between 0.9 and 0.4, the cognitive parameter was 
from 2.8 to 2.0, and the social parameter was between 1.2 and 
2.0 during the optimization time. Also, 𝜂𝜂1 and 𝜂𝜂2 were 
random values between 0 and 1 [16]. For the binary 
dimensions, the inertial weight was constant and equal to 1, 
the cognitive and social parameters were constant and equal 
to 2, and the maximum velocity was 6 [17].  

 
3.1  Benchmark functions 

 
The benchmark functions were: eq. (8) (Schaffer's F6), 

eq. (9) (Rastrigin), eq. (10) (Rosenbrock) [14], eq. (11) 
(Ackley), eq. (12) (Alpine) [13], and eq. (13) (Schwefel) [8]. 
These functions were tested with the conventional and 
modified PSO algorithms for minimization problems with the 
characteristics shown in Table 1, where the type and number 
of dimensions of each function are also detailed. For the 
evaluation of the hybrid algorithms with the benchmark 
functions (whose inputs are originally real dimensions), the 
binary dimensions were mapped to the real search space 
using eq. (14) [17].  

 

𝐹𝐹1 = 0.5 +
�sin(�𝑥𝑥12 + 𝑥𝑥22)�

2
− 0.5

(1 + 0.001(𝑥𝑥12 + 𝑥𝑥22))2
 (8) 

 

𝐹𝐹2 = ��𝑥𝑥𝑗𝑗2 − 10 cos�2𝜋𝜋𝑥𝑥𝑗𝑗� + 10�
𝑁𝑁

𝑗𝑗=1

 (9) 

 

𝐹𝐹3 = ���1 − 𝑥𝑥𝑗𝑗�
2 + 100�𝑥𝑥𝑗𝑗−1 − 𝑥𝑥𝑗𝑗2�

2�
𝑁𝑁−1

𝑗𝑗=1

 (10) 

𝐹𝐹4 = −20𝑒𝑒
−0.02�

∑ 𝑚𝑚𝑗𝑗
2𝑁𝑁

𝑗𝑗=1
𝑁𝑁 − 𝑒𝑒

�∑ cos(2𝜋𝜋𝑗𝑗)𝑁𝑁
𝑗𝑗=1

𝑁𝑁  
+ 20− 𝑒𝑒 

(11) 

 
 

𝐹𝐹5 = ��𝑥𝑥𝑗𝑗 sin�𝑥𝑥𝑗𝑗� + 0.1𝑥𝑥𝑗𝑗�
𝑁𝑁

𝑗𝑗=1

 (12) 

 
 

𝐹𝐹6 = ���� 𝑥𝑥𝑗𝑗
𝑘𝑘

𝑗𝑗=1
�
2

(1 + 0.4‖𝑁𝑁(0,1)‖)�
𝑁𝑁

𝑘𝑘=1

− 450 (13) 

 
 

𝑥𝑥𝑛𝑛 = 𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛 +
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛

28 − 1 ��2𝑗𝑗−1𝐵𝐵𝑗𝑗�
8

𝑗𝑗=1

 (14) 

 
3.2  Selection of the decision factor distribution parameters 

 
The decision factor for the proposed method is a random 

number with a normal distribution, which was selected 
because its values are balanced around its mean. To select the 
mean of the distribution, three different values were 
evaluated (0.25, 0.50, and 0.75) to determine the best results. 
Also, the selected standard deviation (σ) was 0.1 to 
concentrate the random values near the mean parameter. 

Table 2 shows the results of the mean and standard 
deviation of the global best responses from the benchmark 
functions after 100 repetitions, which were obtained through 
the optimization with PSO and PSOit for the different mean 
values of the distribution. In these cases, the PSOit method’s 
performance was similar or better than PSO for the three 
mean values, and the mean equal to 0.25 had the best results, 
i.e., it reported the lowest mean and standard deviation of the 
global best response for all the benchmark functions.  

Additionally, Fig. 4 shows the results of the benchmark 
functions obtained with PSOit, normalized in terms of the 
response of the conventional PSO for different means of the 
decision factor distribution. It is noted that the normalized 
responses with a mean value of 0.25 had a reduction between 
4 and 24.4% in comparison with the PSO responses. PSOit 
showed a better quality of solution than the conventional PSO 
with these parameters. 

Regarding the number of iterations, the proposed method 
had a similar performance to the conventional PSO for 
meeting the convergence criteria (Table 3) in the global best 
response, where the distribution mean of 0.25 had the best 
results.  

 
Table 1. 
Details of benchmark functions.  

Benchmark 
functions 

Common 
name 

Dimensions Search space Real Binary 

F1 
Schaffer's 

F6 2 0 [-100 100] 

F2 Rastrigin 30 0 [-100 100] 
F3 Rosenbrock 30 0 [-100 100] 
F4 Ackley 30 0 [-30 30] 
F5 Alpine 9 8 [-10 10] 
F6 Schwefel 29 8 [-100 100] 

Source: Authors. 
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Table 2.  
Results of the objective functions with the process of optimization from the PSO and PSOit with a normal distribution (σ = 0.1).  

Benchmark functions PSO PSOit (µ = 0.25) PSOit (µ = 0.50) PSOit (µ = 0.75) 
F1 0.0032±0.0046 0.0025±0.0043 0.0033±0.0046 0.0032±0.0046 
F2 429.337±95.545 402.359±92.990 432.1930±93.6684 430.0314±95.2513 
F3 254.064±114.399 237.673±109.876 248.4490±111.8635 254.2790±114.4114 
F4 4.7354±0.8149 4.5436±0.6971 4.7349±0.7935 4.7373±0.8134 
F5 0.0453±0.0969 0.0342±0.0479 0.0449±0.0968 0.0453±0.0968 
F6 4343.283±2613.951 4210.644±2090.932 4505.191±2520.759 4551.017±2508.761 

Source: Authors 
 

Table 3. 
Results of the number of iterations with the process of optimization from the PSO and PSOit with a normal distribution (σ = 0.1).  

Benchmark functions PSO PSOit (µ = 0.25) PSOit (µ = 0.50) PSOit (µ = 0.75) 
F1 901.94±62.63 894.29±62.94 900.85±63.40 901.94±62.63 
F2 1000.00±0.00 1000.00±0.00 1000.00±0.00 1000.00±0.00 
F3 1000.00±0.00 1000.00±0.00 1000.00±0.00 1000.00±0.00 
F4 1000.00±0.00 1000.00±0.00 1000.00±0.00 1000.00±0.00 
F5 790.24±71.22 766.10±67.28 783.66±70.82 790.24±71.22 
F6 951.45±94.79 930.94±108.32 933.49±108.45 931.52±112.29 

Source: Authors. 
 
 

 
Figure 4. Normalized values of the mean benchmark functions for the normal 
distribution with different a mean and a standard deviation of 0.1. 
Source: Authors. 

 
 

 
Figure 5. Normalized values of the mean number of iterations for the normal 
distribution with different decision factor distribution mean and a standard 
deviation of 0.1. 
Source: Authors. 

 
 
Fig. 5 shows the average number of iterations for the PSOit, 

normalized in terms of the average number of iterations of the 
conventional PSO for the different distribution means of the 
decision factor. It is noted that the average number of iterations 
decreased by 4%, which means that PSOit allows reducing the 

number of iterations and evaluations of the objective functions to 
accomplish a better global response of the swarm in comparison 
with the conventional PSO. 

Considering the above, PSOit has the best performance 
using a normally distributed decision factor with the 
following parameters: 0.25 (mean) and 0.1 (standard 
deviation). This means that the intervention should be applied 
to the particle in a low number of iterations without change, 
guiding it toward the region with better response and 
preventing it from being lost in the search space. 

 
4.  Application for antenna optimization  

 
The proposed method was applied in the optimization 

process for the design of three different antennas, in order to 
uphold its advantages in comparison with the conventional PSO 
for the search for optimal solutions in this field. The selected 
designs were one narrowband and two ultra-wideband printed 
rectangular microstrip antennas (PRMA). Both shape and hybrid 
optimization were applied in these designs. 

To conduct the simulation of the proposed method in antenna 
design, an optimization environment was implemented, as shown 
in Fig. 6. In this environment, Matlab was employed for applying 
the optimization algorithms (PSO and PSOit), and the HFSS API 
by Ansoft was employed to integrate the electromagnetic 
simulations in HFSS with Matlab [18]. Visual Basic code was 
implemented to create and run the HFSS simulation and import 
the corresponding results to Matlab. 

 

 
Figure 6. Optimization environment for the design of antennas. 
Source: Authors. 
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Figure 7. Geometry of a Wi-Fi antenna. 
Source: Authors. 

 
 

4.1  Wi-Fi antenna at 2.45 GHz 
 
The first antenna design was a PRMA for the Wi-Fi 

communication system at 2.45 GHz, with a conventional 
structure and microstrip feeding method (Fig. 7), which has 
been one of the most implemented for this kind of system, 
due to its good performance and adaptability. The selected 
substrate was the FR4-epoxy, given its high electrical 
permittivity, which reduces the size of the antenna in 
comparison with other conventional materials [3], and whose 
characteristics are as follows: a thickness of h=1.6 mm, a 
relative electrical permittivity Ɛr=4.4, and a loss tangent 
tan(δ)=0.02. 

In this experiment, the control variables for optimization 
were the length and width (L and W, respectively) of the 
antenna’s resonant patch. The selected lower and upper 
boundaries for these variables were 8.8 mm ≤ L ≤ 48.8 mm, 
and 7.3 mm ≤ W ≤ 67.3 mm. Furthermore, the size of the 
feeding microstrip was kept constant and equal to a quarter 
of the wavelength. The calculated initial variables were L= 
28.8 mm and W = 37.3 mm. These values were obtained 
through eq. (15), (16), respectively, where 𝜆𝜆𝐿𝐿 is the 
wavelength of the minimum frequency, 𝜖𝜖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 is the effective 
relative electrical permittivity that is defined by eq. (17), and 
Δ𝐿𝐿 is a distance according to eq. (18) [19]. 

 

𝐿𝐿 =
𝜆𝜆𝐿𝐿

2�𝜖𝜖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟
− 2Δ𝐿𝐿 (15) 

 

𝑊𝑊 =
𝜆𝜆𝐿𝐿
2
�

2
𝜖𝜖𝑖𝑖 + 1 (16) 

 

𝜖𝜖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 =
𝜖𝜖𝑖𝑖 + 1

2 +
𝜖𝜖𝑖𝑖 − 1

2 �1 + 12
ℎ
𝑊𝑊�

−1/2

 (17) 

 

Δ𝐿𝐿 = 0.412ℎ
�𝜖𝜖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 + 0.3�(𝑊𝑊/ℎ + 0.264)
�𝜖𝜖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 − 0.258�(𝑊𝑊/ℎ + 0.8)

 (18) 

 
The objective function that allows the minimization of the 

S11 magnitude in the central frequency was eq. (19), where 
|S11(f0)| is the S11 magnitude at the central frequency f0=2.45 
GHz, and |S11|th is the threshold magnitude equal to -10 dB 
[20]. The maximum consecutive number of iterations for the 
convergence criterion was 80 [14]. 

 

𝑂𝑂𝐹𝐹1 = min�0,−
|𝑆𝑆11(𝑓𝑓0)| − |𝑆𝑆11|𝑖𝑖ℎ

|𝑆𝑆11|𝑖𝑖ℎ
� (19) 

 
Figure 8. Objective function according to the iterations for the optimization 
of a Wi-Fi antenna with PSO and PSOit. 
Source: Authors. 

 
 

 
Figure 9. Comparison of S11 magnitude as a function of the frequency for 
the initial and optimized designs of the Wi-Fi antenna.  
Source: Authors. 

 
 
Results obtained for the global best response (𝐺𝐺𝑏𝑏𝑖𝑖𝑐𝑐𝑖𝑖) and the 

mean of the best response of all the particles (𝑃𝑃𝑏𝑏𝑖𝑖𝑐𝑐𝑖𝑖) as a function 
of the iterations are shown in Fig. 8 for the conventional and 
modified methods. It is worth noting that PSOit presented better 
results than PSO both for 𝐺𝐺𝑏𝑏𝑖𝑖𝑐𝑐𝑖𝑖  and 𝑃𝑃𝑏𝑏𝑖𝑖𝑐𝑐𝑖𝑖 during the optimization 
process. In this case, the proposed method improves the search of 
the global best through the intervention technique, thus obtaining 
a final optimal response equal to -4.479, while the result 
was -3.420 with the PSO. 

Regarding the performance of the antenna, as expected, both 
optimization methods improved the initial calculated design. The 
S11 magnitude at the central frequency was equal to -54.79 dB with 
the implementation of PSOit, while it had a value of -44.20 dB 
with the conventional method, as is shown in Fig. 9. Therefore, 
this is a demonstration of how the application of PSOit for the 
optimization of a PRMA for Wi-Fi at 2.45 GHz allowed obtaining 
a better response, thus improving the impedance matching of the 
antenna and reducing the reflection loss. 

 
4.2  Ultra-wideband (UWB) antenna 

 
The second application design was a conventional UWB 

PRMA, as shown in Fig. 10. The UWB PRMA has been 
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Figure 10. Geometry of an UWB antenna. 
Source: Authors. 

 
 

widely used for enabling the joint transmission of several 
wireless communication systems. The design frequency 
range (where |S11| ≤ |S11|th) was established from 1.7 to 3.7 
GHz to receive GSM, UMTS, LTE, WLAN/ISM (2.4 GHz), 
WiMAX, and 5G (3.5 GHz) communication systems with a 
threshold equal to -10 dB. 

In the same way as the first design, a microstrip was 
employed as a feeding method [3], and the substrate was the FR4-
epoxy. In this case, three real dimensions were considered as 
control variables: the separation between the lower edge of the 
resonating patch and the ground plane (p), the length and the wide 
of the radiant patch (L and W), whose boundary conditions were 
0 mm ≤ p ≤ 4 mm, 2 mm ≤ L ≤ 42 mm, and 13 mm ≤ W ≤ 53 
mm. The calculated initial variables were p= 2 mm, L = 22 mm, 
and W = 33 mm. These values were calculated through eq. (20), 
where 𝑓𝑓𝐿𝐿 is the minimum frequency in GHz, and W, L, and p are 
expressed in cm [21].  

 
𝑓𝑓𝐿𝐿 =

7.2

1.15 �𝑊𝑊 + 𝐿𝐿
2𝜋𝜋 + 𝑝𝑝�

 (20) 

 
The objective function was eq. (21), where µ{…} 

represents the mean value of the argument and Ck is a binary 
value that enables or disables the calculus of the k-th 
frequency component (fk) in the design range. This function 
improves the performance of the antenna’s impedance 
matching through the minimization of the mean and standard 
deviation of the S11 magnitude in the design range, and it 
adjusts the bandwidth to the established design. 

 
𝑂𝑂𝐹𝐹2 = 𝜇𝜇{𝑐𝑐𝑘𝑘log8((|𝑆𝑆11(𝑓𝑓𝑘𝑘)| − |𝑆𝑆11|𝑖𝑖ℎ)2)) } 

𝑐𝑐𝑘𝑘 = �1   𝐿𝐿𝑓𝑓 |𝑆𝑆11(𝑓𝑓𝑘𝑘)| ≤ |𝑆𝑆11|𝑖𝑖ℎ
0         𝑓𝑓𝐼𝐼ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝐿𝐿𝑒𝑒𝑒𝑒              

 
(21) 

 
The results obtained from the optimization processes are 

shown in Fig. 11, which presented a similar performance to the 
first antenna design (Section 4.1). The optimal objective function 
was -2.052 for the conventional PSO, while this value was -2.059 
for PSOit. In both methods, the convergence criterion was to 
achieve the maximum number of iterations. 

Fig. 12 displays the S11 magnitude as a function of 
frequency for the optimal antenna designs and the calculated 
initial design. It is observed that the calculated initial design 
does not cover the desired bandwidth and has a higher S11 
magnitude than the optimized ones. The optimal UWB 
antenna with the PSOit has a better performance considering 
the bandwidth adjustment to the established design (2 GHz), 

 

 
Figure 11. Objective function according to the iterations for the optimization 
of an UWB antenna with the PSO and PSOit. 
Source: Authors. 

 
 

 
Figure 12. Comparison of S11 magnitude as a function of the frequency for 
the initial and optimized designs of the UWB antenna. 
Source: Authors. 

 
 

which was equal to 2.50 GHz, compared to the 2.60 GHz 
obtained with the conventional PSO. Both responses had a 
minimum resonant frequency of 1.50 GHz. Also, PSOit had 
a better result in the mean of the S11 magnitude, which was 
equal to -22.45 dB in comparison with the PSO’s -22.14 dB. 

 
4.3  Pixeled UWB antenna 

 
The third antenna design consisted of a UWB PRMA with 

a pixeled resonant patch, i.e., the structure of the conductive 
patch is a matrix of 10x14 pixels, where each of them might 
be removed or present to improve the performance of the 
antenna. For the sake of simplicity, in this study, the pixels 
were designed with vertical symmetry, so they were ordered 
in an array of dimensions 10x7 and reflected. In this way, the 
optimization requires real and binary dimensions: the real 
dimensions were the separation between the lower edge of 
the resonating patch and the ground plane (p), the length and 
the wide of the radiant patch (L and W); and the binary 
dimensions were the presence of the 70 pixels (b1, b2,…, b70), 
as it is shown in Fig. 13. When a pixel p is marked as present, 
bp =1. However, if the pixel should be removed, bp =0. 
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Figure 13. Geometry of a pixeled UWB antenna. 
Source: Authors. 

 
 
This design optimization required the application of the 

hybrid PSO (HPSO) and hybrid PSOit (HPSOit) to handle 
binary and real variables. The objective function, the 
calculated initial design, and the convergence criteria were 
those applied for the second design (Section 4.2).  

When the resonant patch is simulated with the pixel 
matrix, there can be pixels that are connected only by the 
corner, leading to infinitesimal conductivity points between 
them. This was solved with the addition of an overlap equal 
to 0.1 mm in these cases to improve electrical conductivity 
[22]. 

In the optimization process, the first convergence 
criterion accomplished was that the value of particle did not 
change in a consecutive number of iterations. The HPSO 
finished the process in 154 iterations obtaining a minimum of 
-2.091, and the HPSOit did 144 iterations for a solution equal 
to -2.149, as shown in Fig. 14. Therefore, the performance of 
the optimization process was enhanced with the proposed 
method, thus obtaining a better response in a lower number 
of iterations.  

Regarding the performance of the optimal antenna, the 
adjustment of the bandwidth was equal to 2.50 GHz for both 
methods. The mean of the S11 magnitude was -22.38 dB for 
the HPSO and -22.94 dB for the HPSOit, which represents an 
improvement (Fig. 15). Furthermore, the topologies of the 
optimal antennas are shown in Fig. 16, which had a few 
modifications between them. 

 

 
Figure 14. Objective function according to the iterations for the optimization 
of a pixeled UWB antenna with the HPSO and HPSOit. 
Source: Authors. 

 
Figure 15. Comparison of S11 magnitude as a function of the frequency for 
the initial and optimized designs of the pixeled UWB antenna. 
Source: Authors. 

 
 

 

   (a) (b) 
Figure 16. Topology of the pixeled UWB antenna for the HPSO (a) and 
HPSOit (b). 
Source: Authors. 

 
 

5. Conclusions 
 
The main contribution of this article is the proposal of a 

PSOit modification and the presentation of its advantages for 
the optimal design of antennas. The proposed method was 
applied in the optimization process considering real and 
hybrid (real and binary) dimensions.   

It was demonstrated that this method had a better 
performance in the typical benchmark functions than the 
conventional PSO. Likewise, the PSOit method had the best 
optimal response in the optimization of narrowband and 
UWB antenna designs, with an objective function based on 
the S11 magnitude in the frequency range.  

The modifications applied to the conventional PSO allow 
obtaining a better quality of solution than the conventional 
PSO, with the possibility of reducing the number of iterations 
to achieve the optimal result. Therefore, this method is a good 
alternative to be applied in antenna design optimization, 
which requires powerful methods to obtain the best results, 
given the complexity of the models.  

Future work will be conducted in the application of the 
proposed method to PSO variants, which have been 
employed for the optimization of antennas or other 
electromagnetic devices, in order to evaluate their 
performance in the search for the best response in the same 
number of iterations or less.  



Contreras & Tello-Maita  / Revista DYNA, 88(218), pp. 110-118, July - September, 2021. 

118 

References 
 

[1] El Misilmani, H M., Naous, T. and Al Khatib, S., A review on the 
design and optimization of antennas using machine learning 
algorithms and techniques. International Journal of RF and 
Microwave Computer-Aided Engineering, 30(10), pp. 1-28, 2020. 
DOI: 0.1002/mmce.2235 

[2] Khodier, M., Optimization of circular antenna arrays using the cuckoo 
search algorithm. International Journal of RF and Microwave 
Computer-Aided Engineering. 30(8), pp. 1-12, 2020. DOI: 
10.1002/mmce.22247 

[3] Contreras, A. and Urdaneta, M., Ultra wideband antennas for 
communications systems on microwave frequency bands: a review. 
Revista de Ingeniería. UC, 25(2), pp. 134-148, 2018. 

[4] Nahvi, H. and Mohagheghian, I., A particle swarm optimization 
algorithm for mixed variable nonlinear problems. International 
Journal of Engineering Transactions. A Basics, 24(1), pp. 65-78, 
2011. 

[5] Robinson, J. and Rahmat-Samii, Y., Particle swarm optimization in 
electromagnetics. IEEE Transactions Antennas Propagation, 52(2), 
pp. 397-407, 2004. DOI: 10.1109/TAP.2004.823969 

[6] Koyuncu, H. and Ceylan, R., A PSO based approach: scout particle 
swarm algorithm for continuous global optimization problems. 
Journal of Computational Design and Engineering, 6(2), pp. 129-142, 
2018. DOI: 10.1016/j.jcde.2018.08.003 

[7] Ghosh, S., Design and testing of rectifying antenna for RF energy 
scavenging in GSM 900 band. International Journal of Computer 
Applications, 39(1), pp. 36-44, 2017. DOI: 
10.1080/1206212X.2016.1259801 

[8] Li, Y., Shao, W., You, L. and Wang, B., An improved PSO algorithm 
and its application to UWB antenna design. IEEE Antennas and 
Wireless Propagation Letters, 12(3), pp. 1236-1239, 2013. DOI: 
10.1109/LAWP.2013.2283375 

[9] Zaharis, Z.D., Gravas, I.P., Yioultsis, T.V., Lazaridis, P.I., Glover, 
I.A., Skeberis, C. and Xenos, T.D., Exponential log-periodic antenna 
design using improved particle swarm optimization with velocity 
mutation. IEEE Transactions on Magnetics, 53(6), pp. 1-4, 2017. 
DOI: 10.1109/TMAG.2017.2660061 

[10] Ding, W. and Wang, G., Design parameter optimization of ultra-
wideband antenna using quantum-behaved particle swarm 
optimization, in: Progress in Electromagnetic Research Symposium 
(PIERS), 2016, pp. 3235-3241. DOI: 10.1109/PIERS.2016.7735271 

[11] Shen, S., Sun, Y., Song, S., Palomar, S. and Murch, R., Successive 
Boolean optimization of planar pixel antennas. IEEE Transactions on 
Antennas and Propagation, 65(2), pp. 920-925, 2017. DOI: 
10.1109/TAP.2016.2634399 

[12] Contreras, A. and Rodríguez, B., Optimization of a novel rectenna for 
RF energy harvesting at 2.45 GHz. Wireless Personal 
Communications, 2021, pp. 1-17, 2021. DOI: 10.1007/s11277-021-
08338-x 

[13] Clerc, M., Particle swarm optimization. ISTE Ltd, London, 2006. 
[14] Parsopoulos, K.E. and Vrahatis, M.N., Particle swarm optimization 

and intelligence. Advances and Applications. IGI Global, Hershey, 
USA, 2010. 

[15] Weng, W., Ho, W. and Chang, M., Optimal design of a planar antenna 
using binary particle swarm optimization, in: IEEE International 
Workshop on Electromagnetics (iWEM), 2014, pp. 68-69. DOI: 
10.1109/iWEM.2014.6963639 

[16] Yu, C., Xu, T. and Liu, C., Design of a novel UWB omnidirectional 
antenna using particle swarm optimization. International Journal of 
Antennas and Propagation, 2015, pp. 1-8, 2015. DOI: 
10.1155/2015/303195 

[17] Jin N. and Rahmat-Samii, Y., Hybrid real-binary particle swarm 
optimization (HPSO) in engineering electromagnetics. IEEE 
Transactions on Antennas and Propagation, 58(12), pp. 3786-3794, 
2010. DOI: 10.1109/TAP.2010.2078477 

[18] ANSOFT. Introduction to Scripting in HFSS. Ansoft Corporation, 
Pittsburgh, USA, 2003. 

[19] Balanis, C., Antenna theory: analysis and design. John Wiley & Sons 
Inc., New Jersey, USA, 2016.  

[20] Salucci, M., Oliveri, G., Rocca, P. and Massa, A., A system-by-design 
approach for efficient multiband patch antennas design, in: 

International Applied Computational Electromagnetics Society 
Symposium - Italy (ACES), 2017, pp. 1-2. DOI: 
10.23919/ROPACES.2017.7916339 

[21] Ray, K.P., Design aspects of printed monopole antennas for ultra-
wide band applications. International Journal of Antennas and 
Propagation, 2008, pp. 1-8, 2008. DOI: 10.1155/2008/713858 

[22] Lamsalli, M., El Hamichi, A., Boussouis, M., Touhami, N.A. and 
Elhamadi, T., Genetic algorithm optimization for microstrip patch 
antenna miniaturization. Progress in Electromagnetics Research 
Letters, 60, pp. 113-120, 2016. DOI: 10.2528/PIERL16041907 

 
 

A. Contreras received the BSc. Eng. in Electrical Engineering and the MSc. 
in Applied Sciences (Physics) from the Universidad del Zulia, Venezuela, in 
2009 and 2012, respectively. He is currently pursuing his PhD. in 
Engineering at Universidad del Zulia, Venezuela. He did a research 
internship at Universidad de la República, Uruguay, in 2018. Since February, 
2010, he is working as an Assistant Professor in the Department of Circuits 
and Communications in the Faculty of Engineering, Universidad del Zulia. 
His research interests include printed antennas, components in the 
microwave frequencies, rectennas, wireless power transmission, RF energy 
harvesting, and optimization. 
ORCID: 0000-0002-7757-0680 
 
J. Tello-Maita graduated the BSc. Eng. in Electrical Engineering from the 
Universidad del Zulia, Maracaibo, Venezuela, with a summa cum laude 
distinction. In 2010, she got an academic fellowship in this institution and 
achieved the degree of MSc. in Applied Mathematics. She has been a lecturer 
and researcher since 2012, and her main research interest is the optimization 
of power systems. She has also taken part in several research projects in 
alternative energies and energy efficiency. In 2018, she won a mobility 
scholarship at Universidad Nacional de Colombia, Bogotá. She is currently 
pursuing the Doctorate in Engineering at Universidad del Zulia in the field 
of optimal planning of electrical microgrids, and she has presented research 
results in Latin American conferences. 
ORCID: 0000-0001-6895-794X 


	1.  Introduction
	2. Description of the proposed modification for the method of optimization
	2.1  Conventional particle swarm optimization
	2.2  Modification of particle swarm optimization through the intervention technique

	3. Performance of PSOit with benchmark functions
	3.1  Benchmark functions
	3.2  Selection of the decision factor distribution parameters

	4.  Application for antenna optimization
	1.  Introduction
	4.3  Pixeled UWB antenna

	5. Conclusions
	References

