
Maderas-Cienc Tecnol 24(2022):45, 1-18 
Ahead of Print: Accepted Authors Version 

1 

.DOI:10.4067/S0718-221X2022005XXXXXX 1 

PERFORMANCE OF CEMENT-BONDED WOOD PARTICLEBOARDS 2 

PRODUCED USING FLY ASH AND SPRUCE PLANER SHAVINGS 3 

4 

Husnu Yel1*5 
https://orcid.org/0000-0002-0661-9109 6 

Elvan Urun17 

https://orcid.org/0000-0002-2193-000X 8 

1Artvin Coruh University, Faculty of Forestry, Department of Forest Industrial Engineering, 9 

Artvin, Turkey. 10 

*Corresponding author: yel33@artvin.edu.tr11 

Received: September 21, 2021 12 

Accepted: June 06, 2022 13 

Posted online: June 13, 2022 14 

ABSTRACT 15 

The aim of this research was to investigate the physico-mechanical, thermal, and 16 

morphological properties of cement-bonded wood particleboards produced by using fly ash as 17 

a partial cement replacement and spruce planer shavings. Experimental single-layer cement-18 

bonded wood particleboards produced using a target density of 1200 kg/m3, 1/3 wood-cement 19 

ratio, a dimension of 460 x 460 x 10 mm3 and 5 %, 10 %, 15 %, 20 % fly ash as cement 20 

replacement were tested for physical and mechanical properties in accordance with EN and 21 

ASTM standards. Moreover, morphological and thermal properties of the cement-bonded wood 22 

particleboards were analysed by using the scanning electron microscope and thermogravimetric 23 

analysis-derivative thermogravimetry.  Test results indicated that the fly ash enhanced both the 24 

bending strength and water-resistance of the cement-bonded wood particleboards. Internal bond 25 

and screw withdrawal strengths tended to decrease as the fly ash content increased in the 26 

cement-bonded wood particleboards, but this decrease was not statistically significant. As the 27 

fly ash increased, the weight loss of the cement-bonded wood particleboards decreased in the 28 

thermogravimetric analysis because of the pozzolonic reaction of the fly ash with calcium 29 

hydroxide. In the scanning electron microscope, it was observed that calcium silicate hydrate 30 

gel increased, whereas calcium hydroxide decreased as the usage ratio of the fly ash increased 31 

in the cement-bonded wood particleboards. 32 

Keywords: Cement-bonded wood particleboards, fly ash, planer shavings, physic-                                     33 

mechanical properties, thermal-morphological properties. 34 
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INTRODUCTION 45 

 46 
Cement-bonded wood particleboard (CBWP) has been widely used as various construction 47 

components for more than 100 years, because of their excellent properties such as high 48 

toughness, high durability, high impact resistance, dimensional stability, low water absorption, 49 

thermal insulation,  freeze-thaw resistance, fire resistance (in both B1 and A2 class), good 50 

acoustic, biological degradation resistance (fungi, insects, termites, and vermin attacks), easy 51 

manufacturing and low manufacturing costs (Quirogaa et al. 2016, Donmez Cavdar et al. 2022). 52 

Cement-bonded wood particleboards perform very well in both interior and exterior uses such 53 

as wall cladding, roof sheathing, floor, fences, paving and sound barriers without any treatment 54 

(Okino et al. 2004, Aras et al. 2022).  55 

In recent years, building sector has faced the challenge of incorporating sustainability into 56 

their manufacturing processes, either by exploring for new materials more eco-friendly or by 57 

reducing the amount of carbon dioxide emitted into the environment. The opportunity of 58 

incorporating waste from other industries in the manufacturing processes can contribute to the 59 

aim (Pereira et al. 2013). Many researches have been carried out on the utilization of waste 60 

materials to avoid the harmful effects to the atmosphere and to develop the present waste 61 

disposal techniques by doing more economical and feasible due to the increasing environmental 62 

concerns and economic pressure (Rajamma et al. 2015, Vu et al. 2019).  63 

Cement production needs enormous energy consumption and is responsible for approx.7 % 64 

of total greenhouse gas emissions in the world (Malhotra 2002). Fly ash (FA) is a by-product 65 

of pulverized coal-burning electric power plants. More than 500 million tons of coal-fired fly 66 

ash are produced annually in thermal power plants all over the world. Only 25 % - 30 % of this 67 

fly ash can be reused in different sectors (Xu and Shi 2018, Mathapati et al. 2022). Fly ash has 68 

a surface area ranging from 300 m2/kg to 500 m2/kg and a bulk density ranging from 0,54 g/cm3 69 

to 0,86 g/cm3. It contains large amounts of spherical shaped particles ranging from 10 μm to 50 70 
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μm and a small amount of irregularly shaped particles (Sanalkumar et al. 2019, Mathapati et 71 

al. 2022). It is a pozzolanic material reacting with calcium hydroxide to form calcium silicate 72 

hydrate gel. Saha (2018) investigated the effect of fly ash on the durability of concrete, and the 73 

results showed that the use of fly ash as a partial replacement for cement reduced the drying 74 

shrinkage of concrete, and increased the long-term compressive strength. Saboo et al. (2019) 75 

concluded that the use of fly ash over 20 % based on cement weight caused a decrease in the 76 

mechanical properties of concrete. Zhang et al. (2021) researched the effect of fly ash 77 

replacement ratio on fiber- reinforced cementitious composites. It was found out that the use of 78 

fly ash up to 25 % led to an improvement in the workability of the composites and the better 79 

fiber dispersion in cement matrix, and a marked increase in the strength properties of the 80 

composites due to the fly ash's reactivity and packing effect. It was also stated that the excess 81 

use of fly ash over 25 % caused a dilution effect, resulting in a decrease in mechanical properties 82 

of cementitious composites. Behl et al. (2022) stated that the water amount required to produce 83 

cement-bonded composites decreased with increasing fly ash content. Golewski (2021) 84 

evaluated effect of fly ash content in the reduction of microcracks in Cementous composites 85 

and the results showed that the use of 20 % fly ash as partial cement replacement reduced the 86 

width of microcracks by more than 40 % compared to fly ash-free concrete. Lin et al. (2017) 87 

reported that the addition of fly ash at high dosage caused the fly ash to act as an inert filler 88 

instead of binder, which led to a decrease in the durability of cement-based composites. Besides 89 

enhancing the durability of cement-bonded wood particleboards, the utilization of FA as a 90 

partial replacement for cement can provide energy saving. Another benefit of FA is that it can 91 

help to minimize the environmental problems by reducing the carbon dioxide emission of 92 

cement manufacturing (Yu and Ye 2013, Bui et al. 2018).  In addition, the effective utilization 93 

of fly ash in the wood cement board industry can contribute to reducing cement consumption 94 

and eliminating waste disposal costs.  95 
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The decrease of wood raw materials together with the increasing demand for them, the need 96 

to protect nature and economic reasons have made it necessary to use trees more efficiently. 97 

The use of wood wastes such as sawdust, mill residues, planer shavings in the manufacturing 98 

of wood-based composites has been considered environmentally sustainable, economically 99 

viable and socially acceptable (Hays et al. 2005). 100 

This work was performed to evaluate the effects of fly ash on the cement-bonded wood 101 

particleboards (CBWPs) and to produce more environmentally friendly and economical 102 

cement-bonded wood particleboards using fly ash as a partial replacement of cement and spruce 103 

(Picea orientalis) planer shavings. 104 

 105 

MATERIALS AND METHODS 106 

Materials 107 

The woody material used in this work was spruce (Picea orientalis (L.) Link.) planer 108 

shavings obtained from Artvin Coruh University Furniture and Decoration Atelier in Artvin, 109 

Turkey. The planer shavings were chipped into smaller pieces using a knife-ring chipping 110 

machine and then screened to remove the dust and the oversized particles. To obtain the high 111 

particle surface area and to produce the boards with smooth surface, the fine particles remaining 112 

on the 1,5 mm sieve and passing through the 3 mm sieve were utilized for producing of CBWPs. 113 

As a cement setting accelerator, calcium chloride (CaCl2) solution was used in order to enhance 114 

the compatibility of wood with cement and accelerate the cement hydration reaction. The 115 

ordinary Portland cement, manufactured by Askale Cement Co. and the fly ash supplied by 116 

ARES Cement Co. (Seyitomer Thermal Power Plant) in Kutahya, Turkey were used in this 117 

work as a binding materials. Chemical properties of the ordinary Portland cement and 118 

Seyitomer FA were compared in Table 1. 119 

 120 

 121 
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Table 1: Chemical composition and physical properties of the ordinary Portland cement and 122 

Seyitomer fly ash. 123 

 124 

Chemical composition 

Parameters 
32,5 R type Portland cement 

(% wt.) 
Fly ash (% wt.) 

[Turker et al. 2009] 
SiO2 16,87 54,49 
Al2O3 4,35 20,58 
Fe2O3 3,02 9,27 

SiO2+ Al2O3+Fe2O3 - 84,34 
CaO 56,39 4,26 
MgO 1,97 4,48 
SO3 2,39 0,52 
K2O 0,63 2,01 
Na2O 0,22 0,65 

Loss on ignition 13,61 3,01 
Physical properties 

Specific gravity (g/cm3) 2,91 2,13 
Particle size (μm) 6,5-90 1-30 

Specific surface area (cm2/g) 4801 2369 
 125 

Manufacture of CBWPs 126 

All the CBWPs were produced at a constant wood/cement ratio of 1:3. CaCl2 solution at a 127 

dosage of 5 % by the cement weight was added to the cement-wood-water mixture. The amount 128 

of water required for producing the boards was calculated by means of the equation (1) below, 129 

which was formulated by Simatupang (1979) as 130 

 131 

𝑊௧ ൌ 0,35𝐶 ൅ ሺ0,30െ𝑀𝐶ሻ𝑊                                                                                                    (1) 132 

 133 

where, Wt was water weight (kg), C was weight of cement (kg), MC was spruce planer shavings 134 

moisture content (oven-dry basis, %), and W was oven-dry spruce planer shavings weight (kg). 135 

The fly ash was applied at 5 %, 10 %, 15 %, and 20 %, based on cement weight, as cement 136 

replacement. The manufacturing planning of the experimental cement-bonded wood 137 

particleboards was summarized in Table 2.  138 

 139 
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Table 2: Experimental design for manufacture of CBWPS. 140 

Board Type Fly ash (%) Portland cement (%) 
F0 (control) 0 100 
F5 5 95 
F10 10 90 
F15 15 85 
F20 20 80 

 141 

 142 

The mixture of planer shavings, cement, fly ash, distilled water and CaCl2 solution were 143 

uniformly blended and then hand-formed on an aluminium plate inside a wooden mould. 144 

Afterwards, the mats were kept under a pressure of 20 kg/cm2 using a single-layer hot press for 145 

24 h. A temperature of 60 ℃ was applied on the mats during the first 8 h of the pressing time 146 

because it was found that the best mechanical and physical properties were achieved at a 147 

pressing temperature of 60 ℃ in manufacturing cement-bonded wood particleboards from 148 

spruce wood (Yel et al. 2020). 149 

 Four replications were made for each variable studied, totalling 15 single-layer CBWPs 150 

with a dimension of 500 x 500 x 10 mm3 and a target density of 1200 kg/cm3. After 24 h, the 151 

CBWPs were kept in a controlled room at 65 % relative humidity of and 20 ℃ temperature o 152 

for 30 days in order to let the cement to cure. The conditioned boards were processed into test 153 

samples for determining physical, mechanical, thermal, and morphological properties.  154 

Determination of physical and mechanical properties 155 

The mechanical performances of CBWPs including modulus of rupture (MOR), modulus 156 

of elasticity (MOE), screw withdrawal strength (SW), internal bond (IB) strength were tested 157 

in according to TS EN 310 (1999), TS EN 319 (1999), TS EN 320 (2011) standards, 158 

respectively. Moreover, physical tests such as density (D), moisture content (MC), water 159 

absorption (WA) and thickness swelling (TS) were carried out in accordance with TS EN 323 160 

(1999), TS EN 322 (1999), ASTM D1037 (2006), TS EN 317 (1999) standards, respectively. 161 

 162 
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Thermogravimetric analysis (TGA/DTG) 163 

The samples were grounded and screened prior to the thermal test. Thermogravimetric 164 

analysis-derivative thermogravimetry (TGA/DTG) of the samples were performed by heating 165 

of specimens in nitrogen atmosphere up to 900 ℃ at a heating rate of 10 ℃/min in a 166 

PerkinElmer STA 6000 Thermal Analyser. 167 

Scanning electron microscope (SEM) 168 

The small fractured samples were dried at 60 ℃ ± 2 ℃ until they reached a constant weight 169 

before SEM observations. After the fractured samples were coated with gold for 120 seconds, 170 

the morphology of the fractured surfaces of the samples was characterized using a scanning 171 

electron microscope ZEISS EVO LS 10. 172 

Statistical analysis 173 

The results of mechanical and physical tests were submitted to analysis of variance (One-174 

Way ANOVA) using SPSS 19.0 package software. A comparison of the mean values was done 175 

by Duncan’s multiply range test when the differences between the means of board groups were 176 

found to be significant (p < 0,05). 177 

RESULTS AND DISCUSSION 178 

Physical properties 179 

The means, standard deviations and statistical comparisons of D, MC, TS and WA values 180 

of CBWPs containing various amounts of the fly ash (FA) were illustrated in Table 3. Density 181 

(D) values of the CBWPs were found to be the highest in the control (F0) and decreased as the 182 

usage of the FA increased. This can be interpreted by the fact that the specific gravity of 183 

Seyitomer FA (2,13 g/cm3) used as cement replacement is far less than the Portland cement 184 

(2,91 g/cm3). Zhang et al. (2021) reported that an increase in fly ash content led to a significant 185 

reduction in the density of fiber-reinforced cement composites due to the lower density of fly 186 

ash compared to cement. On the other hand, the study conducted by Saha (2018) indicated that 187 
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the early age strength of cementitious composites decreased with an increase in fly ash content 188 

as the hydration reaction of fly ash takes longer time compared to cement. Therefore, another 189 

reason for the decrease in the CBWPs may have been a springback occurred in the fly ash-190 

added CBWPs after the pressing process because the FA decreased the early age strength of 191 

CBWPs. This low density can provide some advantages for the CBWPs in terms of 192 

transportation and insulation.  193 

Table 3: Physical properties of CBWPs. 194 

 195 
 196 

Although the FA had not a statistically significant effect on TS of the CBWPs for both 2 h 197 

and 24 h water soaking, it slightly decreased the TS values. This indicated that the C-S-H gel, 198 

formed as a result of the FA reaction with Ca(OH)2, contributed to the durability of the CBWPs, 199 

despite the reducing content of cement in the binder due to the FA replacement.  200 

On the contrary to the thickness swelling values, as the rate of the FA in the CBWPs 201 

increased, a significant increase in water absorption values was observed. This might be caused 202 

by the high water holding capacity of FA due to its porous structure (Fischer et al. 1978). Ma 203 

et al. (1995) reported the surface area of FA, after reacting with Ca(OH)2, dramatically 204 

increased due to C-S-H gel with a huge surface area, and as a result of this, the volumes of pores 205 

increased. A study conducted by Karahan (2006) on the utilization of FA as cement replacement 206 

up to 45 % in producing the polypropylene and steel fibre reinforced concretes indicated that 207 

Board 
type 

D 
(g/cm3) 

MC (%)    TS (%) WA (%) 
2 h 24 h 2 h 24 h 

F0 1,26A ± 
0,023 

7,90A ± 
0,05 

3,86A ± 
0,23 

5,10A ± 
0,42  

15,40a ± 
0,91 

18,53A ± 
0,64 

F5 1,25A ± 
0,017 

8,51B ± 
0,39 

3,73A ± 
0,40 

4,63A ± 
0,41 

15,64A ± 
0,88 

20,06B ± 

0,53 

F10 1,21B ± 
0,015 

8,04A ± 
0,13 

3,34A ± 
0,32 

4,64A ± 
0,43 

15,83AB 

±1,06      
20,20B ± 

0,65 
F15 1,17C ± 

0,027 
8,38B ± 

0,25 
3,16A ± 

0,26 
4,60A ± 

0,32 
16,97BC 
±1,41 

22,25C ± 
1,23 

F20 1,14D ± 
0,022 

8,10A ± 
0,20 

3,39A ± 
0,23 

4,62A ± 
0,46 

17,56C ± 
1,53 

22,77C ± 
0,68 

*Means within a column followed by the different capital letters are significantly difference at 5 % level of 
significance for Pvalues <0,05. ± represents the standard deviations. 
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the porosity and water uptake rates of concrete increased as the utilization of FA increased. 208 

Tkaczewska and Małolepszy (2009) also stated that the porosity of the cement-based composite 209 

increased as FA replaced cement. In addition, the increment in the water absorption values of 210 

the CBWPs with fly ash added is thought to be associated with the decrease in the density of 211 

the CBWPs.  Ashori et al. (2012) concluded that the wood cement panels with low density have 212 

more void spaces than the dense ones. Therefore, they can uptake more water. 213 

MC values of all the CBWPs were found incompatible with the MC requirement (6 % - 12 214 

%) mentioned in TS EN 634-1 (1999) standard. However, none of the CBWPs met the 215 

maximum thickness swelling requirements (<1,5 %) in the same standard. 216 

Mechanical properties 217 

The means, standard deviations and statistical comparisons of MOR, MOE, IB, SW values 218 

of CBWPs containing various amounts of fly ash were given in Table 4. The values of modules 219 

of rupture and modules of elasticity ranged from 9,18 MPa to 11,71 MPa and from 5096 MPa 220 

to 6175 MPa, respectively and all of them were well above the minimum MOR (9 MPa) and 221 

MOE (4000 MPa) requirements set forth by TS EN 634-2 (2007) standards for ordinary 222 

Portland cement (OPC) bonded particleboards. The main products of hydration reaction of 223 

cement are calcium silicate hydrate (C-S-H) gel, which is primarily responsible for the 224 

mechanical performance of CBWPs and calcium hydroxide [Ca(OH)2], which has no 225 

contribution to the mechanical properties. The FA reacted with Ca(OH)2 to form more C-S-H 226 

gel.  Therefore, the FA improved the MOR and MOE values of the CBWPs because the CBWPs 227 

containing the FA had more C-S-H than that in the control. In addition to the pozzolanic 228 

reactivity of fly ash, its smaller particle size and lower specific gravity compared to cement may 229 

have contributed to the improvement in MOR and MOE of CBWPs. 230 

It was seen that the highest MOR and MOE values were achieved in the CBWPs containing 231 

5 % the FA and the the MOR and MOE values decreased as the use of the FA increased over 5 232 
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%. The reason for this may be that the amount of cement decreases as the FA usage rate 233 

increases, and as a result, not all the FA particles could react with calcium hydroxide since the 234 

amount of calcium hydroxide reduced due to the decrease in the amount of cement used. 235 

Consequently, the excess FA acted as an inert filler instead of binder, resulting in a reduction 236 

in the mechanical properties of the CBWPs (Lin et al. 2017).   237 

Table 4: Mechanical properties of the CBWPs. 238 

Saboo et al. (2019) concluded that the use of fly ash at high dosage caused a decrease in the 239 

mechanical properties of concrete. Zhang et al. (2021) also stated that utilization of fly ash at 240 

low dosage led to a significant increase in the strength properties of the fiber-added cement 241 

composites due to the fly ash's reactivity and packing effect, whereas fly ash at high dosage 242 

caused a dilution effect. In addition, the reduction in the boards' density with the increase of the 243 

fly ash content may have contributed to the decrease in the MOR and MOE of the boards. 244 

It was observed that all the CBWPs containing the FA had a higher MOR value than the 245 

control. On the other hand, the difference between the MOR values of the CBWPs (F10, F15, 246 

F20) containing 10 %, 15 % and 20 % FA was statistically not significant in according to the 247 

results of the ANOVA test. Some researchers (Saha 2018, Saboo et al. 2019, Al-sallami et al. 248 

2020; Venkateswara and Srinivasa 2020) stated that the addition of FA at the low dosages 249 

significantly improved the mechanical properties of cementitious composites due to its 250 

pozzolanic activity. Furthermore, Horsakulthai and Paopongpaiboon (2013) mentioned that fly 251 

ash (FA) concrete with bagasse-rice husk-wood ash (BRWA) additive improved in strength, 252 

Board Type MOR (MPa) MOE (MPa) IB (MPa) SW (N/mm) 
F0 9,18C ± 0,51  5506C ± 294  1,13A ± 0,11  97,46A ± 8,54  
F5 11,71A ± 0,74  6175A  ± 261  0,83B ± 0,08 93,94AB ± 8,31  
F10 11,08B ± 0,38  5875B  ±182  0,83B ± 0,06  91,06AB ± 6,82  
F15 10,93B ± 0,56  5581C ± 258  0,78B ± 0,07  91,17AB ± 7,09  
F20 10,51B ± 0,70  5096D ± 368  0,77B ± 0,05  86,70B ± 4,36  

* Means within a column followed by the different capital letters are significantly difference at 5 % level of 
significance for Pvalues <0,05. ± represents the standard deviations. 
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compared to Portland cement concrete, due to the fact that both BRWA and FA reacted with 253 

Ca(OH)2 to produce more C-S-H gel. 254 

The IB and SW values ranged from 0,77 MPa to 1,13 MPa and 86,70 MPa to 97,46 MPa, 255 

respectively. The highest IB and SW values were achieved in the control. It was observed that 256 

the IB and SW values slightly decreased with an increase in fly ash content. This may have 257 

been due to the fact that fly ash caused the springback and low density in the CBWPs. However, 258 

the IB values of all the CBWPs exceeded the minimum IB requirement (0,5 MPa) stipulated in 259 

TS EN 634-2 (2007) standard. In addition, the difference between the IB values of all the 260 

CBWPs containing the FA was statistically not significant. 261 

Thermal properties 262 

TGA-DTG curves of the CBWPs made at different cement replacement levels with the fly 263 

ash (FA) were shown in Figure 1. The first peak represented the dehydration of pore water 264 

(approx. 100 ºC) in the CBWPs. The second peak indicated the decomposition of wood 265 

components [hemicellulose (180°C to 350 °C), cellulose (275 °C to 350 °C) and lignin (250 °C 266 

to 500 °C)] (Kim et al. 2006). 267 

 268 

 269 

 270 

 271 

 272 

 273 

 274 

 275 

 276 

 277 

 278 

 279 

 280 
Figure 1: TGA/DTG curves of CBWPs containing FA. 281 
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The third peak slightly occurred at about 450 ℃ due to the decomposition of calcium 284 

hydroxide [Ca(OH)2]. The reason why calcium hydroxide decomposition occurred very slightly 285 

may have been due to the fact that the pozzolanic reaction of the FA consumed calcium 286 

hydroxide [Ca(OH)2], which formed as a result of cement hydration reaction, in the CBWPs. 287 

In addition, another reason could be said to be the carbonation reaction, a reaction of calcium 288 

hydroxide [Ca(OH)2] with carbon dioxide (CO2), because the peaks between 700 ℃ - 800 ℃ 289 

were quite high. The last peak, occurred at approx. 750 ℃, showed the decarbonisation of 290 

calcium carbonate (CaCO3) which is not a product of cement hydration process such as 291 

ettringite, C-S-H, monosulphate and Ca(OH)2. The FA significantly reduced the calcium 292 

carbonate (CaCO3) in the CBWPs, compared to the control. This demonstrated that there was 293 

not enough calcium hydroxide for the carbonation reaction in the CBWPs because of the 294 

pozzolanic reaction of the FA with calcium hydroxide [Ca(OH)2]. 295 

Morphological properties 296 

Micrographs of fractured surfaces of the CBWPs with the FA were shown in Fig. 2. The 297 

formations of C-S-H, ettringite, and Ca(OH)2, which resulted from the cement hydration 298 

reaction, were observed in the SEM views of the CBWPs. It is believed that there is a 299 

mechanical interlocking process between C-S-H gel and the rough wood surface and this makes 300 

a very important contribution to the strength of the wood-cement composites (Hermawan et al. 301 

2001). 302 

As the usage of the FA increased in the CBWPs, it was seen that the amount of C-S-H gel 303 

significantly increased, whereas the content of Ca(OH)2 decreased. This explains why the FA 304 

improved the flexural and thickness swelling properties of the CBWPs. Moreover, it was seen 305 

that the FA increased the size and number of voids in the CBWPs. This may have been one of 306 

the reasons for the increase in the water absorption of the CBWPs. 307 

 308 
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 312 

 313 
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 327 

 328 

Figure 2: SEM images of fractured surfaces of the CBWPs with the FA. 329 

CONCLUSIONS 330 

The usage potential of the fly ash (FA) as a partial cement replacement in manufacturing 331 

cement-bonded wood particleboards was investigated in this paper. According to the findings 332 

of this work, the following conclusions can be drawn: 333 

1. The results demonstrated that it is possible to manufacture more environmentally 334 

friendly and durable cement-bonded wood particleboards using the FA as partial cement 335 

replacement and spruce planner shavings as virgin wood particles replacement. In 336 

addition, the cement-bonded wood particleboards in this study are considered to be more 337 
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economical than traditional cement-bonded wood particleboards because they were 338 

produced using waste materials in this study. 339 

2. The highest MOR and MOE values were achieved in the CBWPs containing 5 % FA, 340 

and as the use of FA increased over 5 %, the MOR and MOE values of the CBWPs 341 

decreased. Moreover, the FA negatively affected the IB and SW values of CBWPs. 342 

MOR, MOE, IB values of all the CBWPs met the requirements mentioned in the 343 

standards. By using the FA up to 20 % as cement replacement and 100 % spruce planer 344 

shavings, cement-bonded wood particleboards with mechanical properties above the 345 

required level of the standards could be produced. 346 

3. The FA decreased the density values of the CBWPs due to the lower density of the FA 347 

compared to cement and the springback occurred in the fly ash-added boards. The FA 348 

improved the thickness swelling values thanks to the increasing C-S-H gel as a result of 349 

the reaction of the FA with Ca(OH)2. However, the FA increased the water absorption 350 

values due to its high water holding capacity and porosity. In addition, the decrease in 351 

the density of the fly ash-added boards resulted in an increase in the water absorption 352 

values of the boards. 353 

4. In TGA/DTG of CBWPs, less weight losses occurred in 400 oC - 500 oC and 700 oC -354 

800 oC because the FA decreased the amount of CaCO3 and Ca(OH)2 by reacting with 355 

Ca(OH)2. 356 

5. It was observed that the FA increased C-S-H gel and decreased Ca(OH)2 in cement-357 

bonded wood particleboards. 358 

6. Additional works are required to determine the effects of FA on cement-bonded wood 359 

particleboards produced using different tree species, cement setting accelerator and 360 

cement types. 361 
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