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Abstract
This paper looks at two manuscripts kept at the Spanish Royal Academy of History (Madrid) containing 
the course on sectors that Professor Claude Richard taught at the Jesuit Imperial College in Madrid. 
The literary form of the course goes beyond practitioners’ commonplace books, for it aims at teaching 
practical geometry on a solid Euclidean basis while claiming that the entire practical geometry consists 
of the brief and easy use of pantometers, that is, Coignet-type sectors. Actually, the course focuses on 
checking the solid geometric foundations of the scales graduation, which would justify the numerical 
consideration of continuous magnitudes as quantities –accepting a margin of error sensorially 
imperceptible and irrelevant for the purposes of application. 

Resumen

Este artículo estudia dos manuscritos conservados en la Real Academia de la Historia (Madrid) sobre el 
curso de pantómetras que el catedrático Claude Richard impartió en el Colegio Imperial de la Compañía 
de Jesús en Madrid. El curso trasciende las limitaciones de los manuales de uso de este instrumento, 
pues Richard aspira a enseñar sobre una sólida base euclídea la geometría práctica, que según él consiste 
en un uso breve y fácil de las pantómetras –concretamente el compás de proporción que atribuye a 
Coignet–. De hecho, el curso se concentra en la verificación de la sólida base geométrica de la graduación 
de las escalas grabadas en el instrumento, lo que justificaría la consideración numérica de las magnitudes 
continuas como cantidades –aceptando un margen de error sensiblemente imperceptible e irrelevante a 
efectos prácticos–.
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1. Introduction

Claude Richard (1589–1664), a barely known teacher of mathematics, held his 
mathematics professorship in the brand-new Royal Studies at the Jesuit Imperial College in 
Madrid from 1630 until the end of his life. He published Euclides elementorum geometricorum 
libros tredecim [Richard, 1645] and Apollonii Pergaei Conicorum libri IV [Richard, 1655]. 
Furthermore, the Spanish Royal Academy of History keeps his manuscript legacy, namely 
teaching handbooks and notes. Among these, a draft copy of Richard’s course on sectors has 
been identified [M-RAH 9/2779a] (figure 1), together with a manuscript copy produced by 
an anonymous student in 1656 [M-RAH 9/2785] (figure 2) that proves that these contents 
were actually taught by Richard at the Imperial College1.

Richard’s Treatise on the division of the twelve diverse straight lines of sectors, with their 
practical use in practical geometry, and also the proofs of these divisions and the use [M-RAH 
9/2779a] does not only address the brief and easy instrumental practice of geometry, as it was 
conceived as a textbook going beyond the handbooks for the use of instruments that were 
frequently sold together. Actually, Richard’s course aims at teaching practical geometry on a 
solid Euclidean basis. Far from collecting a set of practical instructions, Euclid’s Elements –
especially Book VI– are repeatedly referred to in order to check, when possible, that the 
geometric foundation of the sector scales is well constructed, which would justify the 
numerical consideration of continuous magnitudes as quantities –accepting a margin of error 
sensorially imperceptible and irrelevant for the purposes of application.

In the first place, this paper approaches Richard’s treatise taking into account the teaching 
context in the Royal Studies, where professors of mathematics were committed with the 
Imperial College and the Court, in charge of scholarly mathematics and also of the 
mathematics of war –particularly fortification [De Lucca, 2012]. The incorporation of 
practical geometry and military arts as part of the teaching program might have been 
inspired by Italian academies [Camerota, 2004, p. 55-57; 2006, p. 327-330], but it is 
also worth mentioning that the Jesuit Christoph Clavius (1537-1612) –a competent and 
well-known mathematician– had already published his Practical Geometry [Clavius, 
1606] with two chapters devoted to the construction and use of two mathematical 
instruments. Thus, in addition to the common quadrant, an instrument for easily 

1.	 Both manuscripts are actually anonymous. However, Richard’s handwriting can be undoubtedly recognized by 
comparison with his autograph manuscripts. References to Richard’s commented edition of Euclid’s Elements 
[Richard, 1645] in both texts confirm his authorship.
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Figure 1. Richard’s Course [M-RAH 9/2779a] 
[© Reproducción, Real Academia de la Historia]
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Figure 2. Student’s copy [M-RAH 9/2785] 
[© Reproducción, Real Academia de la Historia]
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dividing any line into any number of equal or proportional parts, that he called 
Instrumentum Partium –later pantometer– became part of the academic mathematics 
teaching [Clavius, 1606, p. 4-13]. Consequently, Clavius’ and Richard’s texts on sectors 
only showed their use to solve geometric problems, without making explicit their link to 
applications to military arts.

Our focus next turns to Richard’s course on Coignet-type sectors, which were –as many 
others– the result of the evolution of the proportional compass by Federico Commandino 
(1568) [Camerota, 2000; 2004, p. 44-61]. However, Richard used the sector to teach 
practical geometry, and for this purpose he revealed the graduation of the lines –which was 
omitted in the handbooks for the use of sectors in the 17th century. In this sense, his course is 
original and rare, for he validated the use of the instrument in practical geometry without 
disregarding incommensurability, which suggests the influence of Clavius’ mathematical 
thought on Richard –as on Descartes [Sasaki, 2003, p. 45-48].

This paper looks at Richard’s course from the point of view of mathematical practice and 
conceptual change in Early Modern mathematics, as a case study of how mathematical 
instruments offered materializations of new implicit notions and justifications for new 
algorithms which only later on would find formal expression.

To this end, the detailed textual analysis of the graduation of the lines provides information 
on the conceptual and educational aspects of this course, such as the notions of proportionality, 
number and magnitude, the numerical consideration of geometric magnitudes as quantities, 
and the acceptance of a numerical approximation to an exact quantity that cannot be found, 
which suggests the influence of Clavius and Regiomontanus [Malet, 2006, p. 70-71].

2. Mathematics in the Royal Studies at the Imperial College in Madrid

At the beginning of the 17th century the Spanish Monarchy was involved in the Eighty 
Years’ War (1568–1648), which resulted in the recognition of the Dutch Republic as an 
independent country. Actually, the Dutch Republic was recognized by Spain and the major 
European powers in 1609, at the start of the Twelve Years’ Truce (1609-1621). In the final 
years of Philip III’s reign, Spain entered the initial part of the Thirty Years’ War (1618-1648). 
This would lead his successor, Philip IV, to renew hostilities with the Dutch in 1621. This 
belligerent context encouraged the interest in instruction in mathematics as applied to the art 
of war, but restrained the publication of treatises on artillery and fortification.

In 1606 the Court definitely settled in Madrid –the permanent capital of the Monarchy 
since then. The new Chair on Mathematics and Fortification –set up by the Supreme Council 
of War for the training of military engineers and artillery men in 1605– enlarged the scientific 
and technical scope of the Academy of Mathematics and Cosmography –an institution 
founded in 1582 and ascribed to the Royal and Supreme Council of the Indies since 1591. 
In 1607, the Major Cosmographer of the Council of Indies assumed the Chair of Mathematics 
of the Academy of Mathematics and established a three-year course in mathematics: the 
sphere, planetary theory, and the Alphonsine tables in the first year; the first six books of 
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Euclid’s Elements and Ptolemy’s Almagest in the second; cosmography, navigation, and some 
instruments in the third and final year [Vicente Maroto, 1991, p. 81-109, 143-152, 173-
176, 208-214, 327-333].

Two years after the coronation of Philip IV in 1621, the young king launched a more 
ambitious project −that was actually part of the reform program of his Favorite, the Count-
Duke of Olivares. He informed Muzio Vitelleschi −the Superior General of the Society of 
Jesus− about his intention to establish “general studies” in Madrid, and offered the Jesuits the 
direction of these Royal Studies −including the nomination of professors. According to the 
foundational plan of the Royal Studies at the Jesuit Imperial College in Madrid (1625), the 
main purpose was the education of the sons of nobles, designed to provide not only a liberal 
education, but also practical instruction in mathematics, the sciences, and the art of war. The 
teaching structure consisted of six chairs in Latin grammar for Minor Studies and seventeen 
chairs for Major Studies, among them two chairs in mathematics, one chair in military art 
−based on Polybius and Vegetius works−, and one chair in natural history. As for mathematics, 
one chair was to be assigned to a professor teaching in the morning on the sphere, astronomy, 
astrology, astrolabe, perspective, and prognosis, and the other to a different professor teaching 
in the afternoon on geometry, geography, hydrography, and horology [Simón Díaz, 1992, p. 
149-157].

That same year, 1625, on the death of the professor of mathematics and major 
cosmographer of the Council of Indies, the Rector of the Imperial College was to choose 
Jesuit teachers to teach mathematics at the Academy −the Society of Jesus would receive the 
full salary of the former professor and cosmographer in exchange [Vicente Maroto, 1991, 
p. 162, 165-166].

In July 1628, the foundational plan was modified, for it met strong opposition from 
Castilian Universities −especially Alcalá and Salamanca− throughout 1626 and 1627, which 
entailed the elimination of the chair of Logic from the Imperial College, the reduction of its 
financial support, and the impossibility to award any academic degree on the basis of the 
Royal Studies [Simón Díaz, 1992, p. 157-183]. Soon afterwards, in September, the three-
year course on mathematics was transferred from the Academy to the Imperial College. The 
professor nominated by the Rector had to accept not only his teaching duties −one lesson in 
the morning and one lesson in the afternoon, plus the translation into Spanish of the necessary 
books−, but also his tasks as Major Cosmographer. The Rector proposal was to be assessed by 
the Council of Indies and approved by the King. The appointment as Professor and Major 
Cosmographer of the Council of Indies included a personal salary of eight hundred ducats a 
year [Vicente Maroto, 1991, p. 166-167, p. 193-196]. The Jesuit Johann Baptist Cysat (ca. 
1586 – 1657) might have been nominated for this post, as he taught at the Imperial College 
from March 1627 to January 1629, while the Royal Studies were still being organized 
[O’Neill & Domínguez, 2001, p. 1028; Udías, 2005, p. 373].

Finally, the inaugural ceremony of the Royal Studies took place at the end of February 
1629, in the presence of the King, the Queen, and courtiers, and with the premiere of the 
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seven hundred and four verses of Isagoge a los Reales Estudios de la Compañía de Jesús by Lope 
de Vega −the most famous Spanish poet at that time [Simón Díaz, 1992, p. 190-208].

Joannes della Faille (1597–1652) was appointed Professor of Mathematics at the Royal 
Studies −instead of Grégoire de Saint-Vincent, who declined the invitation on grounds of 
ill-health. He started teaching in March 1629. In 1630 Claude Richard, was appointed to fill 
the vacant chair of mathematics at the Royal Studies.

Richard was Philip IV’s subject, for he was born in Burgundy. In 1606 he joined the 
Jesuits in Rome. He taught hebrew and mathematics at the Jesuit college in Tournon (1616-
21) [De Dainville, 1954, p. 117], and mathematics at the Jesuit college in Lyon (1622-29) 
[De Dainville, 1954, p. 113]. In August 1629 −on his way to China− he arrived in Madrid, 
where he held his mathematics professorship in the Royal Studies for thirty seven-years –until 
the end of his life– and became the longest lasting professor of mathematics at the Imperial 
College in the 17th century [Udías, 2005, p. 427-428].

It should be mentioned that professors of mathematics at the Imperial College were 
somehow overburdened by the Court. As for Della Faille, he held his mathematics 
professorship in the Royal Studies for eighteen years (1629-1647) [Udías, 2005, p. 427-
428]. He published his work on gravity centers [Della Faille, 1632], he wrote a treatise on 
architecture [Lafaille, 1636], and he drafted his method of geometry [Faille, 1640].2 As of 
January 1639, Della Faille was busy with his ordinary lesson in the morning, Father Camassa’s 
lesson on military arts in the afternoon,3 and private lessons and tutorials in his chamber 
[Van der Vyver, 1977, p. 141]. The mandate to teach military arts and fortifications to the 
Royal Pages at the Palace followed his appointment as Major Cosmographer on March 23 −
daily lessons from 16:00 to 17:00 started in May− [Van der Vyver, 1977, p. 145, 148-149]. 
But from 1641 to 1644 he was sent to the Portuguese Restoration War (1640–1668) −leading 
to Portugal’s regained full sovereignty− as adviser on fortifications to the Duke of Alba [Van 
der Vyver, 1977, p. 160-176; Cerrillo Martín de Cáceres, 2017] (figure 3). In 1646, he 
became Preceptor to Juan José de Austria −Philip IV’s illegitimate son−, and remained in his 
service on his military expeditions to Naples, Sicily, and Catalonia, where he died. The fact 
that Della Faille spent half of his life in Spain in the service of the Crown provides a vivid 
image of the job of a competent mathematician in 17th century Spain. As he wrote in January 

2.	 For a complete scientific biography of Della Faille see Meskens [2005]. He attributes to Della Faille five 
anonymous manuscripts kept at the Spanish Royal Academy of History −two on astronomy, one on Juan de 
Roxas astrolabe, one on the telescope, and an abridged translation into Spanish of Giovanni Batista Baliani’s De 
motu naturali gravium solidorum (1638) [Meskens, 2005, p. 69-73], and a chapter devoted to the manuscripts 
on conic sections [Meskens, 2005, p. 81-105].

3.	 Francesco Antonio Camassa (1588–1646) was teaching mathematics in Naples when he was appointed to the 
chair of De re military at the Imperial College (1633-1644), where he also taught mathematics from 1642. 
However, between 1634 and 1641 he spent most of his time at the service of the Marquis of Leganés, as 
confessor and expert in military arts and fortification [Dameri, 2017; Udías, 2005, p. 375, 429].
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1645: "I hardly study, because now I am here, now they send me somewhere else. Finally, 
these are not times for the calmness that our studies require".4

Figure 3. Della Faille’s Cáceres Fortification Project (1644) 
[Cerrillo Martín de Cáceres, 2017, p. 2661]

As for Claude Richard, he might have been in charge of the lessons of mathematics and 
cosmography at the Court soon after his arrival in Madrid [Vicente Maroto, 1991, p. 166-
168]5 −possibly until Della Faille appointment as Major Cosmographer. He might have also 
replaced Camassa’s at the chair of De re militari, for he wrote a treatise on Ars militaris, an 
autograph manuscript6 dealing with the construction, siege and defense of fortresses, and also 
with artillery [Udías, 2005, p. 406, 436]. In June 1635, Richard left for Germany as confessor 
and adviser in military arts and fortification to Alonso Gaspar Fernández de Córdoba y 

4.	 “Yo estudio poco, porque agora estoy aquí, agora me embían a otra parte. Finalmente, estos tiempos no son para 
el sossiego que nuestros estudios piden” [Van der Vyver, 1977, p. 141].

5.	 His Prolegomenon astronomia is dated 1631. The manuscript is kept at the Spanish Royal Academy of History 
(shelf mark 9/72779). It consists of 116 folios (32 cm.), including drawings and tables.

6.	 “Opus P. Claudii Richardi S.I. et propia manu conscriptum” [f. I]. This manuscript is kept at the Spanish Royal 
Academy of History (shelf mark 9/2687). It consists of 152 folios (27 cm.), 6 plates. On Jesuits in military 
teaching and consultancy positions see De Lucca [2021].
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Alvarado, Marquis of Celada [Van der Vyver, 1977, p. 105-107] −who died in Valenza del 
Po (Italy) on 2 November. On his return to Spain,7 he drew up reports on the fortification of 
Malta (1639), San Sebastián (1641) and Pamplona (1643) [De Lucca, 2012, p. 149], and 
also produced a treatise on one of his teaching subjects, namely the sphere [Richard, 1640]8 
−a work he started early in 1637 and ended in May 1638.9 The dedication to the king and 
the sealed approval by the provincial Franciscus Aguado show that this autograph manuscript 
was ready to be published, but apparently it was never sent to print. Actually, since 1635 
paper supply was difficult [Van der Vyver, 1977, p. 99-101]. Richard’s undated manuscripts 
on arithmetic and algebra [M-RAH 9/2685; M-RAH 9/2686] [Udías, 2005, p. 435] might 
belong to this period.

In 1645, trusting the King to get financial support for publications was asking the 
impossible.10 This was the case of Father Richard, who spent over eight hundred reales of his 
own money while waiting for the remaining two thousand reales he needed in order to publish 
his commented edition of Euclid’s Elements in Antwerp [Richard, 1645] [Van der Vyver, 
1977, p. 179].

From 1651 to 1657, Richard was the only professor of mathematics at the Imperial 
College [Udías, 2005, p. 428] −until Father José Martínez (1603-1668) joined him in 1658. 
In this period, Richard published his commented edition of Apollonius’s Conics (I-IV) in 
Antwerp [Richard, 1655], and reported on the comet that appeared on the horizon of 
Madrid on 20 December 1652 and disappeared ten days later [Richard, 1653]. On 2 March 
1656, he started teaching a course on the construction and use of sectors at the Imperial 
College. Two draft copies of this course have been identified, one written by Richard himself 
[M-RAH 9/2779a], the other by one of his “few but interested in science” students [M-RAH 
9/2785].

7.	 Richard was back in Madrid in February 6, 1636, as it shows his original letter on the siege and liberation of 
Valenza (Spanish Royal Academy of History, Copias de cartas y otros documentos sobre Jesuitas en el S. XVII, shelf 
mark 9/3699, f. 300-302). 

8.	 It should be mentioned that between 1636 and 1641 an assistant teacher was assigned to the chairs of 
mathematics at the Imperial College, namely the young Spanish Jesuit Francisco Isasi (1603-1650), who was 
noted for his works on fortification and architecture [Navarro Loidi, 1999; Udías, 2005, p. 375, 427-428; De 
Lucca, 2012, p. 141-143]. He also taught mathematics from 1636 to 1641.

9.	 This information is added at the end of the title of a similar manuscript: “Matriti coeptum opus initio anni 
1637 et perfectum anno 1638 in fine Maii” (Spanish Royal Academy of History, shelf mark 9/2683).

10.	 Della Faille to Van Langren: “yo no veo por qué v. merced ha menester a nadie para sacar sus trabajos a luz; si es 
porque el rey le ayuda [sic] a imprimir, es pedir peras al olmo, que no ay dinero en este mundo agora”. Actually, 
Della Faille was not collecting his salary as Major Cosmographer of the Council of Indies [Van der Vyver, 
1977, p. 179].
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3. Claude Richard’s Course on Sectors at the Imperial College

It is not surprising that Richard’s course deals with Coignet-type sectors, for the Flemish 
Michiel Coignet (1549-1623)11 was at the service of the Habsburg court, as a mathematician 
and engineer to the Archdukes Albert and Isabella −the governors of the Spanish Low 
Countries− from 1596 until he died [Meskens, 2013, p. 18-21].

Coignet’s works circulated in Spain since the late sixteenth century: His manuscript L’uso 
del compasso di Fabricio Mordenti di Salerno mathematico del serenissimo Principe Alessandro 
Farnese Duca di Parma, composto per Micaelo Coignetto: propositioni geometriche cavate dalli 
primi sei libri delli elementi d’Euclide −in Italian− is dated before 1592 [Meskens, 2013, p. 
34];12 a manuscript translation into Spanish of his Usus trium praecipuorum mathematicorum 
instrumentorum was dedicated to Rodrigo Calderón, an ambassador at the Spanish 
Netherlands in 1612;13 and a copy of his Instruction nouvelle des poincts plus excellents & 
nécessaires, touchant l’art de naviguer (Antwerp, 1581) was inventoried at the Count of 
Gondomar’s library in 1623.14 The Southern Low countries and Italy certainly served as 
sources of knowledge to the Spanish Monarchy in a multilingual context −actually, none of 
the three Coignet’s manuscripts on pantometers in Spanish seems to be kept in Spain 
[Meskens, 2013, p. 229-231].15

Richard’s treatise on sectors started with a foreword [M-RAH 9/2779a, p. 1-2] that 
adopted the term pantometers to name Coignet-type sectors, and described the two sides A/B, 
C/D of two pairs of pivoting plane rulers with twelve engraved scales, namely three equally 
graduated straight lines on both arms of each side (figure 4).16 He explained that they were 
called Pantometra after a Greek word meaning “measure all” −namely rectilinear figures and 
circles, straight lines, polyhedra, globes and spheres−, and claimed that the entire practical 
geometry consisted of the brief and easy use of pantometers, an instrument first invented by 
the Flemish Michel Coignet.17

11.	 For a complete scientific biography and sectors see Meskens [2013], particularly Meskens [2013, p. 14-21, 
113-137].

12.	 Biblioteca Nacional de España, shelf mark MSS/19709/32.
13.	 Biblioteca Nacional de España, shelf mark MSS/9213.
14.	 Real Biblioteca (Madrid, Spain), shelf mark IX/1574.
15.	 Here we will use Coignet [1618], a very good digital copy. A similar one is Coignet [17th century]. The 

French posthumous edition is also similar [Coignet, 1626]. For a list of books and manuscripts by Coignet see 
Meskens  [2013, p. 229-231].

16.	 For this type of sector see Meskens [2013, p. 118-137]. In Coignet’s manuscripts titles it was named Regulae 
Pantometrae −Reglas Pantometras in Spanish [Coignet, 1618]. Richard noted that new useful scales for music 
and architecture could be added to those already described.

17.	 Richard also mentioned one single pantometer with only six lines made in Paris, which excludes Henrion’s four 
scales sector [Henrion, 1618] but matches engineer Pierre Petit’s proportional rule [Petit,1634] −except for 
the line of regular polyhedral (polygons in Richard’s text).
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The treatise consists of thirteen chapters −one for each graduated straight line plus one 
for difficult and curious propositions− on the geometric division and practical use of these 
lines, both proved with demonstrations. Richard’s proofs focus on geometric matters, even if 
he actually considers the use of trigonometric ratios soundly established.18 The following 
textual analysis consequently focuses on the scales graduation −omitted in the handbooks for 
the use of sectors in the 17th century. 

Figure 4. Coignet-type sector [Connete, 1626, p. 4-5]

3.1. Side A: Equal parts lines (A100)

In the first chapter [M-RAH 9/2779a, p. 2-11e] Richard explained the division into 100 
equal parts of the two central lines on the side A of the sector, as follows (figure 5).

Let AB be any straight line. Add 10 equal parts on AB (Els.I.3)19 and mark B at the end 
of the 10th part. Describe an arc of circle with center A and radius AC, the length of the 
central line on the first side of the sector. Join BC. Draw a straight line through 1 parallel to 
BC (Els.I.31). Mark D on AC (Our corollary 1 to Els.I.42)20 [Richard, 1645, p. 46, figure 
57]. AD = AC/10 because A1=AB/10 and AB, AC are cut proportionally by 1D parallel to 
BC (Els.VI.2), so AD = A100/10 (Els.V.7); similarly the remaining 9 equal parts can be added 
(Els.I.3, V.Def.1).

18.	 Richard was the author of a treatise on plane trigonometry [M-RAH 9/2779b].
19.	 This proposition begins the geometric arithmetic of lines in Euclid’s Elements [Joyce, 1996]. Richard’s 

corollaries tend to make easier the understanding and use of Euclid’s Elements. The manuscript always quotes 
his own edition, but he might have learnt with Clavius [1591], for in 1606 he joined the Jesuits in Rome.

20.	 Els.I.42 begins the application of areas in Euclid’s Elements [Joyce, 1996]. 
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This done, the sector had to be opened with a distance of 1 tenth (FE) at the end of the 
two arms in order to get the length of one-hundredth (GH) between A1 and A1 (figure 6). 
This was explained in Richard’s Euclidean style21 using Els.I.3, Els.VI.4, VI.2, VI.21, VI.
Def.1, Els.V.16, and Els.V.Def.1. The concepts of equiangular triangles, similarity, and the 
definition of a magnitude as a part −not parts− of a magnitude were introduced.

There follow seventeen propositions using the equal parts line in practical geometry. 
Proposition 9 [M-RAH 9/2779a, p. 10] taught how to find a third proportional to two 
given straight lines, and Proposition 10 [M-RAH 9/2779a, p. 11a] how to find a fourth 
proportional to three given straight lines, showing the possibilities of this type of sector as a 
measuring instrument to be used in the calculation of ratios and proportions. Furthermore, 
propositions four, five, and twelve are especially interesting, as they show how to deal with 
incommensurability in practical geometry.

Proposition 4 [M-RAH 9/2779a, p. 5] asks how to determine in numbers the proportion 
between two given unequal straight lines AB > CD. This is done by placing the longest line 
AB between two equal numbers −Richard suggests 100 and 100, and then fitting the shortest 
line CD crosswise to  a pair of numbers other than the former pair −for instance 30 and 3022. 
In this case the ratio of AB to CD is as 100 to 30. Richard immediately points out that this 
proposition and practice is approximately taken for incommensurable straight lines that are 

21.	 By “Euclidean style” I mean that Richard referred to the Elements’ propositions, definitions or corollaries that 
supported every step of the division procedure, as in Euclid’s Elements.

22.	 Magnitudes were transferred by means of a compass rather than a rule.

Figure 5. (Left) [M-RAH 9/2779a, p. 2-3]  
Figure 6. (Right) 

[© Reproducción, Real Academia de la Historia]
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studied in detail in Els.X. The example also shows that, in modern terminology, Richard’s 
proportions and numerical ratios are positive rational numbers as defined in Els.VII.Def.20.23 
This is confirmed in proposition 5 [M-RAH 9/2779a, p. 5], that shows with two examples 
how to find a straight line CD proportional to a given straight line AB with the ratio of AB 
to CD given in unequal numbers. For AB:CD = 80:15, CD will be the interval between 15 
and 15 when AB is placed between 80 and 80; vice versa for AB:CD = 15:80. No comments 
are needed here, as AB and CD are commensurable magnitudes (Els.X.Def.1, X.5, X.6).

Proposition 12 [M-RAH 9/2779a, p. 11b-11c] asks how to mark on both equal parts 
lines a Greek cross + to be used for determining the size of the radius or diameter of any given 
circle, and also the third part of the straight line equal to the semi circumference of the given 
circle, or the sixth part of the straight line equal to the whole circumference of the same circle. 
Here Richard follows Archimedes’ proposition 3 in Measurement of the Circle [Heath, 1897, 
p. 93] by taking the ratio of the circumference to its diameter as 22 to 7 , so that the 
ratio of the diameter to the circumference is as 7 to 22 (Els.V.7 Corol.).24 For a straight line 
divided into 360 equal parts the diameter of the given circle is 114  parts of these 360, and 
the radius of the circle whose semi circumference is a straight line divided into 180 equal 
parts is 57    (Els.V.11, V.15). Mark a Greek cross + at 57     on both equal parts lines, where 
60 is the third part of the semi circumference or the sixth part of the whole circumference 
whose radius is 57    . It follows that the first line is proportionally cut in + and 60 as the 
radius of the circle to the sixth part of his circumference. Propositions 13 to 18 [M-RAH 
9/2779a, p. 11c-11e] deal with finding the diameters or radius of circumferences or equal 
parts of circumferences. This was a most interesting achievement, as measuring arc lengths 
were needed to tackle circular and spherical segments in practical geometry.

3.2. Side A: Lines of planes (A□)

The second chapter [M-RAH 9/2779a, p. 12-15] is titled On the geometric division25 into 
64 proportional parts of two given equal straight lines, in order to increase and decrease rectilinear 
planes and circles in the given proportion not greater than 64; and to find out the proportion 
between them; and to find a mean proportional to two given straight lines. It consists of seven 
propositions, but is almost entirely devoted to proposition 1 [M-RAH 9/2779a, p. 12-14], 
where Richard develops a detailed Euclidean exposition on how to divide into 64 proportional 
parts the two outer lines on sector side A as follows (figure 7).26

Let C be an end of any straight line. Add 65 equal parts on C (Els.I.3) and mark D at the 
end of the first part, and E at the end of the 65th part. DE is 64 times CD. By Els.VI.12 −or by 
the above-mentioned proposition 10− find FG 4th proportional to DE, CD, and C□ −equal to 

23.	 See the Guide’s Section Ratios of various kinds in Joyce [1996, Els.V.Def.3].
24.	 Els.V.4 Corol. is a misprint.
25.	 Richard uses the expression geometric division only in the lines of equal parts and planes. 
26.	 Figures 7 and 8 appear on a single folio inserted between pages 12 and 13, and also in Richard’s student 

manuscript copy [M-RAH 9/2785, p. 126r].
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A□ on the sector, so that FG is 64 times smaller than A□. By Els.VI.13 find GL mean proportional 
to A□ and FG, so that A□

2 : GL2 = A□ : FG = 64 (Els.VI.20 Corol.).27 At this point, Richard first 
mentions homologous sides, a key concept of the geometric foundations of sectors.

Figure 8. [M-RAH 9/2779a, p. 12-13, © Reproducción, Real Academia de la Historia]

Now (figure 8) make DL equal to GL, draw LH perpendicular to DL (Els.I.11), and 
equal to A□ (Els.I.3). Join DH, where H is an acute angle in the right-angled triangle 
DHL (Els.I.17 Corol. 1) [Richard, 1645, p. 29, fig. 38]. Produce DL ad infinitum from 
L and draw a perpendicular HK to DH from H (Els.I.11). As LHK is an acute angle −
part of the right-angled triangle DHK, and the angle in L is a right angle, HL cuts HK 
and DL −produced indefinitely from L− making the interior angles on the right side less 

27.	 Richard‘s text is completely rhetoric, he used no mathematical symbols for ratios or proportions when dealing 
with magnitudes.

Figure 7. [M-RAH 9/2779a, p. 12-13, © Reproducción, Real Academia de la Historia]
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than two right angles, so HK and DL meet in K (Els.I.Post.5).28 Therefore, as a perpendicular 
HL has been drawn from the right angle in H to the base DK in the right-angled triangle 
DHK, the HL straight line so drawn is a mean proportional between the segments of the base 
DL, LK (Els.VI.8 Corol.). Then DL : LK = DL2 : HL2 (Els.VI.20 Corol.), where HL equals 
A□, and DL equals to GL −the square on GL being 64 times smaller than the square on A□, as 
it was previously proved. Consequently, DL is 64 times smaller than LK, LK can be divided 
into 64 parts equal to DL (Els.I.3), and DL is the sixty-fourth part of LK (Els.V.Def.1).29 The 
straight line LK can be graduated from L to K with natural numbers 1 to 64 at intervals n 
times DL (1 ≤ n ≤ 64).

Next, bisect DK and describe the circle DK with center in DK/2. The semicircle will 
circumscribe the right-angled triangle DHK (Our corollary to Els.III.33) [Richard, 1645, p. 
89, fig. 112]. Describe circles on DK with diameter n times DL cutting LH in LHn (1≤n≤64). 
Now the square on LHn is to n as the square on LK1 to the unit, for (LHn)2 : (LD)2 = LKn : 
LD = (n*LK1) : LK1 (Els.VI.20 Corol.).30 The square on LHn is n times the square on LD and 
the lines of planes are graduated in 64 proportional parts.

As a first corollary, Richard proves −by Els.V.9 and V.7 Corol.− that the squares on any 
two segments LHi, LHj on LHn are to each other as i to j. The second corollary establishes 
that the first one also applies to circles, for circles are to one another as the squares on their 
semi diameters (Our corollary 7 to Els.XII.2) [Richard, 1645, p. 403], so that circles on LH 
segments are to each other as the ratio between the corresponding numbers (Els.V.11).

Propositions 2-3 [M-RAH 9/2779a, p. 14-15] and 5-6 [M-RAH 9/2779a, p. 152-153]31 
use the lines of planes to increase and decrease rectilinear figures and circles in a given ratio 
−either numerical ratios or magnitudes, and to add and subtract areas−; proposition 4 
[M-RAH 9/2779a, p. 15] shows how to find a mean proportional to two given straight 
lines with the sector. The chapter finishes with proposition 7 [M-RAH 9/2779a, p. 153], 
on how to find the true or approximate square root of any given number with four or five 
arithmetic figures.32

28.	 Actually Richard referred to Els.I.Post.13 [Richard, 1645, p. 14, fig. 18].
29.	 In Euclidean terms, DL is a part of LK −for DL measures LK 64 times, and LK is a multiple of DL (Els.V.Def.2).
30.	 LKn equals n*DL, and DL equals LK1 (and LH1). An additional proof was given with 3 proportional lines LKn, 

LHn, LD, so that LKn : LHn = LHn : LD, resulting in n*(DL)2 = (LHn)2 (Apol.I Lemma 47, Els.VI.17) [Richard, 
1655, p. 27].

31.	 Propositions 5, 6, and 7 appear on a single folio inserted between pages 14 and 15.
32.	 Proposition 7 is much better explained in Richard’s student manuscript copy [M-RAH 9/2785, p. 127v-129r]. 

For example, to find the root of  4624 take 46,24, open the sector so that the segment A80 on one of the equal 
parts lines fits between the two lines of planes at 64 (since 802 = 6400); without opening or closing the sector 
take the interval between 46 and 46 on the lines of planes and place it on one of the equal parts lines: the 
number that this segment marks on the equal parts line (A68) is about the same as the square root of 4624, for  
√46 : √64 = x : 80 (x =10√46 = 67,82).
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3.3. Side A: Lines of solids (A□)

The third chapter [M-RAH 9/2779a, p. 16-18] consists of six propositions on the two 
straight lines of solid figures. The first one asks how to divide the two equal straight lines A    
into proportional parts in order to increase or decrease solid figures, and other useful things. For 
this purpose, Richard proceeds as follows:

Take both lines of solids as long as the equal parts lines,33 and divide them into continuously 
proportional parts −referred to equal parts lines A100, so that for any natural number less than 
64 the solid (e.g. cube) on An be n times the similar solid on A1.

Richard was fully aware of the geometric difficulty of finding two lines continuously 
proportional to two given lines, as his Elementorum geometricorum libros tredecim ended with 
a section on this subject, namely Liber de inventione duarum rectarum linearum continue 
proportionalium, inter duam rectas datas, ex antiquis Geometris & recentioribus [Richard, 
1645, p. 545-563]. He explained here fourteen ways to solve this question by Plato, Archytas 
of Tarentum, Menaechmus, Eratosthenes, Philo of Byzantium, Hero, Apollonius, Nicomedes, 
Diocles, Sporus, Johann Werner, Juan Bautista Villalpando −two methods−, and his own 
solution [Richard, 1645, p. 545-563, fig. 407]. However, he decided to instruct his students 
with the following simple arithmetic procedure:

Take 25 on the equal parts line A100. For every natural number less than 64 find the cube 
root of n times the cube of 25. These cube roots will be less than 100 −that is the cube root 
of 64 times the cube of 25. Take these parts or numbers resulting of the cube roots on the 
equal parts line A100, and mark them from A on the two inner lines of solids. The lines of 
solids are graduated in 64 proportional parts with consecutive numbers from 1 to 64 that 
show the sides of the cubes, which apply to the homologous sides of any solid −polyhedron− 
or sphere, as they are in the triplicate ratio of their corresponding sides or diameters (Els. XI, 
XII, XIII).

Richard passes over the choice of number 25 for the first proportional part, which results 
from 100 divided by the cube root of 64, so that the 64th part of the line of solids is four times 
the first part and equals 100 on the equal parts line A100. Similarly the twenty-seventh part of 
the line of solids is triple the first part and equals 75 on the equal parts line, and the eighth 
part of the line of solids is twice the first part and equals 50 on the equal parts line.

This arithmetic procedure suggests the use of tables of squares and cubes34 −though 
Richard makes no mention in this chapter. For instance, for n = 2, 2 × 253 = 31250 is between 
313 = 29791 and 323 = 32768, so that 31.5 is the approximate cube root for the second 
proportional part −and the cube root of 2 equal to (31.5) / 25 = 1.26.

33.	 Actually Richard points out that the lines of solids must be referred to any straight line divided into 10n equal 
parts, (n ≥ 2).

34.	 For instance, those in Clavius’ Geometria practica [1606, p, 378-388].
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Propositions 2-5 [M-RAH 9/2779a, p. 17] use the lines of solids to increase and decrease 
rectilinear figures and spheres in a given ratio, and to add and subtract volumes. The chapter 
finishes with proposition 6 [M-RAH 9/2779a, p. 18], on how to find 2 lines continuously 
proportional to 2 given lines (Els.XI.33, XI.37).

3.4. Side B: Lines of degrees (BGr), Lines of regular polygons (B5), 
  and Lines of isometric regular polygons (B∆)

The fourth chapter [M-RAH 9/2779a, p. 18-21] consists of seven propositions on the 
two central straight lines on sector side B. These lines are referred to as BGr −Gr meaning 
degrees, but they actually are the lines of chords, for proposition 1 asks to mark the chords 
on these lines of the circle degrees from 1° to 72°.

To begin with, Richard invokes the doctrine of the chords of the circle and its sines in order 
to assert that the chord of any circular arc is twice the right sine of half the arc. He also 
explains that geometers calculate right sines of arcs on the circle quadrant as parts of a semi 
diameter divided into equal parts of any power of ten. These parts can be reduced to parts of 
a semi diameter divided into 100 equal parts by taking the total sine equal to these 100 equal 
parts. For this purpose, geometers give the following rule: remove zeros of the total sine in 
order to reduce it to 100, and remove from any other sine as many digits on the right as zeros 
have been removed from the total sine. This rule shows how trigonometry played a role in 
promoting decimal computation.35

An example follows for a radius of 107, as it was used by Regiomontanus [Peurbach & 
Regiomontanus, 1541, p. 40-57] and Clavius [1586, p. 67-86; 1607]. The chord of 72° −
twice the sine of 36°− divided by 105 is 118 parts of a radius divided into 100 equal parts.36 
Therefore, it is clear that the tables of sines are going to be used to mark the chords as parts 
of a radius divided into 100 equal parts on the lines of degrees from 1° to 72°. As it was the 
case for the diameter of a given circle in the twelfth proposition of the first chapter, chords 
were parts −not a part− of a radius (Els.VII.Def.4) of proven usefulness since ancient times, 
and trigonometric ratios were soundly established.

Nonetheless, the length of the lines of degrees is equal to 118 parts of a radius divided 
into 100 equal parts, and this radius has to be equal to the chord of 60°. To this end, Richard 
proceeds as follows (figure 9):

35.	 This role appears again in the following rule: When a digit greater than 5 is removed, a unit must be added to 
the next digit.

36.	 118 is twice 59, the approximate value of the sine of 36° −5877852 as given in the above-mentioned tables of 
sines− divided by 105. 
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Figure 9. [M-RAH 9/2779a, p. 18, © Reproducción, Real Academia de la Historia]

Let BC be a straight line equal to the addition of the segments A100 plus A18 on the equal 
parts line, so that BC be divided into 118 equal parts. Draw BG from B equal to the line of 
degrees BGr −BG and BC containing any rectilinear angle, draw CG, draw a parallel to CG 
from 100 on BC (Els.I.31), and mark 60 on BG. BC and BG are proportionally cut at 100 
on BC and 60 on BG (Els.VI.2), for 100C : B100 = 60G : B60; and since the segment 100C is 
18 equal parts of B100 divided into 100 equal parts, the segment 60G on BG is 18 equal parts 
of B60 divided into 100 equal parts like B100. Therefore, if B60 is conceived as a total sine or 
radius divided into 100 equal parts of a circle, B60 is also the chord of 60° (Els.IV.15.Corol.) 
in a circle where the line BG is the chord of 72°.

By placing the segment B60 between A100 and A100 on the equal parts lines, the interval 
between the numbers equal to the chord length is the segment to be marked with the 
corresponding number of degrees on BGr from B for chords less than 100. For chords greater 
than 100, the interval between numbers equal to the chord length minus 100 is the segment 
to be marked with the corresponding number of degrees on BGr from B60.

Corollary 4 [M-RAH 9/2779a, p. 19] states that the letter M marked on BGr at 36° is the 
greater segment to be taken from the radius at 60° to cut it in extreme and mean ratio (Els.
XIV.4, Hypsicles I) [Richard, 1645].37 No reference is made to Els.IV.10, where the side of 
the decagon −that is, the chord of 36°− cuts the radius of the circle in extreme and mean ratio, 
possibly because the proof is not easy. However, this is mentioned in proposition 8 −on the 
use of the sector for this purpose− [M-RAH 9/2779a, p. 19] with reference to Hypsicles I.4. 
[Richard, 1645, p. 472], that offers a simpler argumentation based on Euclid’s Elements.

Propositions 2-4, 6-7 [M-RAH 9/2779a, p. 20-21] deal with circumferences, circular 
arcs, and angles. Oddly enough, proposition 5 [M-RAH 9/2779a, p. 20], to inscribe any 
regular rectilinear figure in a circle, anticipates the next line on the sector.

37.	 No mention of Els. XIV as such appears in Richard [1645].
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The fifth chapter [M-RAH 9/2779a, p. 22-23], devoted to the lines of regular polygons 
(B5), deals with the two inner lines on sector side B, which are equal in length to the line of 
chords and benefit from the previously calculated proportional parts. To mark the sides of 
regular polygons on B5, the lengths of the chords of 360° divided by the number of sides −
from five to twenty− are transferred from the lines of chords. A table of numerical values of 
degrees is also given.38 Three propositions show how to use the sector to inscribe regular 
polygons in a given circle, to construct regular polygons on a given segment, and to 
circumscribe a circle about a given regular polygon.

In the sixth chapter [M-RAH 9/2779a, p. 24-28], devoted to the lines of isometric regular 
polygons (B∆), the two outer lines on sector side B have to be divided to transform the circle 
into isometric regular rectilinear figures and vice versa, from the equilateral triangle to the 
20-gon. Five lemmas are stated and geometrically proved to show that the sides of isometric 
polygons can be marked on a line as long as the line of chords BGr, starting at B and ending 
at the side of the equilateral triangle isometric to the circle B∆. Descending from B, the sides 
of isometric regular polygons from twenty to four, and the diameter of the circle are marked.39

Proposition 1 explains how to divide the lines of isometric regular polygons into 
proportional parts referring to Richard’s treatise on practical geometry:

Transform the equilateral triangle on B∆ into an isometric circle (chapter 14, problem 
39), take the diameter, and mark it on B∆ as ʘ; then transform this circle into an isometric 
square (chapter 12, problem 2), take the side, and mark it on B∆ as □; and next transform this 
square into any isometric regular polygon (chapter 14, problem 37), take the side, and mark 
it on B∆ with the number of sides.

No further details are given, but as the side of the equilateral triangle is the chord of 120º 
(173 for a radius divided into 100 equal parts), its area is ; therefore, the radius of the 
isometric circle is (173/2) [(3)1/2/π]1/2 = 64.24, and 128.48 the diameter to be marked on B∆ 

as ʘ. 

The proportional mean between the radius of this circle and its semi circumference is the 
side [ π (64.24)2] 1/2 = 113.86  of the isometric square [BNE Mss 9118, problem 64, p. 30].40 

Propositions 2, 3 and 4, on the use of the sector to transform isometric figures, show that 
the intervals between marks n on the lines B∆ −from 5 to 20− give the lengths of the sides of 
the isometric n-gons to be constructed as shown in chapter 5 proposition 3.

38.	 Heptagon 513/7, 11-gon 328/11, 13-gon 179/13, 16-gon 221/2, 17-gon 213/17, 19-gon 1918/19.  
39.	 The radius of the semicircle is marked between six and seven.
40.	 The anonymous author of this manuscript introduces himself as Richard’s disciple. He says that Richard has 

been teaching mathematics at the Imperial College for thirty-one years, which dates the manuscript in 1661. 
The text −that has been written at the request of many gentlemen− consists of 486 problems on practical 
geometry that he presents as a chapter on geometric practices necessary to trace and measure all kinds of 
fortifications, to be used as a complement to his manuscript on Military Arts [BNE Mss 9118, 1r-1v]. However, 
no Richard’s treatise on practical geometry has been found yet.
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In the absence of further information, a trigonometric approach to the area of regular 
polygons seems a plausible hypothesis. For any regular n-gon inscribed in a circle, its area is 
n times half the product of its side by the apothem,41 so that the side of the isometric n-gon 
is the chord of its central angle α for the radius r that makes its area equal to the area of the 
isometric circle.42

3.5. Side C: Lines of the five isometric regular polyhedra (CP)

The seventh chapter [M-RAH 9/2779a, p. 28-32] consists of six lemmas and five 
propositions on the two outer straight lines on sector side C, which have to be divided into 
proportional parts to transform the five regular solid figures −tetrahedron, octahedron, cube, 
icosahedron and dodecahedron− into an isometric sphere and vice versa.

As in the previous chapter, the sixth lemmas refer to Richard’s treatise on practical 
geometry (chapter 40, problems 40 & 42) to show the order of the marks on the sides of the 
five regular solid figures on these lines: the side of the tetrahedron and the octahedron are 
longer than the diameter of the isometric sphere, the side of the octahedron is shorter than 
the side of the isometric tetrahedron, the side of the cube is shorter than the diameter of the 
isometric sphere, the side of the icosahedron is shorter than the side of the isometric cube, 
and the side of the dodecahedron is shorter than the side of the isometric icosahedron 
[M-RAH 9/2779a, p. 29-30]. On line CP −starting at C and ending at the side of the 
tetrahedron (P), the side of the dodecahedron (D), the icosahedron (I), the cube (C), and the 
octahedron (O) isometric to the sphere (G)43 can be marked. This is explained in Proposition 
1 −again referring to Richard’s treatise on practical geometry [M-RAH 9/2779a, p. 30-31]:

Transform the tetrahedron with side CP into an isometric sphere (chapter 40, problem 
40), transform the tetrahedron with side CP into an isometric octahedron (chapter 40, 
problem 48), transform the sphere with diameter CG into an isometric cube (chapter 40, 
problem 42), transform the cube with side CC into an isometric icosahedron, and transform 
the icosahedron with side CI into an isometric dodecahedron (chapter 40, problem 48).

No further information is given here. Proposition 2 shows the use of the sector to 
transform solid isometric figures −including the sphere, and proposition 3 refers again to 
Richard’s treatise on practical geometry to make paper Platonic solids [M-RAH 9/2779a, p. 
31; Richard, 1645, figs. 295, 298, 300, 303, 306]. Notwithstanding, given the side of any 
regular solid, proposition 4 geometrically finds the diameter of the circumscribed sphere 
[M-RAH 9/2779a, p. 31-32; Clavius, 1606, p. 214-215; Els.XIII.13, XIII.14, XIII.15, 
XIII.16, XIII.17].

41.	 Area An = (n/2) Sn an, where Sn=2rn sin dn, an= rn cos dn, α = 2 dn =360/n, so that  An=(n/2) 2 (rn)2 sin dn cos dn = 
(n/2) (rn)2 sin 360/n.  

42.	 From the former equation de radius of the isometric circle to any n-gon is rn = { [π (64.24)2] / [(n/2) sin 
(360/n)] }1/2. 

43.	 The diameter of the sphere is marked between the octahedron and the cube with character G meaning Globe.
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It is worth mentioning that since the square on the diameter of the sphere is one-and-a-
half times the square on the side of the inscribed tetrahedron [Els.XIII.13], the side of the 
tetrahedron is 2/3 √6 for a radius of the sphere equal to one unit. Thus the volume of the 
tetrahedron can be determined, and used to find the radius of the isometric sphere, and the 
sides of the remaining isometric regular polygons −at least for the cube and the octahedron, 
for these two figures and the tetrahedron are to one another in rational ratios. Anyway, 
Richard’s expertise on Platonic solids is clear in his commentaries to the thirteenth book of 
Euclid’s Elements [Richard, 1645, p. 431-462], to Isidore of Miletus’ spurious fifteenth book 
of Euclid’s Elements [Richard, 1645, p. 463-468], to Hypsicles’ fourteenth book of Euclid’s 
Elements [Richard, 1645, p. 469-512], and to François de Foix de Candale’s Euclidis 
Megarensis Mathematici Clarissimi Elementa [Richard, 1645, p. 512-532].

It should be noted that Richard’s student manuscript copy [M-RAH 9/2785, p. 
136r-137r] omits the six lemmas and proposition 4, either because he considered them 
unnecessary −possibly already learnt in the course of Practical Geometry, or because Richard 
did not explained them in the 1656 course.

3.6. Side C: Lines of sines (CSin)

In the eighth chapter [M-RAH 9/2779a, p. 32-33] the two central straight lines on sector 
side C have to be divided into proportional parts being the right sines of all the arcs of a circle 
quadrant with radius equal to 100 parts. For this purpose, tables of sines are used as for the 
lines of chords in chapter 4. By placing the line CSin between A100 and A100 on the equal parts 
lines,44 the interval between ASin(n) and ASin(n) is equal to the sine of n for any natural number 
from 1 to 90. This length is the segment to be marked with n on CSin from C, so that the 
segment Cn is the sine of n degrees for any n from 1° to 90°, for a radius equal to the length 
of CSin divided into 100 equal parts.

Proposition 2 shows the use of the sector to find the sine, the cosine and the versine of 
any angle in the first quadrant. A third proposition is added in Richard’s student manuscript 
copy to find the chord [M-RAH 9/2785, p. 138r].

3.7. Side C: Lines of metals (CPet)

In the ninth chapter [M-RAH 9/2779a, p. 33-35] the two inner straight lines on sector 
side C must be divided into proportional parts for similar solids of a different material and 
equal weight. Gold, lead, silver, copper, iron, tin, marble and stone are marked with the first 
characters of their Latin names −Aurum (Au), Plumbum (Pl), Argentum (Ar), Cuprum (Cu), 
Ferrum (Fer), Stannum (St), Marmor (Mar), and Petra (Pet).

Eight rectangular right prisms of equal height and weight but different material are 
needed to graduate the lines of metals. The stone prism immersed in a tub of water up to its 

44.	 This is not necessary if the length of CSin is equal to the length of A100.
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upper surface gives the length of a straight line perpendicular to the base of the tube that has 
to be divided into one hundred equal parts. Next, the successive immersion of the seven 
remaining prisms in the tub of water will mark a sequence of numbers on the equal parts line 
that graduate the lines of metals.45 For instance, by placing the line CPet between A100 and A100 
on the equal parts lines, the interval between A52 and A52 is the segment to be marked with 
Au on CPet from C.

Proposition 2 [M-RAH 9/2779a, p. 35] shows that intervals between any correspondingly 
marked pair of points give the diameters of spheres −or the homologous sides of other solid 
bodies− similar to one another and equal in weight.

Richard adopts a purely experimental method to graduate the lines of metals. No reference 
to the concept of density is made, but the fact is that similar solids equal in weight, with 
volumes V1, V2 and densities d1, d2 have equal mass, so that V1 d1 = V2 d2 =m, and V1/V2=d2/d1. 
Consequently, the ratio of the corresponding sides s1, s2 of similar solids is s1/s2 = (V1/V2)1/3= 
(d2/d1)1/3. The marks for each material can be calculated from the cube root of its volume, but 
also from the reciprocal cube root of its density.

3.8. Side D: Lines of tangents (DTang)

In the tenth chapter [M-RAH 9/2779a, p. 35-36], the two central straight lines on sector 
side D must be divided into proportional parts being the tangents of the arcs of a circle 
quadrant, with radius equal to the total sine divided into 100 parts, from 1° to 45°. Here 
again, tables of sines and tangents are used.46 By placing the line DTang between A100 and A100 
on the equal parts lines, the interval between ATan(n) and ATan(n) is equal to the tangent of n for 
any natural number from 1 to 45. This length is the segment to be marked with n on DTang 
from D, so that the segment Dn is the tangent of n degrees for any n from 1° to 45°, for a 
radius equal to the length of DTang divided into 100 equal parts. Propositions 2 and 3 show 
the use of the lines of tangents.

A reference to Richard’s treatise on sundials is mentioned at the end of proposition 2 
[M-RAH 9/2779a, p. 36]47, a subject where tangents are applied [Coignet, 1618, props. 
43-44].

45.	 The following values are given [M-RAH 9/2779a, p. 34]: gold 52, lead 61, silver 63 1/4, copper 65 1/3, iron 
68 2/3, tin 70 1/2, marble 96 1/4, and stone 100. Values differing from these about 20 units are given in 
[Coignet, 1618, p. 18r].

46.	 For instance, Clavius’ tables of sines, tangents, and secants for a radius equal to 107 [Clavius, 1607].
47.	 For an inventory of anonymous manuscripts on sundials at the Spanish Royal Academy of History see Udías  

[2005, p. 448]. Among them, Tratado en el cual se declara por problemas la práctica para describir los reloxes del sol 
de la hora doze, desde un punto meridiano a otro punto suyo opuesto, en todo género de planos en las espheras oblicuas, 
por ejemplo, en la oblicua de cuarto grado is kept in the same file as Richard’s student manuscript copy [M-RAH 
9/2785 (2)].   
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3.9. Side D: Lines of circles (DCir) and Lines of Globes (DGl)

The eleventh chapter deals with the two outer straight lines on sector side D cutting the 
circle into 60 equal segments −30 for the semicircle, and so does the twelfth chapter with the 
two inner straight lines cutting the sphere into 60 equal parts [Coignet, 1618, p. 4v]. In 
both chapters Richard declares that he will not give the proportional division of these straight 
lines because he is not aware of its proof, so he will only give their use as explained by 
Coignet. According to Richard, Coignet supposes the lines of circles divided into 30 
proportional parts, the circle whose diameter duplicates the straight lines CCir (sic) divided 
into 60 equal segments, and the semicircle whose semi diameter is CCir (sic)48 divided into 30 
equal segments [M-RAH 9/2779a, p. 37; Coignet, 1618, props. 32-34, p. 18v-20r].

Actually, most of Coignet’s manuscripts on pantometers in Spanish are handbooks for the 
use of these instruments, where no precise information on the geometric foundations of the 
sector scales is given. However, this is implicitly included in the practical use of the sectors 
scales. Let us see how Coignet proceeded with these lines of circles and globes.

Coignet [1618, p. 4v] introduces Division DCir dividing a circle into 60 segments equal 
to each other −30 segments for the semicircle. Then he draws a trigonometric quadrant 
(figure 10) showing the sines, tangents and secants of fifteen, thirty, and forty five degrees, 
and the sinus totus equal to the radius [Coignet, 1618, p. 4v-5r].

Figure 10. [Coignet, 1618, p. 13r]

48.	 These seem to be misprints for DCir in both cases.
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Proposition 4 [Coignet, 1618, p.  6v] explains how to use the equal parts lines A100 to 
find the third part of the semi circumference of radius r as the interval A60-A60 when segment 
r fits between A+ and A+, and also to find half the semi circumference of radius r as the interval 
A90-A90 when segment r fits between A+ and A+. Similarly, proposition 19 uses the line of 
equal parts to find the length of an arc [Coignet, 1618, p. 12v-13r].

Proposition 20 [Coignet, 1618, p. 12v-13r] shows how to find the areas of circular 
sectors and segments (figure 11). For any circular sector BAC, he produces AE equal to half 
the length of arc BOC and perpendicular to the radius AB. With lines AB, AE, he produces 
the rectangle AEDB49 that equals the area of the circular sector.

Figure 11. [Coignet, 1618, p. 13r]

He then produces the line B*C that cuts the circular segment BAC into a triangle AB*C 
and a circular segment B*COB, so that the area of the circular segment will equal the area of 
the circular sector minus the area of the triangle. He draws CF height of the triangle from F 
on AB, divides CF in two equal parts at K, divides AE at G so that AG equals FK, and also 
BD on H. Therefore BH equals FK, and the area of the triangle is then the rectangle AGHB.

Now the area of the circular segment is the rectangle AEDB minus the rectangle AGHB, 
namely the rectangle GEDH, where GE and DH equal the difference between half the length 
of arc BOC and half the height of the triangle. Then segment HI is the mean proportional 
between the radius of the circular sector and HD, namely the side of the square equal to the 
area of the circular segment.

It should be noticed that Coignet is implicitly working on the fourth quadrant of the 
circle, so that the height of the triangle is the sine of the arc. However, the construction of 
circular sectors on central angles makes trigonometric ratios much more clear: the length of 

49.	 ED=AB and parallel to AB, DB=AE and parallel to AE.
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the chord is 2r sin (α/2), the area of the triangle is (1/2) r2 sin (α),50 and therefore the area of 
the circular segment is (r2/2) [(πα/180)- sin α] . Then the sagitta of the circular segment is 2r 
sin2 (α/2).51

Proposition 32 insists on reminding that DCir represents the division of a circle into sixty 
equal segments in order to show how to use this line to cut from any given circle a circular 
segment whose area is the nth part of 60 −n being a natural number− by finding the length of 
its sagitta −and consequently the length of its chord. Proposition 33 explains the use of DCir 
to find the proportion of a circular segment to its circle when its chord and sagitta are given 
[Coignet, 1618, p. 18v-19r], so that the centre of the circle and its radius can be found.52 
Out of these two propositions we learn that for any natural number (less than 30), the 
interval Dn-Dn is the sagitta of a circular segment whose area is the nth part of a circle whose 
radius is fitted crosswise to the interval D30-D30. This results suggest that the lengths of the 
sines −half the lengths of the chords− should be the segments to be marked with n on DCir for 
any part n of 60 as the square roots of the sagittas.

More information is given in proposition 34 [Coignet, 1618, p. 19v-20r], that shows 
how to transform a circular segment −defined by its chord and its sagitta− into a circle or any 
regular polygon. First the center of the circle of which this is a segment is needed in order to 
find the radius, and then the proportion of the circular segment to its circle in degrees. 
However, no procedure is given, possibly because the use of the lines of degrees (BGr) in a 
similar context was already shown in propositions 17 and 18 −dealing with arcs degrees− 
[Coignet, 1618, p. 11v-12r]. Out of them it is clear that the radius of the circle is the 
interval between B60 and B60 once the chord of the circular segment is fitted crosswise to equal 
degrees. The proportion of the segment to its circle is as this number of degrees n to 60. Next, 
the lines of planes A□ are used to find a circle whose area equals this number of degrees: the 
radius of the circle is the interval between A□n and A□n once the radius of the former circle is 
fitted crosswise to numbers 60 −the sagitta being the homologous side. The conclusion is that 
the area of the latter circle equals the area of the given circular segment of the former circle. 
This isometric circle can be transformed into any regular polygon using the lines of isometric 
regular polygons (B∆).

As for the lines of globes, Coignet [1618, p. 4v] introduces Divisions DGl as the section 
of a globe into 60 equal parts −30 for the semicircle. Propositions 35 and 36 are similar to the 
above-mentioned propositions dealing with the lines of circles,53 and show that for any 

50.	 Els.III.25 can be used to look at segments of a circle with trigonometric eyes, the area of the triangle being 2r2 
(1/2) sin (α/2) cos (α/2).

51.	 The sagitta −the height of the circular segment− equals the versine (α) = r (1– cos (α)) = r {1-[cos2 (α/2) - sin2 

(α/2)]} = r [1-cos2 (α/2) + sin2 (α/2)] =r [sin2 (α/2) + sin2 (α/2)].
52.	 Given a segment of a circle, Coignet [1618, prop. 36, p. 19v] refers to Els.III.25 for the construction of the circle 

of which it is a segment.
53.	 The data for the spherical cap are the radius of the sphere, the radius of the base of the cap −a circular segment, 

and the height of the cap.
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natural number less than 30, the interval Dn-Dn is the height of an spherical cap equal to the 
nth part of a globe with radius equal to the interval D30-D30 [Coignet, 1618, p. 19v-20r]. 
Also similarly, proposition 37 uses the lines of solids instead of the lines of planes to find a 
sphere equal in volume to the given spherical cap [Coignet, 1618, p. 20v-21r]. Here again, 
this isometric sphere can be transformed into any regular solid using the lines of the five 
isometric regular polyhedra (CP) [Coignet, 1618, Prop. 27, p. 16v-17r].

Considering Richard’s expertise in Euclid’s Elements and trigonometry, it seems highly 
unlikely that he could not follow Coignet’s argumentation on circular sectors. The proportion 
of the circular segment to its circle is based on the intersecting chords theorem [Els.III.35] 
applied to any chord perpendicular to the diameter of the circle.54 Clavius [1606, p. 201] had 
also demonstrated that half the chord of a circular segment was a mean proportional to the 
sagitta and the rest of the diameter. This was applied to a quadrant by Richard [M-RAH 
9/2779b, p. 24-25], for the sine of half the central angle is a mean proportional to half the 
radius and the versine of the central angle.55 Actually, the two propositions in this chapter 
prove that Richard trusted Coignet’s practical use of this line to deal with proportionality 
between circular segments and circles [M-RAH 9/2779a, p. 37], but he might have discarded 
proposing a proportional division of these lines for technical and conceptual reasons. On the 
one side, the construction of these divisions was hard to check with small pantometers.56 On 
the other, the division of the circle was a delicate issue in the area of higher geometry that he 
possibly considered beyond the interests of students of practical geometry.57  It is also worth 
mentioning that no reference to Viète’s Variorum de rebus mathematicis responsorum Liber VIII 
(1593) or Ad Angularium Sectionum Analyticen Theoremata (1615) has been found up to now 
among Richard’s files at the Spanish Royal Academy of History. 58

54.	 When two chords of a circle are cut into two segments at the point of where they intersect, if one chord is cut 
into two line segments A and B, and the other into the segments C and D, this theorem states that A × B is 
always equal to C × D no matter where the chords are. Since the sagitta intersects the midpoint of the chord, it 
is part of a diameter. Using the fact that one part of one chord times the other part is equal to the same product 
taken along a chord intersecting the first chord, we find that the product of (2r − sagitta) by the sagitta equals 
the square of half the bisected chord.

55.	 [(1/2) crd (α)] 2 = [r sin (α/2)]2 = r2 sin2 (α/2) = r.r sin2 (α/2) = (r/2) versine (α). Richard’s proof in proposition 9 
of his treatise on plane trigonometry is different. 

56.	 The lines of circles and the lines of globes start on 5 in Coignet  [1618, p. 4r]. By small pantometers we mean 
between 15 and 18 cm. [Museo Arqueológico Nacional, Madrid, Inventory numbers 56559, 56566].

57.	 Two manuscripts of Richard’s commentaries −and problems− on Archimedes’ De sphaera et cylindro are kept at 
the Spanish Royal Academy of History as part of Richard’s Mathesis Varia [Udías, 2005, p. 405, 434]. 
Archimedes’ De dimensione circuli, De ysoperimetris, De sphera et cylindro, Quadraturae parabolae, De conoidibus 
et sphaeroidibus, and De lineis spiralibus can be found in manuscript [M-RAH 9/2787], a manuscript copy of 
Maurolico’s Theodosii Sphaericorum Elementorum Libri III (1558).

58.	 Ten anonymous manuscript pages titled Angulares sectiones, Vietae are kept at the Spanish Royal Academy of 
History (Shelf mark 9/2715).
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3.10. Difficult and curious propositions: the ellipse

The aim of this thirteenth and final chapter [M-RAH 9/2779a, p. 38-40] is to show the 
practical and easy solution of various difficult and curious propositions −eight in all.

Six propositions applying the results of the preceding chapters show the use of the sector 
to  find a straight line equal in square to the sum of rectilinear figures and circles, isometric 
rectilinear figures or circles on a given line, isometric rectilinear figures or circles to any given 
circular segment, isometric regular solids or globes to any given spherical cap, isometric 
rectilinear figures or circles equal in square to the sum of rectilinear figures and circles, and 
isometric regular solids or globes equal in volume to the sum of regular solids and globes 
[M-RAH 9/2779a, p. 38-39].

Richard does not solve proposition 7, on sundials, because he considers that this subject 
has already been practiced in his treatise on sundials [M-RAH 9/2779a, p. 39].

The eighth and last proposition introduces a new geometric figure, the ellipse [M-RAH 
9/2779a, p. 40].  It shows the use of the sector to find infinite points of the ellipse with axes 
AB, FG as follows (figure 12).

Figure 12. [M-RAH 9/2779a, p. 40, © Reproducción, Real Academia de la Historia]
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For any two given perpendicular straight lines AB > FG bisecting at E, draw the circle 
ACBD with center E and radius EA. Fit the radius crosswise to numbers 60 on the lines of 
degrees (BGr), and leaving the instrument at this setting take crosswise on the equal parts lines 
(A100) the distance between points 10-10. With this distance, cut the arcs of the circle AD, 
DB, BC, and CA into nine equal parts (from ten to ninety), and mark the corresponding 
chords parallel to CD. Next, fit EG or FE crosswise to numbers 90 on the lines of sines (CSin), 
and, leaving the instrument at this setting, take crosswise the distances between points n10 
- n10 (1 ≤ n ≤ 8), place them on the corresponding chord from AE, and mark these points, 
that are points of the ellipsis with axes AB, FG. Obviously, the four arcs of the circle divided 
into more equal parts produce a more accurate drawing of the ellipse.

It should be mentioned that Richard was probably familiar with Guidobaldo dal Monte’s 
ellipsograph [Monte, 1579, p. 125-128].59 However, a closer source might be his colleague 
della Faille, who also wrote on this same kind of construction of the ellipse, that can be 
interpreted in terms of parametric equations60 [Meskens, 2005, p. 66].

4. Conclusions

Richard’s interest in practical geometry is not surprising in a Jesuit context. It enabled 
him to provide the kind of instruction required by the Court, namely mathematics as applied 
to the art of war. His course on the construction and use of sectors at the Imperial College 
aimed at facilitating the teaching and learning of the entire practical geometry by means of 
pantometers. These measuring devices not only simplified and abridged arithmetical 
operations, but were also particularly suitable for the calculation of ratios and proportions 
with a wide range of geometric shapes, and furthermore, divisions were independent from 
the size of objects and units of measurement.

The use of pantometers was not particularly difficult, as it consisted in setting the 
separation of the arms, taking the distance from the pivot to a point along one of its scales, 
and taking the crosswise distance between a point and the corresponding point on the other 
arm [Drake, 1978, p. 11]. However, a proper and reliable use of the instrument required the 
introduction of a set of basic concepts that Richard explained on a Euclidean basis in the 
division of the geometric lines (Sections 3.1 and 3.2): equiangular triangles, similarity, the 
key concept of homologous −or corresponding− sides, and the definition of a magnitude as a 
part −not parts− of a magnitude.

Not only: the validation of the instrument in practical geometry could not disregard 
incommensurability. In modern terminology, Richard’s proportions and numerical ratios are 
positive rational numbers as defined in Els.VII.Def.20. He accepts an approximate solution 
to determine in numbers the proportion for incommensurable straight lines (Section 3.1), he 

59.	 Richard’s disciple refers to Dal Monte’s ellipsograph in his book on planispheres [BNE Mss 9118, Problem 136, 
p. 48v].

60.	 x(t) = EG cos (t), y(t) = AE sin (t).
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uses the lines of planes to increase and decrease rectilinear figures and circles in a given ratio 
−either numerical ratios or magnitudes− (Section 3.2), he considers parts or numbers to 
graduate the lines of solids (Section 3.3), and also chords as parts of a radius (Section 3.4). 
Richard was clearly ready to reduce incommensurable quantities to nearest commensurable 
quantities with no significant difference in practice.61 Actually, the six first propositions in the 
thirteenth chapter (Section 3.10) show his interest in pantometers as applied to circles, and 
even to the ellipse, which shows that sectors played a role in the process of assimilation of 
incommensurability: the numerical consideration of continuous magnitudes as quantities 
was to give way to the arithmetization of geometry.62

The interaction between geometry and trigonometry in this instrument is also remarkable, 
for it promoted the latter’s expansion beyond astronomy. To boot, the trigonometric lines, 
together with the lines of planes and the lines of solids might have provided with visual and 
operational inspiration the concept of correspondence −if not function.   

As a matter of fact, sectors were appreciated by mathematics practitioners and approved 
by many scholarly mathematicians, among them Father Richard, whose course on sectors 
contributed to broaden the horizon of mathematics.
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