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Abstract
Aim of study: To classify and validate the coverage of Acacia dealbata by stratifying its area into three different flowering stages using 

remotely piloted aircraft (RPA)-derived image orthomosaics.
Area of study: We selected three sites in the west of Ourense province (Galicia, Spain). This area is the eastern cluster of A. dealbata 

populations in Galicia.
Materials and methods: We used a multirotor RPA equipped with an RGB and a multispectral camera. The flights were carried out on 

10th and 11th March 2020. We performed a visual interpretation of the RGB orthomosaics to identify the patches of A. dealbata in three 
different flowering stages. We then used a maximum entropy (MaxEnt) programme to estimate the probability of A. dealbata presence in 
each study site at each of the three flowering stages.  

Main results: The performance of the MaxEnt models for the three flowering stages in each of the three study sites were acceptable in 
terms of ROC area under the curve (AUC) analyses the values of which ranged from 0.74 to 0.91, although in most cases was greater than 
0.80, this being an improvement on the classification without stratification (AUC from 0.73 to 0.86).  

Research highlights: Our approach has proven to be a valid procedure to identify patterns of species distributions at local scale. In 
general, the performance of the models improves when stratification into flowering stages is considered. Overall accuracy of the presence 
prediction maps ranged from 0.76 to 0.91, highlighting the suitability of this approach for monitoring the expansion of A. dealbata. 
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Introduction
Acacia dealbata is a naturalized tree of invasive 

behaviour that has expanded considerably in recent years 
in the North West of the Iberian Peninsula (Lorenzo et al., 
2010; Vázquez de la Cueva, 2014; Hernández et al., 2014). 

It was ranked as the ’worst’ invasive plant within the plants 
life-form using a generic impact scoring by Nentwig et al. 
(2018), posing a serious threat to a large number of com-
munities and ecosystems, depending on the severity of the 
impact on the community type (Lorenzo et al., 2012; Her-
nández et al., 2014). The above- and belowground impacts 
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caused by invasions of Acacia species have been described 
in detail over recent decades (e.g. Souza-Alonso et al., 
2017). The expansion of A. dealbata populations is facili-
tated by certain characteristics, which make this species a 
very successful invader (e.g. Richardson et al., 2015; Sou-
za-Alonso et al., 2017). Fire also plays an important role in 
the persistence of Acacia populations in other ecosystems 
(e.g. Ward et al., 2014 in Australia). To control a highly 
invasive species such as A. dealbata, it is essential to un-
derstand the historical progression of the invasion within 
the landscape (Gouws & Shackleton, 2019). 

Remotely piloted aircraft (RPA) and remote sensing 
techniques are revolutionizing environmental monitoring. 
This is because RPAs are already becoming cost-efficient 
tools for mapping and also because photogrammetry al-
gorithms such as Structure from Motion (SfM) are beco-
ming more accessible (Aasen et al., 2018; Díaz-Delgado 
& Mücher, 2019; Gómez et al., 2020). RPA missions are 
capable of improving the efficiency of acquisition of field 
data and make it feasible to obtain high-resolution ima-
gery and three-dimensional data, which can be used for 
forest monitoring and assessing tree attributes (Goodbody 
et al., 2017; Mohan et al., 2017). Data captured by RPA 
and processed by SfM techniques can provide relatively 
accurate and timely forest inventory information at local 
scale (Puliti et al., 2015, 2018).

RPA-derived products have frequently been used as 
an alternative to field sampling for invasive species ma-
pping as a previous step to species distribution upscaling 
through satellite images (Kattenborn et al., 2019; Mar-
tínez-Sánchez et al., 2019). Several authors have repor-
ted that data acquisition costs using RPAs are lower than 
those of conventional methods such as extensive ground 
sampling, and therefore they might provide an effective 
tool to support invasive plant management based on early 
detection and regular monitoring (Lehmann et al., 2017; 
de Sá et al., 2018; Lopatin et al., 2019).

The use of multispectral (and hyperspectral) data cap-
tured from RPAs and applied to invasive plants has also 
been the subject of research (Müllerová et al., 2017; Papp 
et al., 2021). It provides new possibilities for assessing 
plant traits (Potgieter et al., 2017) or for monitoring the 
growth of cultivated plants (e.g. Zhang et al., 2020). In 
the Iberian Peninsula, Große-Stoltenberg et al. (2016) 
used hyperspectral field radiometry as a tool to discrimi-
nate Acacia longifolia populations on the Atlantic coast. 
Other authors such as de Sá et al. (2017) used medium 
resolution satellite images to study the expansion of A. 
longifolia, also on the Portuguese Atlantic coast. Martins 
et al. (2016) applied medium resolution satellite images 
to map A. dealbata populations in central Portugal. 

A. dealbata flowering occurs in winter, normally be-
tween February and March, depending on the site condi-
tions. Populations of A. dealbata exhibit yellow blooms, 

which are considered useful for the spectral discrimina-
tion and classification of this species. However, there is 
little agreement in the literature as to whether this spectral 
feature enables more accurate mapping of populations. 
As regards A. longifolia in Portugal, de Sá et al. (2017) 
considered that Landsat image classifications were more 
accurate in fall than at the time of flowering (winter). In 
contrast, by comparing ASTER images from March and 
August, Martins et al. (2016) concluded that classification 
of A. dealbata populations improved during the flowering 
season. In addition, highly accurate mapping of A. lon-
gifolia was achieved using RPA images captured at two 
phenological stages: peak and off-peak flowering (de Sá 
et al., 2018). 

Species distribution models (SDM) can be used to es-
timate areas prone to invasion (Vicente et al., 2016) and 
also to estimate the probability of presence, based on sam-
ples in a certain area where species presence is known. 
MaxEnt is a ‘one-class’ classifier based on maximum en-
tropy (Philips et al., 2006), which estimates the probabili-
ty of presence based on the combination of presence-only 
samples of the target species and a set of independent va-
riables (Phillips et al., 2017). The final output is the rela-
tive likelihood distribution (between 0 and 1) of the target 
species or suitability. MaxEnt has been used to model and 
forecast species distributions (Monterroso et al., 2009; 
Felicisimo et al., 2012) as well as to model fire occurrence 
and burn severity (Fonseca et al., 2016; Quintano et al., 
2019). In recent years MaxEnt has been used in combi-
nation with remote sensing techniques, providing reliable 
results (Mack et al., 2016; Amici et al., 2017; Skowronek 
et al., 2017; Stenzel et al., 2017; Lopatin et al., 2019; Fer-
nández-Manso & Quintano, 2020).

In this study, we hypothesise that the presence of Acacia 
dealbata can be modelled from RPA data using MaxEnt 
and that the accuracy of the models would increase throu-
gh stratification based on different phenological stages. 
We have used data acquired in winter (mid-March, around 
peak flowering) in the studied region. We have conside-
red three flowering stages in the photointerpretation and 
modelling of predicted distributions with the idea of ad-
dressing plant canopy variability that hampers the analy-
sis of high-resolution image. Hence, in this approach we 
decided to separately map three different flowering stages 
identified in the field at the time of the flight. The three 
flowering stages were considered as different target spe-
cies in the MaxEnt models. 

The specific objectives were to: (i) assess the accuracy 
of A. dealbata SDM using MaxEnt and based on RGB 
interpretation and multispectral information derived from 
RPA flights; (ii) analyse the performance of MaxEnt, ei-
ther stratifying the samples into three flowering stages 
identifiable in winter images or considering one single 
class without stratification. 
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Material and methods 
Study area

The study was conducted in Verín County in the west 
of Ourense province (Galicia, NW Spain), where the eas-
ternmost cluster of A. dealbata populations in Galicia is 
located. We selected three sites with notable presence 
of A. dealbata populations. The three sites, Infesta, Sal-
gueira and Cantera have been widely affected by fires in 
recent years, often with short rotation periods (Vázquez 
de la Cueva et al., 2015), and most of the Acacia pat-
ches originated from perturbations. The three sites mostly 
comprise forest vegetation (Fig. 1). 

The climate is temperate with dry, mild summers. Ba-
sed on the standard climate maps of the Spanish Meteo-
rological Agency (AEMET) for the period 1981-2010, 
the annual precipitation in Verín County was higher than 
1000 mm, corresponding to 250 mm in spring, 75 mm in 
summer, and 350 mm in autumn and winter. Mean an-
nual temperature is between 11 and 14 ºC, mean annual 
minimum temperature is between 9 and 11 ºC and mean 
annual maximum temperature between 16 and 19 ºC.

Verín County is located in a transition area between 
Oceanic and Mediterranean vegetation types. We have 
used the Spanish Forest Map (MFE25) to describe the 
forest vegetation of the area, dominated by conifers, 

deciduous species and Acacia. This map is based on vi-
sual photo-interpretation of aerial photographs from the 
years 2006-2007 and provides the basis for Fig. 1.

RPA data collection

We used a DJI Matrice 210 multirotor drone equipped 
with an RGB sensor (Zenmuse X4S) and a multispectral 
sensor RedEdge-M (MicaSense), a Down-welling Light 
Sensor (DLS) and an additional GPS module.

The flights were conducted on the 10th and 11th of March 
2020, as close as possible to the local solar noon (Table 
1). The area captured by the Zenmuse X4S RGB camera 
was larger than that captured by the RedEdge-M and the 
spatial resolution was also greater (5472 × 3078 vs 1280 
× 960 pixels). The total area captured by the RGB and the 
RedEdge sensors for the three sites were 45.4 and 37.9 ha 
respectively for Site 1, 62.8 and 46.6 ha for Site 2, and 
48.9 and 38.6 ha for Site 3 (Table 1). For both cameras 
we selected side and front overlap of 75% in accordance 
with the indications in the MicaSense bibliography. The 
altitude (from the home point) was set at 120 m (the maxi-
mum according to the Spanish regulations). At an altitude 
of 120 m, the theoretical ground sample distance (GSD) 
is 3.29 cm/pixel for the RGB images and approximately 
8.3 cm/pixel for the multispectral images, although the 

̂

Figure 1. Location of the three study sites in Verín County, province of Ourense wi-
thin the autonomous community of Galicia, Spain. The three study sites are displayed 
in red. On the three maps the colored polygons represent the dominant tree species 
according to the Forest Map of Spain at a scale of 1:25.000. Yellow indicates Acacia 
dominated polygons, green are conifers and orange is used for deciduous trees. 
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elevation gradient led to a larger average GSD. The speed 
was set to 5 m/s and the flight duration was around 20 
minutes at each study site (Table 1). Immediately before 
and after each flight, we took an image of the MicaSense 
calibrated reflectance panel to create reflectance-compen-
sated outputs. During the three flights the weather was 
clear and sunny with no clouds and very low wind speed. 

Prior to the RPA flight we deployed 6 to 8 ground mar-
kers at each of the three field sites, which were later identi-
fied in individual images. The centre of the mark was me-
asured with an RTK (Real-Time Kinetics) GNSS (Global 
Navigation Satellite System) Reach RS2 GNSS Receiver 
(manufactured by Emlid Ltd). This GPS was mounted on 
a pole of known height and was connected via the inter-
net using the protocol NTRIP to the nearest IGN (Instituto 
Geográfico Nacional) station (Ponferrada, at approximate-
ly 100 km) to give real-time position correction. The GPS 
was also connected to a mobile device through the Reach 
application for management and visualization. These points 
were used to improve orthomosaics accuracy. 

RGB and multispectral data processing 

We processed the RPA images using Pix4D software 
to obtain the orthomosaics of the RGB and the reflectance 
images in the five bands captured by the MicaSense-M 
camera. The size of the mosaics varied among the three 
sites and the sensors used. The RMS (root mean square) 
errors ranged from 0.073 to 0.123 m in RGB and from 
0.185 to 0.246 m in multispectral data sets (Table 1). The
output pixel size of the orthomosaics was set to 5 cm in 
the RGB orthomosaics and 10 cm in multispectral images. 

During multispectral image processing the objective 
was to obtain reflectance values as a percentage of inco-
ming to reflected light for each of the spectral windows 
considered. In MicaSense, the five bands are centred at 
480 nm (blue), 560 nm (green), 670 nm (red), 720 nm 
(red edge) and 840 nm (near-infrared). The full width 
at half maximum is 20 nm (blue and green), 10 nm (red 
and red-edge), and 40 nm (near-infrared). Several of the 
pre-processing steps such as correcting images for dark 
pixels, vignette effects, exposure and gain are performed 
by Pix4D software. Reflectance values are based on EXIF 
information of the images, the DLS values and the cali-
bration of the images using the reflectance panel albedo 
factors. These are obtained for each panel from the Mi-
caSense web page (www.micasense.com). We also calcu-
lated the NDVI (normalized difference vegetation index) 
from red and near-infrared bands.

Identification and digitalization of Acacia 
dealbata patches 

We performed a visual interpretation of the RGB or-
thomosaics to delimit the patches of A. dealbata. The in-
terpretation was performed at a scale of 1:375 on-screen. 
Pictures taken the same day as the flight along with 
knowledge of the vegetation at the three study sites hel-
ped supporting visual interpretation. The minimum size 
of the digitized polygons was established at 5 m between 
borders and the distance between contiguous patches was 
also 5 m. In these images it was possible to differentiate 
different flowering stages of the trees based on the num-
ber of visible flowers (yellow) at the moment of the flight. 

Date Time 
(start UTC) Sensor Total size

(ha)
Images 

captured
Elevation 

range Georeferencing

# Average 
GSD (cm) min max 3D GCP RMS error (m)

Site 1. Infesta
10 Mar 13:55 RGB 45.4 201 4.20 481 655 8 0.073

RedEdge 37.9 1440 10.84 8 0.185

Site 2. Salgueira
11 Mar 12:58 RGB 62.8 182 7.19 422 697 6 0.090

RedEdge 46.6 1290 16.95 4 0.312
Site 3. Cantera
11 Mar 14:53 RGB 48.9 197 4.91 459 628 6 0.123

RedEdge 38.6 1385 12.57 7 0.246

Table 1. Characteristics of the images acquired in March 2020 at the three study sites. The time of image capture was close to the 
local solar noon. The total area covered by each flight and sensor ranged from near 38 ha to more than 60 ha. The table also provides 
information of the number of individual images, the mean theoretical ground sample distance (GSD), the elevation ranges at each 
site, the number of 3D Ground Control Points (GCP) finally used and the root mean square (RMS) obtained in the six orthomosaics. 
The output pixel size was set to 5 cm for RGB and 10 cm for multispectral orthomosaics.
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These three types are: 1) A. dealbata patches with few or 
no flowers, 2) A. dealbata patches with sparse spots of 
flowers and 3) A. dealbata patches with a dense flower co-
ver. The orthomosaics generated from the individual RGB 
pictures captured in the RPA flights are displayed in Fig. 
2. Overlaying these images are the patches of A. dealba-
ta classified into the three flowering stages (Fs_1, Fs_2 
and Fs_3). The common area used finally in the MaxEnt 
analyses (red polygons in Fig. 2) is 25.0 ha for Site 1, 38.5 
ha for Site 2 and 31.5 ha for Site 3. 

Maximum entropy (MaxEnt) modelling
procedures and validation 

The MaxEnt programme estimates the probability of 
presence, based on the combination of presence-only 
samples of the target class (derived from visual photoin-
terpretation in our approach) and a set of auxiliary varia-
bles (Phillips et al., 2006, 2017). In our case, these auxi-
liary variables are the five reflectance bands (blue, green, 
red, red-edge and near-infrared) and the NDVI.

The training and testing data set for the MaxEnt al-
gorithm were 200 points randomly selected from a 5 × 
5 m point grid for each of the three flowering stages of 
A. dealbata, derived from the interpretation performed in 
the three RGB orthomosaics. MaxEnt creates a map of 
probability of the target class, estimated between 0 and 1. 
From the 200 random samples we used 75% of them to 
train MaxEnt, and 25% for testing purposes, running 500 
iterations. The rest of the user-specified parameters were 
set to their default values (Phillips et al., 2006, 2017). To 
estimate the importance of auxiliary variables in the mo-
del, we used a jackknife test: one variable was excluded 

at a time and MaxEnt was run with the remaining varia-
bles. We then ran the algorithm for each variable, one at 
a time. Finally, we ran the algorithm using all variables, 
as before. In this way, it is possible to evaluate the im-
portance of each variable in the model. Another useful 
output provided by the MaxEnt software is the receiver 
operating characteristic (ROC) analysis, in which area 
under the curve (AUC) represents the model capability of 
adequately predicting presence (sensitivity) and absence 
(specificity). 

The continuous MaxEnt output was converted into binary 
maps to build confusion matrices between the predicted clas-
sification and the photointerpreted classes using the points of 
the 5× 5 meter grid overlaying each of the tree sites. We used 
a 0.6 probability threshold in accordance with the MaxEnt 
instructions and outputs: for the three sites this value is close 
to the thresholds proposed under the equal training sensitivi-
ty and specificity criteria (Phillips et al., 2006, 2017). Finally, 
we calculated the Kappa index, the user accuracy (UA), the 
producer accuracy (PA), and the overall accuracy (OA) 
between the classes predicted by MaxEnt and the visual pho-
tointerpretation of the flowering stages.

Results
MaxEnt models performance 

The AUC values for training samples ranged from 0.81 
to 0.88 and from 0.74 to 0.91 in the test samples (Table 2). 
The ROC curves corresponding to these models are dis-
played in Fig. 3 for the training and test dataset. In all but 
two of the nine models, the AUC values were greater than 
0.80, which indicates a good model performance. The 

Figure 2. RGB orthomosaics derived from the early-March 2020 RPA flights at the 
three study sites. UTM coordinates grid spacing is 100 m. The outer red polygon 
delimits the common area for the RGB and the multispectral orthomosaics for which 
the MaxEnt analyses were performed. Flowering stage polygons are based on the 
visual interpretation performed on the RGB orthomosaics. The codes for the flowering 
stage (Fs_) patches ranged from 1 (patches with scattered flowers) to 3 (patches 
dominated by flowers). 
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Flowering 
stages

Training 
gain (Reg.)

Training 
AUC

Test 
gain

Test 
AUC

AUC 
SD

Site 1. Infesta

Fs_1 0.48 0.81 0.47 0.74 0.044
Fs_2 0.47 0.82 0.66 0.82 0.026
Fs_3 0.75 0.87 0.68 0.82 0.032

All the Fs 0.43 0.80 0.45 0.73 0.033
Site 2. Salgueira

Fs_1 0.85 0.86 1.28 0.91 0.014
Fs_2 0.79 0.86 0.87 0.85 0.019
Fs_3 0.84 0.88 1.02 0.88 0.018

All the Fs 0.79 0.86 0.93 0.86 0.024

Site 3. Cantera
Fs_1 0.61 0.83 0.73 0.82 0.029
Fs_2 0.46 0.82 0.57 0.81 0.024
Fs_3 0.64 0.85 0.60 0.80 0.027

All the Fs 0.49 0.84 0.56 0.80 0.027

Table 2. Results for the twelve MaxEnt models run at the three study sites and for the three 
flowering stages defined. The table includes the gain (regularized for the Training data) and for 
Test data, the AUC for both datasets and the standard deviation (SD) of the models. Models are 
based on 200 random points: 75% for Training and 25 for Test. The models were obtained after 
500 iterations for each of the twelve runs. Nine of the models are stratified by the flowering stage 
(Fs_1, Fs-2 and Fs_3) while in three of them (All the Fs) the stratification was not considered.

Figure 3. Receiver operating characteristic (ROC) curve for each of the three study 
sites and the three Acacia dealbata flowering stages considered as target in the 
MaxEnt models. Horizontal axis is Fractional predicted area (1 – Specificity) while 
vertical axis is Sensitivity (1 – Omission Rate) (Phillips et al., 2016). This implies 
that the maximum achievable AUC is less than 1. The straight black line is the 
random prediction (AUC= 0.5) while the red curve is the AUC for the training data 
(75%) and the blue line is the AUC for the test data (25%) of the 200 random points 
used in each of the nine MaxEnt model runs. AUC values are shown in Table 2.
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performance of the models when stratifying the three 
flowering stages was a little better than when using all 
the flowering stages together. At two of the three sites the 
median values of AUC for the three flowering stages were 
higher than when the models were run without distingui-
shing between stages (Table 2). 

The importance of the auxiliary variables in each 
of the nine MaxEnt models according to the jackknife 
test is shown in Fig. 4. In eight of the nine models, the 

auxiliary variable with the highest gain was the NDVI. 
In three of the nine cases, the variable with the second 
highest gain was the red and in four cases the blue band. 
The variable with the lowest gain in all cases was the 
near-infrared reflectance, perhaps because the NDVI al-
ready accounted for its contribution. 

The auxiliary variable that most reduces the gain when 
it is omitted is red-edge reflectance, which therefore 
appears to have the most information not present in the 

Figure 4. Results of the jackknife tests on the importance of the auxiliary (or “environ-
mental”) variables for the regularized training gain in MaxEnt models. Each plot repre-
sents the results for the three study sites and the three A. dealbata flowering stages con-
sidered as target class in each model. Variables used are reflectance bands and NDVI.

Figure 5. Classification maps derived from the continuous suitability values output of 
the MaxEnt models for parts of the three study sites and for flowering stage 3 as target 
“species”. Red color indicates ≥ 0.8 and orange ≥ 0.6 and < 0.8. The threshold values 
used in the accuracy assessment is 0.6 (Table 4). Most of the pixels with orange or red 
values are within the digitalized polygons in accordance with the high overall accuracy 
obtained in the models. 
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other variables. This is true for the six MaxEnt models at 
Site 1 and 2. At Site 3, however, the NDVI and green re-
flectance variables were those that most reduced the gain 
when omitted, the former in two cases and the latter in 
one case. The regularized training gain values for all the 
variables are also shown in Table 2.

Flowering stage probability maps 

Table 3 shows the total number of 5-m grid points at each 
site and the percentage of A. dealbata presence. These per-
centages are based on the visual photointerpretation (poly-
gons in Figs. 2 and 5). At each of the sites, the most frequent 
flowering stage was one of the three considered: the Fs_2 at 
Site 1, the Fs_1 at Site 2 and the Fs_3 at 3 3. The mean pro-
bability values for the grid points located in the areas where 
the flowering stage coincides with the modelled class ranged 
from 0.66 to 0.70. In contrast, the mean probability values 
beyond the areas covered by A. dealbata (according to visual 

interpretation) ranged from 0.22 to 0.36.ning samples ranged 
from 0.81 to 0.88 and from 0.74 to 0.

Classification into binary maps and accuracy 
assessment 

Table 4 shows the accuracy measures (PA, UA, OA 
and the Kappa index of agreement) derived from the con-
fusion matrices. The OA values ranged from 0.76 to 0.91 
with the 0.6 threshold value used. In general, for Sites 1 
and 2, the OA percentage increased from the flowering 
stage 1 to 3 but not in the case of Site 2 (Salgueira). The 
Kappa index values ranged from 0.35 to 0.57 and for two 
of the sites were greater in flowering stage 3. PA, which 
represents the quality of the classification of field points 
(interpreted), and UA, which is the probability that the 
prediction represents reality, are shown for the different 
models in Table 4. PA and UA are greater for the absence 
class than for the presence class for the three flowering 

Flowering stages (digit. polygons) 5×5 node points MaxEnt target (mean)

(#) (%) Fs_1 Fs_2 Fs_3

Site 1. Infesta

Fs_1 685 30% 0.67 0.55 0.36
Fs_2 967 43% 0.58 0.69 0.55
Fs_3 614 27% 0.53 0.75 0.69
Total area Acacia 2,266 23% 0.60 0.66 0.54
Area No Acacia 7,750 0.35 0.32 0.22

Site 2. Salgueira
Fs_1 1,125 59% 0.68 0.67 0.68
Fs_2 350 18% 0.54 0.68 0.67
Fs_3 430 23% 0.54 0.65 0.67
Total area Acacia 1,905 12% 0.61 0.68 0.67
Area No Acacia 13,512 0.20 0.22 0.22

Site 3. Cantera
Fs_1 433 23% 0.70 0.59 0.59
Fs_2 718 37% 0.51 0.66 0.56
Fs_3 769 40% 0.58 0.64 0.68
Total area Acacia 1,920 15% 0.60 0.63 0.58
Area No Acacia 10,684 0.29 0.36 0.27

Table 3. Mean values of the suitability output obtained for the final MaxEnt models within the digitalized 
polygons classified into the three flowering stages of A. dealbata as well as outside these polygons. For 
each of the three sites we show the values obtained considering each of the flowering stages as target for 
the model. The random points used in the analyses and in the confusion matrices are derived from a 5 × 5 
m grid overlaid on the common area covered (see Fig. 2) by RGB and multispectral orthomosaics. Based 
on these points the percentage of each flowering stage at each site is shown along with the total area co-
vered by A. dealbata.
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stages and the three sites. In general, the total values of 
UA and PA are quite similar.

Discussion
Greater variability within plant canopies is a conse-

quence of high-resolution images such as those captured 
by RPAs, in our case the resolution being 5 and 10 cm. 
At this spatial resolution, the canopy of A. dealbata is not 
spectrally homogeneous. At the time of the flight, at the 
peak of flowering, there were large differences due to the 

contrast between the yellow of the flowers and the green 
of the leaves. In this study we stratified the canopy of A. 
dealbata into three flowering stages in order to deal with 
this variability, the results obtained being generally bet-
ter than without stratification. Thus, we reduced the va-
riability in the spectral response of A. dealbata patches 
according to the flowering stage. In this sense, our 
approach of considering several flowering stages to train 
and validate classification algorithms could be of interest 
for future prospection and monitoring of A. dealbata. 

The effect of shadows on the variability within a plant 
canopy has been discussed by several authors with regard 

Flowering 
stages

Classified 
data[1]

Producer 
accuracy

User 
accuracy

Overall 
accuracy

Kappa 
index

Site 1. Infesta

Fs_1 0 0.83 0.86
1 0.54 0.48

Total 0.68 0.67 0.76 0.35
Fs_2 0 0.91 0.90

1 0.66 0.68
Total 0.78 0.79 0.85 0.57

Fs_3 0 0.97 0.85
1 0.41 0.81

Total 0.69 0.83 0.85 0.46

Site 2. Salgueira
Fs_1 0 0.96 0.94

1 0.55 0.64
Total 0.75 0.79 0.91 0.54

Fs_2 0 0.91 0.95
1 0.64 0.51

Total 0.78 0.73 0.88v 0.50
Fs_3 0 0.93 0.95

1 0.67 0.56
Total 0.80 0.76 0.89 0.55

Site 3. Cantera
Fs_1 0 0.88 0.90 0.81 0.33

1 0.47 0.41
Total 0.67 0.65

Fs_2 0 0.81 0.93 0.78 0.35
1 0.64 0.37

Total 0.73 0.65
Fs_3 0 0.90 0.92 0.85 0.43

1 0.55 0.50
Total 0.72 0.71

[1] 0 (absence); 1 (presence)

Table 4. Confusion matrice parameters (producer, user and global accuracy and the Kappa index of agree-
ment) for the 0.6 threshold of the suitability output values of MaxEnt models for the three study sites and 
the three flowering stages. The classification based MaxEnt suitability output values are the predicted 
values, while digitalized polygons are considered the ground truth datasets. 
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to very high (centimetres) pixel resolutions. Shadows 
are an important factor in these classifications (Adeline 
et al., 2013; Lopatin et al., 2019). It is also necessary to 
bear in mind the fact that images are captured with low 
sun angles (early-March). Although the three flights were 
performed close to noon in order to minimize shadows, 
these are apparent in the orthomosaics. The effect of sha-
dows is another side effect of the high spatial resolution. 
In the images captured by RPA the shadows can affect 
data analysis due to the high reflectance variability of 
individual plants within the canopy (Mamaghani et al., 
2019). In this approach, no pre-processing was carried out 
to minimize these effects, which could affect predictions. 
Exposed and shadow pixels were included in the training 
data set, so variability due to shadowing was incorporated 
in the model uncertainty.

RPAs are contributing to increase spatial resolution in 
SDM, as well as becoming the providers of an interme-
diate scale between ground measurements and satellite/
airborne image data. The results obtained with RPA are 
promising and could lead to the development of more 
cost-effective surveys (Puliti et al., 2018). Decreasing 
costs through RPA-based surveying and open access to 
high-resolution satellite images open new avenues to hi-
gh-resolution cartography of invasive plants. Invasive 
alien species are considered a risk for biodiversity, hence 
the need to inventory them for further control and eradica-
tion. The methodology used in this paper could contribute 
to addressing this need, allowing areas covered by the tar-
get species to be identified, even at different phenological 
stages. 

The MaxEnt SDM approach has several advanta-
ges over other classifiers (Muñoz et al., 2016; Fernán-
dez-Manso & Quintano, 2020): 1) MaxEnt is a non-pa-
rametric model; 2) from an operational point of view it 
is an attractive substitute for machine-learning-based 
classifiers, as presence samples alone are needed to train 
it; the delineation of training data of unwanted classes 
(i.e. non-target cover) is not required during modelling, 
which notably decreases pre-processing or sampling 
efforts (Lopatin et al., 2019); and 3) its output, a con-
tinuous probability surface, has physical meaning, ma-
king it easy to interpret (Felicisimo et al., 2012). In any 
case, the performance of the models obtained is com-
parable to those reported by other authors using binary 
classifications to map the occurrence of invasive species 
(Lehmann et al., 2017; Piiroinen et al., 2019). The AUC 
values obtained through the twelve MaxEnt models were 
in most cases higher than 0.80 and close to 0.90 in some 
models, which indicated excellent model performance 
(Muñoz et al., 2016; Fernández-Manso & Quintano, 
2020). AUC values between the three flowering stages 
were similar in each site.

Overall accuracy of the presence prediction maps ob-
tained is quite acceptable, with values generally ranging 

between 0.80 and 0.90 for the three flowering stages and 
the three sites. Lehmann et al. (2017), using RPA in an 
approach to map invasion by Acacia mangium in a Bra-
zilian Savanna ecosystem, reported an overall accuracy 
of 82.7% from the analysis of imagery. Several improve-
ments could be made to obtain more accurate parameter 
values. One possible improvement, in addition to reducing 
the shadows effect, could be the use of filters to avoid the 
salt and pepper effect of the classifications (e.g. Fernán-
dez-Manso & Quintano, 2020; Gómez et al., 2020). Other 
authors (e.g. Kattenborn et al., 2019) have used MaxEnt 
with additional spectral, textural or canopy 3D structural 
predictors. In our approach, we have used the five spectral 
bands and only one spectral index (NDVI). 

Forecasting invasions, modelling and managing 
ecosystems dominated by A. dealbata are challenging 
tasks that must be addressed given that climatic condi-
tions, intensification of land uses and increased risk of 
perturbations such as fires, are increasing the likelihood of 
Acacia invasions into new areas (Hernández et al., 2014, 
Souza-Alonso et al., 2017). Future research should focus 
on the early detection and prevention of new Acacia inva-
sions and on cost-effective and sustainable management 
of the novel ecosystems resulting from invasions (Mar-
chante et al., 2011). Problems associated with the inva-
siveness of non-native tree species are increasing rapidly 
worldwide, especially in areas with a long history of plan-
tations (Richardson et al., 2015). We cannot forget that 
the origin of A. dealbata, and also of other Acacia species 
that are currently invading diverse ecosystems, was their 
intentional plantation. In areas with a long presence of A. 
dealbata populations such as South Africa (Van Wilgen 
et al., 2011), the specialists consider that even with in-
creased budget spending, control would probably not be 
achieved under the forecasted less favourable climatic 
and social scenarios. For these reasons, a great deal of 
money has been and will continue to be wasted in the fu-
ture on control of alien species invasions (Van Wilgen et 
al., 2016).

In conclusion, plant canopy variability hampers the 
analysis of high-resolution image such as those acquired 
using RPA. By considering three flowering stages in the 
photointerpretation and modelling of predicted distribu-
tions the idea of this work was to address this variability, 
our results being better than those obtained without this 
stratification. The performance of the MaxEnt models for 
the three study sites and the three flowering stages was 
suitable for A. dealbata distribution assessment. This me-
thod has several advantages over other classifiers such as 
its non-parametric character, the need for presence-on-
ly samples and its continuous output. RPA high spatial 
resolution products may contribute to forest monitoring 
and management. In this regard, RPAs have become the 
providers of an intermediate scale between ground mea-
surements and satellite/airborne image data, which could 
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lead to more cost-effective surveys of the distribution and 
structure of invasive alien species populations.  
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