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RESUMEN: La mayoría de los modelos de oligopolio descritos en la literatura analizan los procesos dinámicos y la 

estabilidad del equilibrio de Nash mediante la introducción de especificaciones concretas para las funciones de demanda 

y de costes. Este trabajo analiza la estabilidad dinámica del equilibrio de Cournot-Nash en el contexto de un duopolio 

utilizando funciones generales para describir tanto la demanda como los costes. Se concluye que la condición que 

garantiza la estabilidad del equilibrio de Nash bajo el proceso de ajuste implícito en el modelo original de Cournot es un 

requisito clave en la estabilidad dinámica del equilibrio de Cournot-Nash independientemente del esquema de 

expectativas de las empresas. Además, esta condición es más decisiva cuanto mayor sea el grado de racionalidad de las 

empresas. 

Palabras claves: Duopolio no lineal, expectativas, equilibrio de Cournot-Nash, estabilidad dinámica. 

 

ABSTRACT: The most of the oligopolistic models described in the existing literature analyze dynamic processes and the 

stability of the Nash equilibrium by introducing concrete specifications for the demand and the cost functions. This paper 

analyzes the dynamic stability of the Cournot-Nash equilibrium in the context of a duopoly using general functions to 

establish both demand and costs. The condition that guarantees the stability of the Nash equilibrium under the adjustment 

process implicit in the Cournot’s original model is found to be a key requirement underpinning the dynamic stability of 

the Cournot-Nash equilibrium regardless of the firms’ expectations scheme. Moreover, this condition is more decisive 

the higher the degree of rationality of firms. 

Keywords Nonlinear duopoly, expectations, Cournot-Nash equilibrium, dynamic stability. 
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1. Introduction 

The model proposed by Cournot (1838) is the cornerstone of modern oligopoly theory. Its analysis has 

given rise to an extensive and long-standing discussion in the literature, mainly concerning the uniqueness 

and stability of the equilibrium (see the relevant contributions made by Hahn 1962, Okuguchi 1964, 1976, 

Friedman 1977 and Dixit 1986, among others). 

However, the Cournot model has also been criticized. Thus, one unsatisfactory aspect is the way in 

which the market reaches equilibrium. As Martin (1993) observes, an ad hoc dynamic process is grafted 

onto a static model, and it is assumed that quantities will converge at the Nash equilibrium point through 

a process of continuous adjustment based on the reaction functions of the agents. Similarly, as Corchón 

and Mas-Colell (1996) point out, Cournot (1838) defines the term of best reply dynamics and conjectures 

that, in the case of oligopoly with homogeneous product, an equilibrium would be reached 

asymptotically. 

The subsequent analysis of best reply dynamics has run through two alternative approaches: one 

based on the assumption of continuous time and the other based on discrete time. 

From the perspective of continuous time it has been shown that under the assumptions of 

homogeneous product, strategic substitution and additional conditions on the slopes of demand and cost 

functions, the dynamics converge asymptotically to equilibrium (see Hahn 1962, Okuguchi 1964). 

Contributions based on discrete time have shown that under certain strong hypotheses, the best 

response dynamics converge asymptotically to equilibrium (see Friedman 1977, Vives 1990, Milgrom 

and Roberts 1990, among others). Different expectations to those based on best reply dynamics have been 

used in the case of duopoly, concluding that, in general, the possibility of chaotic behavior cannot be 

ruled out (see Dana and Montrucchio 1986, 1987). 

In recent years, there has been a growing interest in the dynamic analysis of competition in oligopoly 

markets. In this line, in a context of discrete time, several schemes of expectations have been defined 

according to the degree of rationality of the firms. In this regard, it has been shown that these 

sophisticated expectation rules produce complex dynamic behavior, demonstrating that Cournot oligopoly 

dynamics may never converge to equilibrium and can result in chaotic behavior in the long term (Puu 

1991; Kopel 1996; Agiza 1998, 1999; Andaluz et al., 2020). 

However, the conclusions obtained in most of the existing contributions depend fundamentally on the 

precise specifications defining the market structure, such as the demand and the cost functions. Therefore, 

the objective of this paper is to answer the following question: what can be said about dynamic stability 

of the Cournot-Nash equilibrium in a discrete-time duopoly model as general as possible, without the 

need to introduce specific functional forms of demand and costs?  

We show that the sufficient condition that guarantees the stability of the Nash equilibrium under the 

adjustment process implicit in Cournot's original model is revealed as a fundamental condition in the 

dynamic stability of the Nash equilibrium in the dynamics process resulting from expectations associated 

with different degrees of rationality. 

The remainder of this paper is organized as follows. Section 2 presents the static Cournot duopoly. 

Section 3 then goes on to develop a dynamic duopoly under different expectations rules, and Section 4 

closes the paper with our main conclusions. 

2. Static duopoly 

We consider a quantity-setting duopoly where firms produce a homogeneous product. Denoting the 

quantity produced by firm i (i = 1, 2) as iq , we assume a decreasing inverse demand function 

1 2( ) ( )P P q P q q   , while the firm’s cost functions ( )i iC q  are increasing and convex. These functions 

are at least of class (2C . Each firm will produce the quantity that maximizes its profit function, which is 

given by:  

 

 
1 1 2 1 2 1 1 1

2 1 2 1 2 2 2 2

( , ) ( ) ( )

( , ) ( ) ( )

q q P q q q C q

q q P q q q C q

    


    
. (1) 

 

From the first order maximization condition (marginal profits equal to zero), we obtain the best 

response functions or reaction curves for each firm:  
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1

2 1 2

1 2 1 2 2 2 2 2 2 1

2

( , )
0 ( ) '( ) '( ) 0 ( )

( , )
0 ( ) '( ) '( ) 0 ( )

q q
P q q P q q q C q q R q

q

q q
P q q P q q q C q q R q

q

 
          


         

 

 (2) 

 

In line with Hahn (1962), we assume that the marginal profit for each firm is a diminishing function 

of its rival’s output. Formally:  

 

 
2

1 2

1 2 1 2

( , )
'( ) ''( ) 0, , , 1,2i

i

i j

q q
P q q P q q q i j i j

q q

 
      

 
. (3) 

 

The fulfilment of (3) and the convexity of cost functions guarantee the fulfilment of the second order 

condition of maximum:  

 

 
2

1 2

1 2 1 22

( , )
2 '( ) ''( ) ''( ) 0, 1, 2i

i i i

i

q q
P q q P q q q C q i

q

 
      


. (4) 

 

Therefore, the intersection of the reaction curves given in (2) defines the Cournot-Nash equilibrium, 

 * * *

1 2
,E q q . 

Moreover, (3) implies that the reaction curves defined in (2) exhibit negative slope, given that 

 

2

1 2

2

1 2

2

( , )

' 0,  for .
( , )

i

i j

i j

i

i

q q

q q
R q i j

q q

q

 

 
   

 



Thus, quantities are strategic substitute variables (see Bulow et 

al. 1985). 

Based on the sequential reactions of each firm to the observed output of the other, an implicit 

adjustment process is defined whereby the quantities of the two firms may converge to the Cournot-Nash 

equilibrium. In this context (see Martin 1993), the Cournot-Nash equilibrium  * * *

1 2
,  E q q  will be stable 

if1:  

 

   
2 * 2 * 2 * 2 *

* * 1 2 1 2

1 2 2 1 2 2

1 2 1 2 2 1

' ' 1R q R q
q q q q q q

       
  

     
 

 

Under the assumptions established for the demand and cost functions, and condition (3) the above 

condition is equivalent to the following:  

 

 
2 * 2 * 2 * 2 *

1 2 1 2

2 2

1 2 1 2 2 1

0
q q q q q q

       
 

     
.  (5) 

3. Dynamic duopoly 

Under the assumption of discrete time scale, different decision rules have been introduced. Namely, naïve 

expectations and adaptive expectations are found as representations of dynamic adjustment procedure 

based on the best response functions. The relaxation of the assumption that firms have full knowledge of 

 

1 *

i  denotes that the profit is evaluated at the equilibrium point  * * *

1 2,  E q q . 
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demand leads to the definition of other adjustment mechanisms that involve a lesser degree of rationality, 

such as the Local Monopolistic Approximation (LMA) (see Bischi et al 2007), and the gradient rule based 

on marginal profit (see Bischi et al 2010). 

In this section we will show that condition (5) also plays a decisive role in the dynamic stability of the 

Cournot-Nash equilibrium under these expectations rules. 

3.1. Naïve expectations 

According to this decision rule firms expect that the rival’s output in each period will be equal to the last 

observable quantity. The dynamic system is thus2: 

 

 
1, 1 1 2,

2, 1 2 1,

( )
:

( )

t t

N

t t

q R q
T

q R q










 (6) 

 

The stationary point of (6) is obtained when 
, 1 , , 1, 2,i t i t iq q q i     leading to the Cournot-Nash 

equilibrium,  * * *

1 2
,E q q .  

In the two-dimensional case of discrete time systems, the condition for local stability of the 

equilibrium is that the eigenvalues of the corresponding Jacobian matrix evaluated in this point should be 

less than one in absolute terms (see Gandolfo 2010). We can formulate the following proposition 

regarding the local stability of the Nash equilibrium: 

Proposition 1 In a dynamic duopoly where firms adopt naïve expectations, the condition (5) is a 

necessary and sufficient condition for the local stability of the Cournot-Nash equilibrium. 

Proof 

The Jacobian matrix of (6) evaluated in *E  is  
 

 

*

1 2
* *

1 2
*

2 1

0 '
,  

' 0
N

R q
JT q q

R q

 
 
 
 

and the eigenvalues are 

       * * * *

1 1 2 2 1 2 1 2 2 1' '   and ' 'R q R q R q R q    , which have modulus less than one if, and only if, 

   * *

1 2 2 1' ' 1.R q R q     

3.2. Adaptive expectations 

Let us now turn to firms adopting the best response dynamic with inertia. Each firm i changes its output 

quantity proportionally to the difference between its naïve expectations value, given by the reaction 

function ( )i jR q , and the quantity for the last period. Formally: 

 

 , 1 , , ,( ) , , , 1,2,   with 0 1i t i t i i j t i t iq q R q q i j i j          

 

From the previous expression we obtain the dynamic system3: 

 

 
1, 1 1 1, 1 1 2,

2, 1 2 2, 2 2 1,

(1 ) ( )
:

(1 ) ( )

t t t

A

t t t

q q R q
T

q q R q

 

 





  


  

 (7) 

 
2 This model will be linear if the best response functions are linear (which depends on the demand and cost structure). 
3 The model will also be linear in this case if the reaction functions are linear. 
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The parameter 
i  measures firms’ reluctance to change the production level chosen previous period 

in view of the signal given by the reaction function. Note that the naïve expectations case is obtained 

where 1i  . 

We can find the steady states of (7) by solving the following system: 

 

1 1 1 1 1 2 1 1 2

2 2 2 2 2 1 2 2 1

(1 ) ( ) ( )

(1 ) ( ) ( )

q q R q q R q

q q R q q R q

 

 

     


     
 

 

Therefore, the Nash equilibrium point  * * *

1 2
,E q q  will be the same as in (6).  

In the two-dimensional case of discrete time systems, the condition for the local stability of the 

equilibrium can be expressed in terms of the trace (Tr) and determinant (Det) of the Jacobian matrix of 

dynamic system evaluated at the equilibrium point, giving the following inequalities (Schur’s conditions; 

see Gandolfo 2010): 

 

 

( ) 1 0

( ) 1 0

( ) 1 0

i Tr Det

ii Tr Det

iii Det

   


   
  

 (8) 

 

If any single inequality in (8) becomes an equality while the other two are simultaneously fulfilled, 

the equilibrium loses stability through a transcritical bifurcation when 1 0Tr Det   , a flip bifurcation 

when 1 0Tr Det   , or a Neimark-Sacker bifurcation when 1 0Det  . 

We may formulate the following proposition with regard to the local stability of the Nash equilibrium 

point,  * * *

1 2
,E q q : 

Proposition 2 In a dynamic duopoly where firms adopt adaptive expectations, the condition (5) is a 

necessary and sufficient condition for the local stability of the Cournot-Nash equilibrium for 

0 1, 1,2.i i    

Proof The Jacobian matrix of AT  evaluated at  * * *

1 2
,E q q  is: 

 

 
 

 

*

1 1 1 2
*

*

2 2 1 2

1 '

' 1
A

R q
JT E

R q

 

 

 
 
 
 

 

 

and its trace and determinant are:  

 

    

        

   

*

1 2

* * *

1 2 1 2 1 2 2 1

* *

1 2 1 2 2 1

2

1 1 ' '

1 ,  being 1 ' ' 0  if, and only if, (5) is true.

A

A

A A

Tr Tr JT E

Det Det JT E R q R q

Tr Z Z R q R q

 

   

 

   

       
 

      
 

 

 

Substituting these expressions into (8), we can deduce that Schur’s conditions are verified if we 

assume condition (5): 

     

     

* *

1 2 1 2 1 2 2 1

* *

1 2 1 2 1 2 2 1

( ) 1 0

( ) 1 2 4 2 1 ' ' 0

( ) 1 2 1 ' ' 0

A

A

A

i Tr Det Z

ii Tr Det Tr Z R q R q

iii Det Tr Z R q R q

   

   


    

            


          
  
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Therefore, the condition (5) is a necessary and sufficient condition for the local stability of *E .      

 

We may note here that the local stability of the Nash equilibrium does not depend on the values of 

parameters 
i . 

3.3.  Local Monopolistic Approximation 

A premise of conducting adaptive expectations is that all firms possess a full knowledge concerning with 

the inverse demand function. This assumption can be partially relaxed under the Local Monopolistic 

Approximation (LMA) expectation (see Tuinstra 2004, Bischi et al 2007). 

Under this expectation rule, given the inverse demand function 
1 2( ) ( )P P q P q q   , each firm is 

able to get a correct estimate of the partial derivative  
( )( )

'( ) '( )
i i

P q qP q
P q q P q

q q

 
   

 

1 2
1 2  in any 

time period. 

This estimate is then used to obtain a computation of the expected price in period t+1: 

 

   1 1, 2, 1, 2, , 1 ,( ) 'e

t t t t t i t i tP P q q P q q q q       

 

Therefore, the expected profit in period t+1 is given as: 

 

 , 1 1, 2, 1, 2, , 1 , , 1 , 1( ) '( ) ( ), 1, 2e

i t t t t t i t i t i t i i tP q q P q q q q q C q i   
        
 

 

 

From the first order condition for the maximum with respect to i ,tq ,1  we obtain4: 

 

 
, 1

, 1 , , 1

, 1

0 ( ) 2 '( ) '( ) '( ) 0, 1,2

e

i t

t t i t t i t i i t

i t

P q P q q P q q C q i
q



 




      


 (9) 

 

where 1 2 .t t tq q q   
Equations in (9) define implicitly the dynamic system: 

 

 
1, 1 1 1, 2,

2, 1 2 1, 2,

( , )
:

( , )

t t t

LMA

t t t

q q q
T

q q q














 (10) 

 

It may be deduced that the unique interior fixed point of this dynamic system is the Nash equilibrium 

 * * *

1 2
,E q q . To investigate the local stability of the Nash equilibrium, we consider the Jacobian matrix 

of system (10) evaluated in this point. By implicitly deriving the equations given in (9) it is obtained: 

 

   

   

   

   

* ** * * *
1 11 1 2 1 1 2

* *

1 1 1 11 2*

* ** * * *
2 22 1 2 2 1 2

* *

2 2 2 21 2

''( *) '( *) ''( *),  ,  

2 '( *) '' 2 '( *) ''

'( *) ''( *) ''( *),  ,  

2 '( *) '' 2 '( *) ''

LMA

P q q P q P q qq q q q

P q C q P q C qq q
JT E

P q P q q P q qq q q q

P q C q P q C qq q

 

 

   
  

   
  

    
      




 
 
 
 



 

 

Taking into account (3) and (4), we obtain: 

 

 

4 The fulfillment of the sufficient condition is guaranteed by 

2

, 1

1, 2, , 12

, 1

2 '( ) ''( ) 0, 1,2

e

i t

t t i i t

i t

P q q C q i
q







 
    


. 
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 

 

 

 

 

 

 

 

 

2 * * 2 * *

1 1 2 1 1 2

2

1 1 2

* *

1 1 1 1
*

2 * * 2 * *

2 1 2 2 1 2

2

2 1 2

* *

2 2 2 2

, ,

1
2 '( *) '' 2 '( *) ''

, ,

1
2 '( *) '' 2 '( *) ''

LMA

q q q q

q q q

P q C q P q C q
JT E

q q q q

q q q

P q C q P q C q

    
 

   
  

  
  

    
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  
  
 

 

 

Being the trace and determinant as follows: 

 

  

 

 

 

 

  

2 * * 2 * *

1 1 2 2 1 2

2 2

* 1 2

* *

1 1 2 2

*

, ,

2
2 '( *) '' 2 '( *) ''

1

LMA

LMA LMA

q q q q

q q
Tr Tr JT E

P q C q P q C q

Det Det JT E Tr Z

    
 

  
     

 
  

   

 

 

with 

       

   

2 * * 2 * * 2 * * 2 * *

1 1 2 2 1 2 1 1 2 2 1 2

2 2

1 2 2 11 2

* *

1 1 2 2

, , , ,

0 if, and only if, (5) is true.
2 '( *) '' 2 '( *) ''

LMA

q q q q q q q q

q q q qq q
Z

P q C q P q C q

       


    
 

    
   

 

 

Proposition 3 In a dynamic duopoly where firms adopt the Local Monopolistic Approximation rule, 

assuming the condition (5) holds, the convexity of the inverse demand function is a sufficient condition for 

the local stability of the Cournot-Nash equilibrium. 

Proof. Substituting the above expressions into (8), we can deduce that Schur’s conditions are given by: 

 

( ) 1- LMAi Tr Det Z  0  if, and only if, condition (5) holds. 

( ) 1+ 2 LMAii Tr Det Tr Z    

 

considering (4), we obtain: 

 

   

   

* * * *

1 1 2 2 2 1

* *

1 1 2 2

2 '( *) * '' ''
''( *) 0 ''( *) 0

2 '( *) '' 2 '( *) ''

P q q C q q C q q
Tr P q P q

P q C q P q C q

  
 

    
    
   

 

 

Then, the convexity of the function P(q) and the fulfilment of condition (5) assure the second Schur’s 

condition. 

 

( ) 1 2 ( )LMAiii Det Tr Z     

 

considering (4), we obtain: 
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       

   

2 * 2 * 2 * 2 * 2 * 2 *

1 2 1 2 1 2

2 2 2 2

1 2 2 11 2 1 2

* * * *
1 1 2 2 1 1 2 2

2 * 2 *
* *1 2

2 2 1 12 2

1 2

2 ( )
2 '( *) '' 2 '( *) '' 2 '( *) '' 2 '( *) ''

2 '( *) '' 2 '( *) ''

LMA

q q q qq q q q
Tr Z

P q C q P q C q P q C q P q C q

P q C q P q C q
q q

           

      

     
      
   

   
     
    


   

2 * 2 * 2 * 2 *

1 2 1 2

2 2

1 2 2 11 2

* *

1 1 2 2

2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 *
* *1 1 2 2 1 2 1 2
1 22 2 2 2 2 2

1 2 2 11 1 2 2 1 2

2 '( *) '' 2 '( *) ''

''( *) ''( *)

2 '(

q q q qq q

P q C q P q C q

P q q P q q
q q q qq q q q q q

P q

       
 

    


    
   

                  
       

           


   

   

* *

1 1 2 2

2
2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 *

* *1 2 2 2 1 2 1 2
1 22 2 2 2 2 2

1 2 2 11 2 1 2 1 2

* *

1 1 2 2

*) '' 2 '( *) ''

''( *)

0 if ''( *) 0
2 '( *) '' 2 '( *) ''

C q P q C q

P q q q
q q q qq q q q q q

P q
P q C q P q C q


    
   

                  
       

           
  

    
   

 

 

In this case, the convexity of the function P(q) assures the third Schur’s condition.    

 

3.4.  Gradient Rule 

This decisional mechanism is based on marginal profits such that a firm will decide to increase (decrease) 

its output level, if its marginal profit i

iq

 
 
 

 is positive (negative) in a certain time period. Formally: 

 

 1, 2,

, 1 , ,

,
( ) , 1,2

i t t

i t i t i i t

i

q q
q q q i

q



  


 

 

The function 
,( )i i tq  represents firm i’s speed of adjustment. A linear relationship, 

, ,( )i i t i i tq q  , 

is usually assumed and for the sake of simplicity we will suppose that 1 2 0.      Based on this 

adjustment mechanism, we obtain the following nonlinear dynamic system: 

 

 

 

 

1 1, 2,

1, 1 1, 1,

1

2 1, 2,

2, 1 2, 2,

2

,

:
,

t t

t t t

G

t t

t t t

q q
q q q

q
T

q q
q q q

q









 
  





 



 (11) 

 

The equilibrium points are defined by the non-negative solutions of the following system5: 

 

 

 

1 1 2

1

1

2 1 2

2

2

,
0

,
0

q q
q

q

q q
q

q


 

 


 
  

 

 

5 The dynamic system (11) has three boundary equilibria: (0, 0),  1 ,  0mq  and  20, mq  where m

iq  is the monopoly production 

level. It may easily be proved that these equilibria are unstable. 
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Thus, the only interior equilibrium point  * * *

1 2,  E q q  is the Cournot-Nash equilibrium. We may 

formulate the following proposition with regard to the local asymptotic stability of this equilibrium: 

 

Proposition 4 In a dynamic duopoly where firms follow the gradient rule based on marginal profit, 

assuming the condition (5) holds, the Cournot-Nash equilibrium is locally asymptotically stable provided 

that: 

 

2 * 2 *
* *1 2
1 22 2

1 2

2 * 2 * 2 * 2 *
* * 1 2 1 2
1 2 2 2

1 2 2 11 2

2
2 * 2 * 2 * 2 * 2 * 2 *

* * * *1 2 1 2 1 2
1 2 1 22 2 2 2

1 2 2 11 2 1 2

2 * 2 * 2
* * 1 2
1 2 2 2

1 2

4

G

q q
q q

q q
q q q qq q

q q q q
q q q qq q q q

q q
q q

 

   


 
   

        
 
     

              
     

         

     


 

* 2 *

1 2

1 2 2 1q q q q

  
 

    

 (12) 

 

Proof  The Jacobian matrix of 
GT  evaluated at  * * *

1 2,  E q q  is: 

 

 

2 * 2 *

* *1 1

1 12

1 21*

2 * 2 *

* *2 2

2 2 2

2 1 2

1

1

G

q q
q qq

JT E

q q
q q q

 

 

    
 

  
    
     

 

 

where the trace and determinant are:  

 

  

  

2 * 2 *

* * *1 2

1 22 2

1 2

*

2

1

G

G G

Tr Tr JT E q q
q q

Det Det JT E Tr Z


    

    
  

   

 

 

with 
2 * 2 * 2 * 2 *

2 * * 1 2 1 2

1 2 2 2

1 2 2 11 2

0GZ q q
q q q qq q


        

   
     

 due to the fulfillment of the condition (5). 

The Schur conditions (8) adopt the following expressions: 

 

( ) 1 0

( ) 1 2 0

( ) 1 2 0

G

G

G

i Tr Det Z

ii Tr Det Tr Z

iii Det Tr Z

    


     
     

 

 

The condition (5) guarantees the first condition. 

Substituting and operating on the third condition, we obtain a value 
v  such that: 

2 * 2 * 2 * 2 * 2 * 2 *

* * * *1 2 1 2 1 2

1 2 1 22 2 2 2

1 2 2 11 2 1 2

2 * 2 *
* *1 2
1 22 2

1 2

2 * 2 * 2 * 2 *
* * 1 2 1 2
1 2 2 2

1 2 2 11 2

2 0G

v

Tr Z q q q q
q q q qq q q q

q q
q q

q q
q q q qq q



 

            
         

       

   


 
   

        
 
     
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Thus, assuming (5) is true, if ,v   the third Schur’s condition will be satisfied. 

Substituting and operating on the second Schur’s condition, we obtain: 

 
2 * 2 * 2 * 2 * 2 * 2 *

* * 2 * *1 2 1 2 1 2

1 2 1 22 2 2 2

1 2 2 11 2 1 2

2 0 4 2 0GTr Z q q q q
q q q qq q q q

 
              

          
         

 

 

According to the condition (5) and the assumptions of the model, the parabola 
2 * 2 * 2 * 2 * 2 * 2 *

* * 2 * *1 2 1 2 1 2

1 2 1 22 2 2 2

1 2 2 11 2 1 2

( ) 2 4,y q q q q
q q q qq q q q

  
              

       
         

is U-shaped and its vertex is 

  ,v vy   with   0vy   . Thus, the parabola cuts the abscissa axis at two points    * *

1 2,0  and ,0   

being: 

 

2
2 * 2 * 2 * 2 * 2 * 2 *

* * * *1 2 1 2 1 2
1 2 1 22 2 2 2

1 2 2 11 2 1 2*

1 2 * 2 * 2 * 2 *
* * 1 2 1 2
1 2 2 2

1 2 2 11 2

2
2 * 2 * 2 *

* * * *1 2 1
1 2 1 22 2

1 2*

2

4

4

v

v

q q q q
q q q qq q q q

q q
q q q qq q

q q q q
q q

 

 

              
     

         
 

        
 
     

      
  

   
 

2 * 2 * 2 *

2 1 2

2 2

1 2 2 11 2

2 * 2 * 2 * 2 *
* * 1 2 1 2
1 2 2 2

1 2 2 11 2

q q q qq q

q q
q q q qq q

      
 
    

        
 
     

 

 

It is verified that * *

1 20 v     , and: 

 
*

1

*

2

2 0Tr Z
 

 

 
   


 

 

Hence, assuming (5) is true, the three Schur’s conditions will be satisfied if 
*

1  . Given 
*

1G  , 

the proposition is proved.                     

 

We may note it is necessary to impose a threshold for the adjustment speed parameter when firms 

follow the gradient rule in order to guarantee the local stability of the Nash equilibrium. Above this 

threshold, the Nash equilibrium loses stability through a flip bifurcation and complex dynamic behaviors 

appear (see among others Andaluz and Jarne 2016; Askar 2020). It is important to note that the definition 

of this threshold requires the fulfilment of the condition (5). 

This threshold 
G  could be interpreted as preventing firms from overreacting to market signals. The 

expression of the threshold will depend on the derivatives of the profit functions, which are determined by 

the demand and cost structure. 

4. Conclusions 

One of the most questioned aspects of Cournot's model has been the adjustment process followed by the 

quantities until they converge to equilibrium. 

In recent years, numerous contributions have emerged whose objective is the dynamic analysis of the 

resulting equilibria in oligopolistic markets where firms have bounded rationality in a context of discrete 

time. 

Generally, the existing works in this line has conventionally considered particular specifications of the 

elements defining the structure of the market, such as demand and costs. This paper has sought to 
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generalize these findings by analyzing the stability conditions of the Cournot-Nash equilibrium in a 

duopoly with homogeneous product, under different expectations schemes and assuming a general form 

for the demand and cost functions. 

Based on the analysis carried out, we were able to deduce that the condition that ensures the stability 

of the Nash equilibrium derived from the tâtonnement process in a static model, is a determining factor in 

a dynamic context, being this condition less decisive the more bounded the rationality of the firms.  

On the one hand, it is a necessary and sufficient condition to guarantee the local dynamic stability of 

the Cournot-Nash equilibrium, provided that players make their decisions according to a scheme of naïve 

or adaptive expectations.  

When firms have limited knowledge of the environment, they make their decisions according to 

expectation schemes that imply a lower degree of rationality, such as the Local Monopolistic 

Approximation and the gradient rule based on marginal profit. 

In the first case, assuming the fulfillment of the condition that ensures the stability of the Nash 

equilibrium in a static model, the convexity of the inverse demand function arises as a sufficient condition 

to ensure the local stability of the equilibrium. On the other hand, when both firms follow the gradient 

rule based on the marginal profits, the condition of stability derived in a static context is necessary to 

define a critical value for the firms’ speed of adjustment, which determines the local stability of the Nash 

equilibrium. Above this threshold, the Nash equilibrium becomes unstable through a cascade of flip 

bifurcations and complex dynamics may appear. 
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