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Abstract
Recently Ibekwe et al. (Ref [16]) have treated the bound state solution of the radial Schrédinger equation for the
exponential generalized Cornell anharmonic potential (EGACP, in short, see Eg. (1)) model within the framework of
quantum mechanics known in the literature. According to the generalized Bopp's shift method and standard perturbation

. . . . . . . dexp(—ar) ad exp(—ar)
theory, we generalize this process by adding multi-variable coupling potentials —LO, Lo,

2r2
WL , —%, —% and (—aL@ +%) together with the EGACp model in three-dimensional nonrelativistic
guantum mechanics noncommutative phase space (3DNRQmM-NCPS) including the effect of the centrifugal term. The
multi-variable coupling potentials appear as a result of the effects of NC properties of space and phase on the EGACp
model. We called this newly proposed potential the improved generalized Cornell anharmonic potential (IEGACp, in
short, see Eq. (2)) model. We were able to discover a new application of this potential to hydrogen atoms He*, Li*? and
Be*, in addition to other applications the heavy quarkonium systems (cc and bb) and some selected diatomic molecules
(CO, NO, CH and N2) known in the literature within the framework of (3DNRQm-NCPS). The obtained energy is
sensitive to discreet atomic quantum numbers (j,n, [, s and m), the noncommutativity parameter (0, g, ) due to the
topological properties of the self-quantum influence of space-space and phase-phase, in (3DNRQmM-NCPS) symmetries,
in addition to the discreet atomic quantum numbers (n,[) and the parameters (a, b, c,d, e, f,a) or (1., D,, ) of the
EGACp model that appeared in the literature. Furthermore, we have shown that the corresponding Hamiltonian operator
in (3DNRQmM-NCPS) symmetry is the sum of the Hamiltonian operator of EGACp and three operators, the first one is
the perturbed spin-orbit interaction, the second is the modified Zeeman operator while the last part corresponds to the
induced rotational Fermi Hamiltonian. The new mass spectrum of the heavy quarkonium systems is carried out by
introducing the IEGACp model in (3DNRQmM-NCPS) symmetries. The comparison with other special cases of potentials
in the literature is motivating. The limiting cases are analyzed for (8, g, x) and (©¢, ¢¢, x¢) — (0,0,0) and are compared
with those of literature.

Keywords: Schrédinger equation, Generalized exponential Cornell potential model, Noncommutative quantum
mechanics, Star product, Generalized Bopp's shift method.

Resumen
Recientemente lbekwe et al. (Ref [16]) han tratado la solucion de estado ligado de la ecuacion radial de Schrédinger
para el modelo de potencial anarménico de Cornell generalizado exponencial (EGACP, en resumen, ver Ec. (1)) dentro
del marco de la mecanica cuantica conocida en la literatura. De acuerdo con el método de desplazamiento de Bopp
generalizado y la teoria de la perturbacién estandar, generalizamos este proceso agregando potenciales de acoplamiento

aL®+(L 0)/2p) juntos con el modelo EGACp en espacio de fase no conmutativo de mecéanica cuéntica no relativista
tridimensional (3DNRQmM-NCPS) incluyendo el efecto del término centrifugo. Los potenciales de acoplamiento
multivariable aparecen como resultado de los efectos de las propiedades NC del espacio y la fase en el modelo EGACp.
Llamamos a este nuevo potencial propuesto modelo de potencial anarménico de Cornell generalizado mejorado
(IEGACp, en resumen, véase la Ec. (2)). Pudimos descubrir una nueva aplicacion de este potencial a los atomos de
hidrogeno He+, Li+2 y Be+, ademas de otras aplicaciones los sistemas pesados de quarkonio (c ¢y b b) y algunas
moléculas diatdmicas seleccionadas (CO, NO, CH y N2) conocidos en la literatura en el marco de (3DNRQmM-NCPS).
La energia obtenida es sensible a los ndmeros cuanticos atémicos discretos (j,n,l,s y m), el pardmetro de no
conmutatividad (@,0,)) debido a las propiedades topolégicas de la influencia auto-cuéntica del espacio-espacio y fase-
fase, en simetrias (3DNRQmM-NCPS), ademas de los nimeros cuénticos atémicos discretos (n,l) y los parametros
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(a,b,c.d,e,f,a) o (r_e,D_e,a) de el modelo EGACp que apareci6 en la literatura. Ademas, hemos demostrado que el
operador hamiltoniano correspondiente en simetria (3DNRQmM-NCPS) es la suma del operador hamiltoniano de EGACp
y tres operadores, el primero es la interaccion espin-drbita perturbada, el segundo es el operador Zeeman modificado
mientras que el La Gltima parte corresponde al hamiltoniano de Fermi rotacional inducido. El nuevo espectro de masas
de los sistemas pesados de quarkonium se realiza introduciendo el modelo IEGACp en simetrias (3DNRQmM-NCPS).
La comparacion con otros casos especiales de potenciales en la literatura es motivadora. Se analizan los casos limite
para (0,6.)) y (@"c,6”c,xc )—(0,0,0) y se comparan con los de la literatura.

Palabras clave: Ecuacion de Schrodinger, Modelo de potencial exponencial generalizado de Cornell, Mecanica
cuantica no conmutativa, Producto de estrella, Método de desplazamiento de Bopp generalizado.

I. INTRODUCTION

The nonrelativistic Schrodinger equation NRSE has been a
major tool for researchers since the early years of quantum
mechanics, researchers have shown a great deal of interest in
solving this equation for different types of spherical
symmetric potentials. The confining potentials have received
in-depth attention from many researchers in recent years. The
search of solutions of the NRSE for the quark-antiquark
system is a good example of the Cornell type (the Coulomb
potential with linear terms). Kumar and Chand (2012)
obtained the energy eigenvalues and normalized
eigenfunctions of the radial Schrodinger equation RSE in N-
dimensional Hilbert space for the quark-antiquark interaction
potential using the power series technique via a suitable
ansatz to the wave function [1] and in the next year,
analytically obtained the complete energy spectra by
computing and adding energy eigenvalues for the ground
state, for large and a small distance and normalized
eigenfunctions of the RSE in N-dimensional space using the
power series technique via a suitable Ansatz to the wave
function [2]. Gupta et al. [3] (2012) studied heavy quark
systems QQ(Q = b, c) in the nonrelativistic framework using
the energy-dependent interquark potential of the form
harmonic oscillator with a small linear term as energy-
dependent as perturbation 1/2mw?(1 + yE,)r? plus an

inverse-square potential r%. Abu-Shady calculated masses

Heavy Quarkonia (bc and cs) mesons within the framework
of the N-dimensional RSE and obtained the energy
eigenvalues and the corresponding wave functions using the
Nikiforov-Uvarov NU method [4]. Ikhdair and Babatunde
applied the parametric NU and asymptotic iteration method
to study the approximate analytic bound state eigensolutions
of the RSE for the Hellmann potential [5]. Hamzavi et al. by
using the generalized parametric NU method obtained the
approximate analytical solutions of the RSE for the Hellmann
potential and calculated the energy eigenvalues and
corresponding eigenfunctions in the closed-form [6]. Onate
et al. (2017) used the supersymmetric approach to study the
approximate analytic solutions of the 3D-SE with the
Hellmann potential by applying a suitable approximation
scheme to the centrifugal term and calculating the Tsallis
entropy and Rényi entropy in position and momentum spaces
using the integral method [7]. Kher et al. studied the mass
spectra of the B and Bs mesons using a Cornell potential
incorporated with a O(1/m) correction in the potential
energy term and expansion of the kinetic energy term up to
0(p10) for relativistic correction of the Hamiltonian using a
Lat. Am. J. Phys. Educ. Vol. 12, No. 2, June, 2022
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Gaussian wave function [8]. The heavy-light mesons HLM in
the nonrelativistic quark model under the combination of
vector and scalar potentials have been derived by Abu-Shady
and Khokha (2018) using the Laplace transformation method
and obtained the energy eigenvalues and the corresponding
eigenfunctions and calculated the masses of the scalar,
vector, pseudoscalar, and pseudovector for B, Bs, D, and Ds
mesons in the 3D-space [9]. Abu-Shady and Ezz-Alarab
(2019) extend the trigonometric Rosen—Morse potential to
calculate heavy-meson properties in the free and hot media
and consider the case of spectra of heavy and HLM masses
and thermodynamic properties and solving analytically the
N-RSE using the exact analytical iteration method [10].
Thermodynamic properties of HLM are calculated within the
framework of the N-dimensional RSE by Abu-Shady et al.
under extended Cornell potential [11]. Abu-Shady et al.
solved the N-dimensional SE analytically by the NU method
and apply their search results to find the properties of the
heavy quarkonium system such as charmonium cc and

bottomonium bb have the quark and antiquark flavor under
Cornell potential plus the quadratic potential and the inverse
of quadratic potential [12]. Kuchin and Maksimenko studied
the spin-averaged mass spectra of heavy quarkonia and Bc
mesons in a Cornell potential within the framework of SE and
obtained the energy eigenvalues and eigenfunctions in
compact forms for any Il-value using the NU method [13].
Rahmani et al. investigated the SE with a potential containing
Coulomb, linear, and quadratic terms and wrote the total
wave function as perturbed wave functions using the NU
technique and report the Isgur—-Wise function parameters to
obtain the masses, slope, and curvature parameters of some
HLM [14]. Moazami et al. studied the mass spectrum and
decay properties of HLM in the nonrelativistic potential
model being carried out introducing a new potential
combination containing Cornell, Gaussian, and inverse
square terms [15]. Very recently, Ibekwe et al. solved the
RSE with an exponential, generalized, anharmonic Cornell
potential (EGACp, in short) using the series expansion
method [16] of the form:

Voep (1) =ar2+br—£+m+i

s te. 1)

r

Where a,b, c, d, and f are the potential parameters, « is the
screening parameter ris the distance between two particles.
Here in the present work, we modify the EGACp model by

adding new terms dexp(;‘”) Lo, e’;*;(z‘“” LO f+lr(i+1) Lo,
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cLO® bLO Lo .
poc T and (—aL0+5) due to the topological

properties of the self-quantum influence of space-space and

phase-phase including the effect of centrifugal term i)

r2
which appear in the third additive part l(l:) L0, the resultant

quark-antiquark interaction potential, we call it the improved

exponential, generalized, anharmonic Cornell potential
model (IEGACp, in short), is written as:
dexp(—ar) adexp(—ar)
Vngccp (r) = Vgcp(r) + ( 273 272
MGV < b pLe. @)

r4 2r3  2r

The two couplings LO® and LO will be clearly stated in the
third section. The interest of many researchers in recent years
has been focused on the study of many physical systems with
(3DNRQmM-NCPS) this is due to the multiplicity of scientific
applications at the microscopic (atomic and subatomic) or
macroscopic levels where the dimensions are large and the
forces of gravity dominate mainly. This was due to the
emergence of some modern theories such as; the non-
renormalizable of standard model, string theory, quantum
gravity, new approaches have been developed to tackle this
difficulty, among them the Weyl Moyal star product based on
noncommutative phase space (NCPS) due to its many
applications, especially in  nonrelativistic quantum
mechanics. (3DNRQmM-NCPS) symmetries is a particular

case of the NCPS, has attracted much attention [17, 18, 19,
20, 21, 22, 23, 24, 25], etc. On a personal level, we had
several notable milestones, we have studied the (Cornell,
Gaussian, and inverse square terms), the modified quark-
antiquark interaction potential, the nonrelativistic quark-
antiquark potential, Cornell plus inverse quadratic potential,
and the modified central complex potential in the symmetries
of (3DNRQm-NCPS) [26, 27, 28, 29, 30, 31, 32, 33]. It
should be noted that the potential referred to in [16] does not
only apply to the quark system only but also goes beyond it
to apply to diatomic molecules CO, NO, CH, and N [16].

In the present research paper, we want to extend the study
in [16] to the case of nonrelativistic (3DNRQmM-NCPS) with
the possibility of finding other applications and more
profound interpretations in the subatomic scale. The
nonrelativistic energy levels of the hydrogenic atoms He*,
Li*2and Be*, quark-antiquark systems QQ(Q = b, c), and the
diatomic molecules CO, NO, CH and N interact with the
improved generalized exponential, generalized, Cornell
potential (IEGACp, in short) model in the context of the
noncommutative space phase, which has not been obtained
yet. The main purpose of this paper is to solve the deformed
Schrédinger equation DSE with the IEGACp model. The
structure of (3DNRQmM-NCPS) based on NC canonical
commutations relations in Schrédinger, Heisenberg, and
interaction pictures (SP, HP, and IP), respectively, as follows
(Throughout this paper, the natural unitsc = 2 = 1 will be
used) [34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45]:

[xPspi] = [xpe (@RS D)] = [xi@); P (O] = ifeps 8y,

[xpes €] = [ (03 x5 (0] = [ (03 x1°(0)] = i85,

)

[pre:p}] = [pHE 3 pES O] = O 1 ) = By

Here h.rr = h (1 +Tr (?)) ~ his the effective Planck

constant, the very small two parameters (0”,5”)=

gl (9,5) (compared to the energy) are the elements of two
antisymmetric real matrixes with dimensions of (length)? and
(momentum)?, respectively while £V is just an antisymmetric

{ (iH (t) = exp( ngcpT)(L??qC exp( - ngcpT)'
<i1 (t) = exp( iHogcpT)(ir_qu exp( - iHogcpT)'

HereT =t —to, (s = 2 V Py, G (8) = (i V piy)(¢) and
() = (i v pfi€)(t) are the three representations SP, IP,

and IP in NRQM, while the dynamics of new systems d(id#t(t)

dgiy(t) Aqip(t)
O _ [2,(2), Hyep] + 25210

dac

Here Hy., (Hogep) and Hae? (HE:Y) denote the ordinary and
generalized quantum Hamiltonian (free) operators for the
IEGACp model in the NRQM and (3DNRQmM-NCPS)
respectively. Furthermore(x), denote to the star product,
which is generalized between two arbitrary functions
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number =g =—-g3%=1,
g = 0). However, the operators {7 (t) = (x}i¥ Vv ppd)(t)
and () = (2 vprf)(©) in Hp and IP, respectively
depending on the corresponding operator (/¢ = x[*° v p[*°

in SP with the following projections relations:

(612 = —g21 = ¢18 = _¢31

G0 = exp(iHPT) + G = exp(— iHPT), “
G (0) = exp(EHAT) » G exp(~ HIPT)

described from the following motion equations in
(3DNRQmM-NCPS):

O] X IO
SO = [gh (6): ] + O ©)

(f,9)(x, p) of the form (f,c, guc) (x™¢,p™) in (3DNRQmM-
NCPS) symmetry (see, e.g., [46, 47, 48, 49, 50, 51, 52, 53,
54, 55, 56, 57, 58, 59]):

(f*g)(x,p) =

2304-3 http://www.lajpe.org
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af ag i=il af ag 2 g2
(fg =30 550 =30 5y37) (0p) +0(6%,67). 6)

This allows the formation of a scale of two spaces and phase

cells with volumes I3, = 63/?and 13, = 53/2respectively.
On the other hand, Eq. (6) allows us to satisfy the postulated
algebra in Egs. (3a), (3b), and (3c). The second and the third
terms in the above equation are the effects of (space-space)
and (phase-phase) noncommutativity properties,
respectively. It is therefore the aim of this paper to present
approximate solutions of the deformed Schrédinger equation
DSE with the IEGACp model in 3-dimensions, using the
generalized Bopp's shift method and standard perturbation
theory. The organization scheme of the recent work is given
as follows: In Sect. 2, we briefly review the ordinary SE with
the IEGACp model. Sect. 3 is devoted to studying the DSE
by applying the generalized Bopp's shift method for the
IEGACp model, by applying standard perturbation theory we
find the generalized quantum spectrum for perturbed spin-
orbital interaction in the framework of the global group
(3DNRQmM-NCPS), and then, we derive the magnetic and
Fermi spectrums under the IEGACp model. In the Sect. 4, we
resume the global spectrum and the corresponding NC
Hamiltonian operator for the IEGACp model and the
corresponding energy levels of the hydrogen atoms He*, Li**
and Be*, the quark-antiquark systems (cc and bb) and the
diatomic molecules CO, NO, CH and N». Furthermore, we
applied our model to generate the new mass spectra of
QQ(Q = b,c) in (3DNRQmM-NCPS) symmetries and trade
some important special cases in the literature. Finally, in
Sect. 5, the achieved results are briefly summarized in the last
section.

1. OVERVIEW OF THE EIGENFUNCTIONS
AND EIGENVALUES FOE EGACp MODEL IN
NRQM

In this section, we shall recall here the time-independent
nonrelativistic ~Schrédinger equation NRSE for the
exponential, generalized Cornell potential model EGACp
model, which is an important short-range potential that
behaves like a Coulomb potential for small values of and
decreases exponentially for large values of Eq. (1). If we
insert this potential into the NRSE, we obtain its radial part
as follows:

dZUnl(r) Zdunl(r)
dr? r

+ 20 (B = V7 @) U () = 0,

N D 1 21 (B = Y () Ru(r) = 0, (7)

Here
U (‘r)
Ry (r) = 2=
and
gcp _ dexp( ar) f 1(1+1)
Vojs () = ar? + br — t— —ttet+t—

Which present the effective potential, u is the reduced mass,
for the quark-antiquark systems QQ(Q = b, c) the reduced

momgp . .
mass u = —279 in terms of quark mass m, and antiquark
mo+mg Q

mass mg. En are the eigenvalues of the exponential,
generalized, Cornell potential model while n and [ are the
radials and orbital angular momentum quantum numbers.

The two terms (br - —) are known by Cornell potential, f

makes the EGACp model more singular and produces better
confinement compared to Cornell potential, the quadratic

potential ar? and the inverse quadratic potential rf—z are play a

vital role in improving quarkonium properties such as in [3,
16]. The complete wave function ¥, (r,0,¢) =
U (MY (0, ¢), as follows [16]:

Poun = aor' exp(—ar? = pr)Y"(6,¢), (8)

Yim = (aor® + ayrt*?) exp(—ar? — pr) Y™(6, $), (9)

and

Vom = (S aur?™*)exp(=ar? - fr) (0, ). (10)
n=0

Here

Ym0, $) = li+D1- Iml)lPIml(COS(Q))eim‘p.

4t (l+|m|)!

is the common rotational wave function in terms of associated
Legendre polynomial,

L=—>+-J@I+1)7 +8uf,

b= 16Ha2 (b + %{2)'

While a,, are the normalization constants. The energy E,; of
the potential in Eq. (1) is given by [16]:

En=e+(4n+1+ @I+ 12+ 8uf )J i ( >/ i —2u(c —d)*(4n + 1+ @I+ D+ 8f) . (11)

Lat. Am. J. Phys. Educ. Vol. 12, No. 2, June, 2022 2304-4
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I11. THE FORMALISM OF THE FORMALISM
IEGACp MODEL IN (3BDNRQmM-NCPS)
SYMMETRIES

A. Physical model

In this subsection, we devote this part to studying the
nonrelativistic 1IEGACp model V2% (r), in (3DNRQm-
NCPS) symmetries. To perform this task, the physical form
of the DSE, it is necessary to replace the ordinary 3D-
Hamiltonian operators Hgc, (p, x), ordinary energy E,, and

U

Hoep @, 0¥ () = Eni# (7)

the corresponding complex wave function 'P(;) in the
symmetries of NRQM by 3D-Hamiltonian operators
HIP (Dner Xne), new unknown values EZ°P of energy and the
corresponding new complex wave function W(r;),

respectively in (3DNRQmM-NCPS) symmetries. Besides, to
replace the ordinary product with the star product(x), this
allows us to construct the DSE in (3DNRQmM-NCPS)
symmetries as (see, e.g., [25, 26, 27, 28, 29, 30, 31, 32]):

H‘;‘L]ccp (Pner Xne) * ¥ (r;c) = Ehggplp (r:c)

NRQM

Allows us to obtain the deformed radial wave the radial
functions R,,;(r) =U%(r) function in (3DNRQmM-NCPS)
symmetries as follows:

danl(T)

C
= Vg 14

+ 20 (B = VI (1)) % R () = 0.(12)
It is established extensively in the literature and a basic text
that star products can be simplified by Bopp's shift method,
the physicist Fritz Bopp was the first to consider pseudo-

differential operators obtained from a symbol by the
uantizationrules x » x —~Zandp - p + - instead of
q x x 20p p p 2 0x

the ordinary correspondence x —» xandp — é:—x [18, 42,69,

70, 71]. In physics literature, this is known as Bopp's shift
method. This quantization procedure is known as Bopp
quantization. It is known to specialists that Bopp's shift
method has been applied effectively and has succeeded in

NCPS—symmetries

simplifying the four fundamental equations, the first one is
the nonrelativistic deformed Schrédinger equation NRDSE
[27, 28, 29, 30, 31, 32, 51], the second is relativistic deformed
Klein-Gordon equation RDKGE [61, 62, 63, 64, 65, 66, 67,
68, 69, 70, 71,72, 73, 74, 75], the third is relativistic deformed
Dirac equation RDDE [76, 77, 78, 79], and the last is the
deformed relativistic Duffin-Kemmer-Petiau equation
DRDKPE [80] with the notion of star product to the NRSE,
RKGE, relativistic Dirac equation RDE and RDKPE with the
notion of ordinary product, respectively. Thus, Bopp's shift
method is based on reducing second-order linear differential
equations of DNRSE, DRKGE, DRDE, and DRDKPE with
star products to second-order linear differential equations of
NRSE, RKGE, RDE, and RDKPE without star products with
simultaneous translation in the space-space. The CNCCRs
with star product in Egs. (3a), (3b), and (3c) become new
CNCCRs without the notion of the star product as follows
(see, e.g., [27, 28, 29, 30, 31, 32, 39, 51]):

%2, pj] = [k, PR O] = [x7 (0, pIY (O] = ihess 6y,

[, 2] = [

c

[p, p7¢] = [pi¢

The generalized positions and momentum coordinates
(7, p*¢) in (3BDNRQmM-NCPS) symmetries depend on the
corresponding usual generalized positions and momentum
coordinates (x;, p;) in NRQM by the following, respectively
(see, e.g., [18, 42, 69, 70, 71]):

G = G201 = (3= Ly e ). (14)
The above equation allows us to obtain two

operators ;2. and pZ. in (3DNRQmM-NCPS) symmetries (see,
e.g., [27, 28, 29, 30, 31, 32, 39, 51]):

(rz' pz) - (ran: p%c) = (rz - Lo, Pz + LE) (15)
The two couplings LO® and L8 are given by:

LO = LX 012 + Ly 023 + LZ 013 )
Lat. Am. J. Phys. Educ. Vol. 16, No. 2, June, 2022

®), x5 (@®)] =[x (), x[¥ ()] = 16y,
®),pR5®] = PR @, pre O] = i6;; .

(13)

L6 = Lxglz + Ly§23 + LZ§13'

Here(Ly, L, and L,) are the three components of the angular
momentum operator while 0;; = 6;;,/2. Thus, the reduced

radial Schrédinger equation (without star product) can be
written as:

dZ
ot 20 (En = VI 00| Rur) = 0. (16)
The new effective potential V777 (1;,c) and the Hamiltonian

operator HZP (pye, xnc) for the IEGACp model can be
expressed as:

1(1+1)
Tnc?

(pnc' xnc) =

c c
Veé;fp(rnc) = Vngc P Tac) +
HgCP

nc

(17a)

2304-5 http://www.lajpe.org
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H (xinc =X — T]pj:pl?lc =p; + zjj) (17b)

Now, we want to find the IEGACp model V2% (r,.) in
(3DNRQmM-NCPS) symmetries:

gcp _ 2 c dexp(—arnc)
Vnc (rnc) = are + brnc -——+
Tnc Tne

+L +e (18
Tnc
After straightforward calculations, we can obtain the

important termsar2., br,,, —-— 2&PCm) L gy
Tne Tne Tnc
@Which will be used to determine the IEGACp model in

Tnc

Eq. (18) and the new effective potential V.77 (1) in
(3DNRQmM-NCPS) symmetries as:

ar’2 = ar? — al® + 0(6?),
br,, = br —% + 0(06%),

) dexp(—ar,) =dexp(—ar) + j—fexp( —ar)LO (19)
+0(0%),

W) _ Wy L 10Dy 6 4 g2y
r4 ’

2 2
e T

dexp(—ar)
HYeh (,2) = ( +

adewp(-ar) | f' ¢ _ b _ a) Lo+
2r ’

This gives

dexp(—ar,.) dexp(—ar)

‘rnC r
+ (d exp(-ar) | ad exp(—ar)) LO + 0(6%). (20)

273 2r2

By making the substitution above Eqs (19a), (19b), (19c),
(19d) and (20) into Egs. (17) and (18), we find the global

working Hamiltonian operator HZP (pye, xnc) satisfies the

equation in (3DNRQmM-NCPS) symmetries:

chcp (Pre» Xnc) = chp (@x) + Hggft (»,x), 21)
VIP (1) = VIP () + VI (1).

eff eff pe—ef

The operators Hoc, (b, x), Hyer, (p, x) and V.2 (1)are given
by:

2 ¢, dexp(zar)  f
chp(p,x)=§—H+ar2+br—;+u+r—z+e, (22)

T

and

2r3

o (23)

ad exp(—ar) fr c b

Vngf(T') — (d exp(—ar) +

pe—e 273

For diatomic molecules CO, NO, CH, and N in ordinary

uantu ics whi ,X v
antum mechanics while H;%, (p,x) composed of seven

terms proportional to two infinitesimal parameters (6 and 6)
and then we can be considered as perturbation terms
HJ gt (p, x) in (3BDNRQM-NCPS) symmetries. The first part:
(d exp(-ar) , adexp(-ar) fr c b
2r3 2r2 ré  2r3  2r

in Eq. (23a) describes the influence of the topological
properties on the EGACp model related to the

noncommutative space NCS while the second part % related

to the noncommutative phase NCP which results from the
topological effects on the kinematic term of the main
Hamiltonian Hgy.,(p,x), thus, the Hamiltonian operator

while the generated part H,J.", (p, x) appears as a result of the

deformation of the noncommutativity space phase. We can
Hb:gocp _ [(d exp(—ar) + f+l(l+1) c

ad exp(—ar)

2r3 2r2 r4 273

here
1
0= (@122 + 9223 + 9123)51
— —2 =2 —2\1/?
and 9 = (912 + 923 + 013) y
while LS is the spin-orbit coupling, ¢ = é is the atomic fine
structure constant, g is the strong coupling constant and S
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2r2 rt  2r3

disregard the Haigh terms on (@ and ) because we are
interested in the correction of the first order of these
parameters. We have included the topological effects of NCS

on the centrifugal term l(l:) within the perturbed

Hamiltonian H.7.(p,x) to be able to apply perturbation

theory to find the energetic corrections.

B Spin-orbit Hamiltonian operator for hydrogenic atoms,
diatomic molecules, and heavy-light mesons under the
IEGACp model

In this subsection, we want to derive the physical form of the
induced Hamiltonian H;’gft due to the effect of space-phase
non-commutativity. To achieve this goal, we replace L® both
and L8 by useful physical forms (¢OLS or g,0LS ) and
(¢6LS or g 6LS), respectively (see, e.g., [27, 28, 29, 30, 31,
32, 39, 51]):

0 ¢ for the diatomic molecules
Z] LS {gs for the Heavy-light mesons (24)

denotes the spin of the diatomic molecules (CO, NO, CH and
N_) or heavy-light mesons (cc and bb). Thus, the spin-orbit
interactions HZ? appear automatically as a result of the
deformation of the space phase Now, physically, we can
rewrite the quantum spin-orbit LS coupling as follows:

J=L+S=2LS=J2—1?-5S2 (25)

http://www.lajpe.org
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Here J is the total momentum of the diatomic molecule such
as CO, NO, CH and N2. Our recent study can apply to three
cases:

> The first case considers ¢ = Ze, Z and e are the atomic
numbers and the charge of the electron, the term (—E)

becomes an attractive Colombian potential, thus, we can
consider the Hamiltonian described hydrogenic atoms He*,
Li*2, and Be* under the influence of external fields described

by other terms (ar? + br + w + TLZ + €) in ordinary

obtained from the interval |l —1/2] <j <|l+1/2].We
have an occasion of determining two-sided bounds on the
eigenvalues of the operator G2 = J? — L2 — S? as follows:

kG,Ls)=jG+1)—-I(l+1)—-s(s+1),
_ {k_(j =1-1/2,1,s)for spin-down), (26)
"l ky(G=1+1/2,1,s)for spin-down "
> A second occasion of determining a diagonal matrix HZ,?

of order (3x3) with diagonal elements (Hg, 9%)

QM and its extension (3DNRQmM-NCPS) symmetries. which (Hsdo_gw ,, and (Hgg 9% 33 &5
allows us to the eigenvaluesjof the total operator Jthat can be
u—-gcp _ dexp( ar) . adexp(—ar) | f+l(1+1) _ ¢ b E e . 1
(HSO u = ¢k, [ - 2 53 " o a) o+ » if j=1+ .
(Hu gcp — k. [ dexp( ar) . adexp(—ar) +f+l(l+1)_L_£_a)0 +E] (27)
| 22 2r2 r4 2r3  2r 2u
(an 9Py — o
The non-null diagonal elements (Hg,”) and (Hg,?),, of influenced by the energy values E,; by creating three new
the perturbed Hamiltonian operator HI:F, (p,x) can be values:
AEn=5" = (WI(Hped ) 1¥) and AER~G7 = (WI(Hpe, i) _1¥). (28)

The second case for the Heavy-light mesons (HLM) for
example scalar, vector, pseudoscalar, and pseudovector for
(B, Bs, D and D,) mesons, or the heavy quarkonium systems
cc and bb, which are consists of quarks and antiquarks of the
same system QQ(Q = b, c¢), the eigenvalues of the spin-orbit
coupling operator LSare k(j,l,s) =jG+ 1) —I(l+1)—

s(s + 1) corresponding j =1+ 1 (spin great), j = (spin
middle) and j =1—1 (spin little), respectively. Then, one
can form a diagonal matrix for modified nonrelativistic
quark-antiquark potential with the diagonal element, and in
(3DNRQmM-NCPS) symmetries:

((chp = gk, [(dex:r(;ar) n ade;;z;(z—ar) er(iH) _#_zﬂ_ a) o +%] it j=1+1
(chp = 9.k, [(d ex:r(;ar) 4+ eJ;z;g—orr) f+lr(i+1) _ # N a) 0+ E] if j =1 29)
k(Hﬁ)cp = 9ok [(dex:r(;ar) + ade;;z;g—ar) f+l:i+1) _#_21_ a) o +2; ifj=1-1.
here g, denote to the strong constant coupling and
2(ky, ky k3) = (1,—2,—21—2). The non-null diagonal The perturbed Hamiltonian operator H,);", (p,x) can be

gcp gcp gcp
elements (Hy,") . (H5,"),, and (Hs,”),, of the perturbed
Hamiltonian operator Hy.’, (p,x) can be influenced by the
energy values E,,; by creating three new values:

EQCZ’ ([pl(HQCP )‘
{ AES = (WI(HS? ), (30)
k Eng ([Pl(Hng ) .

> In the third case for the diatomic molecules CO, NO,
CH, and Ny, the eigenvalues of the spin-orbit coupling
operator LS are:

k(G,Ls)=jG+1D)—-Il(+1)—s(s+1).
adexp(-ar) | [ c b

ey _c _b_
2r2

dexp(—ar)
90 = |( +

2r3

Lat. Am. J. Phys. Educ. Vol. 16, No. 2, June, 2022

a) 0 i] LS {s for the diatomic molecules and hydrogenic atoms

influenced by the energy values E,,; by creating three new

values:
AE]S o1 = (W IHyeh (0, X)|¥). (1)
After straightforward calculation, the radial functions

R,(r) = Unir) satisfy the following differential equation in

(3DNRQm- NCPS) symmetry for the hydrogenic atoms and
the heavy quarkoniums systems under the IEGACp model:

d? Rnl(T)

Tt ( e%p(r) + VJ;Cpef(r))) Ry,(r) =0,

(32)

+ 2u<
with

gs for the Heavy-light mesons . (33)
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We introduced the generalized effective potential
Vil -+ (r) in (3BDNRQmM-NCPS) symmetries. We have seen

previously that the induced spin-orbit HZP(p,x) is
infinitesimal compared to the principal Hamiltonian operator
Hyep(p,x) in the (3DNRQmM-NCPS) symmetries for
hydrogenic atoms He*, Li*> and Be*, the heavy quarkonium
systems cc and bb, and the diatomic molecules CO, NO, CH,
and N under the IEGACp model. This allows us to apply

a)@+%]

f+1(+1)
.r4

ad exp(—ar)
2r?

c dexp(—ar)
HEP = [(

2r3

C Bound State Solutions for the perturbed spin-orbit
operator for hydrogenic atoms, heavy quarkonium
systems, and some diatomic molecules under the IEGACPp
model

From our observation of the new Hamiltonian operator in Eq.
(21), it can be said that the EGACp potential is extended by
including new radial terms:

b

- )

dexp(—ar) adexp(—ar) f+I(l+1)

2r2 ot

£ and

(

r3 r3

to become an IEGACp model in (3DNRQmM-NCPS)

2
symmetries. In addition, the ordinary kinetic energy term Z_u

has been changed to add to it a new term % accompanying
the perturbed potential term:

standard perturbation theory to determine the nonrelativistic
energy corrections at the first order of two infinitesimal

parameters @ and 6 due to noncommutativity space-phase
properties. Thus, the induced perturbed spin-orbit operator
can be carried out for the three cases referred to through the
substitution of Eq. (25) into Eq. (24) yields:

G2 {s for the diatomic molecules and hydrogenic atoms

gs for the Heavy-light mesons. (34)

ad exp(— ar)

dexp(—ar) 4
2r3 2r?
' ¢ b
* rt 2r3 2r @
We note clearly that the expression of the global additive part
HZP (p,x) (Eq. (23)) of the new Hamiltonian

pert
operator HY:P (p,x) is also proportional to the infinitesimal
vectors © and @ . This allows us to consider the additive part

HJh(p,x) as a perturbation potential compared with the
main potential Hy.,(p,x) (EQ. (22)) in the symmetries of
(3DNRQmM-NCPS), that is, the inequality Hy.} (p,x) <«
Hyep(p,x) has to become achieved. That is all physical
justification for applying the time-independent perturbation
theory to become satisfied. This allows us to give a complete
prescription for determining the energy level of the
generalized n'" excited states. Now, we apply the
perturbative theory, in the case of (3DNRQmM-NCPS), we

find the  expectation values of the radial
terms: M, w, 14, and - taklng into account the

wave function which we have seen prewously in Eq. (11).
Thus, after straightforward calculations, we obtain the

following results:
2

(n, l,ml%;aﬂln, I,m) = f0+°° (271:(:0 aan"“) exp(—2ar? — Zﬁr)wcir, (35)
(n,,m| @ln, ILm)= f0+°° (Z:O anrzn““)2 exp(—2ar? — Zﬁr)wdr, (36)
(n,1, ml |n ILm) = f0+°° (%: anrzn"’“)2 exp(—2ar? — Z,Br):—jdr, (37)
(n,L,m| Lin, L, m) = f+°° (271:(:0 aan"“)z exp(—2ar? — ZBr):—zdr, (38)
(n,1,m| - “|n, L,m) = [ (io aan"“)z exp(—2ar? — 2,8r)rr—2dr. (39)

We have applied the property of the spherical harmonics,
which has the form:

ff Ylel’,”’SLn(H)de(p = 511’6mm"

For relieving the burden of writing, we will provide useful
abbreviations(n, [, m|K|n, [, m) = (K)(,; m). For the ground
state n = 0 , the above expectation values in Egs. (35), (36),
(37), (38) and (39) reduce to the following simple form:

+00
(EXP( ar))(mm) = aof r?t=Yexp(—2ar? —nr) dr, (40)
+oo
2T Poim = ao [ 1 exp(=2ar? —nrdr, (41)
Lat. Am. J. Phys. Educ. Vol. 12, No. 2, June, 2022 2304-8 http://www.lajpe.org
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+oo

(r%)(o.l,m) = aof r#=2 exp(—2ar? — 2pr) dr, (42)
+oo
( Som) = aof 21 exp(—2ar? — 2fr) dr, (43)
and
1 +oo
Ooum =ao ] T exp(—2ar? —2pr)dr. (44)
r 0
Comparing Egs. (40), (41), (42), (43) and (44) with the
integral of the form [81]: oo Where D_, (%) and T'(y) denotes the parabolic cylinder
[ x" lexp(—Ax?* — functions and Gamma function, respectively. After
0

straightforward calculations, we can obtain explicit results:

Bx) dx(2) 7T exp (£) D_, (L), @37)

= “”xmm) = a(4)"r (21) exp( )b, (), (45)
E2CD) iy = A (4) ™ 2 r<2L + 1 exp (L) Dy (2), (46)
( )(Olm) =ay(4a F(ZL -1 exp( )D (2L-1) (\/—) (47)
Sowm = a0 L) exp (£) Dy, (£), (48)
and
Oom = 0@y HOr@L +2) exp (L) Do) (L) (49)
For the first excited state n = 1, the expectation values in
Egs. (35), (36), (37), (38) and (39) are reduced to the
following simple form:
+00
(exp( ar)>(1lm) = fo (apr®t=t + a; 7?3 4+ 2a 0,724 exp(—2ar? — (28 + a)r), (50)
EXP( ar) o 2L 2L+4 2L+2 2
( Yaim) = [ (aer?t + a;r + 2a4a47 Yexp(—2ars — (28 + a)r) dr, (51)
0
+00
( )(“m) = fo (agr®=2 + a;v%1*2 4+ 2a,a,1%t) exp(—2ar? — 2Br) dr, (52)
+00
( )(“m) = fo (apr®=t + a3 4+ 2a5a, 724 exp(—2ar? — 267) dr, (53)
and
1 oo
Qawm = fo (agr?™™* + a,;r?L*5 + 2a,a,7253) exp(—2ar? — 2pr) dr. (54)

Comparing Egs. (51), (52), (53) and (54) with the integral of
Eq. (37), we obtain the following results:

(exp( D) 1y €xp(=Y) (4a)t = agl(2L)D_5,(F) + a3 (4a) 2T 2L + 4D (4 (F) + 2000, (42) "I (2L + 2)D_z1.45(F),  (402)
exp(— ar) L
(T'—)(“m) exp(—=Y) (4a)" = ag(4a)” ZF(ZL + DD_gp+1y(F) + a;(4a)” ZF(ZL + 5)D_z145)(F) + 2a0a,(4a)” 2
I'(2L + 3)D_(5143)(F), (55)

2

1 B 1 3 1
<r_4-)(1'l'm) €xp <_ E) (46{)1“ = a0(4a)21—'(2L - 1)D_(2L_1)(..Q) + a1(4’a) 21—'(2L + 3)D_(2L+3)(..Q) + 2a0a1(4’a) 2
F(ZL + 1)D_(2L+1)(.Q), (56)

( 3)(,Lm) eXP (‘ —) (4a)" = agI'(2L)D_5,(2) + a;(4a) 2T (2L + 4)D_(2,+4)(2) + 2a0a, (4a) 7 T (2L + 2)D_(31,42) (D), (67)
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and
1 B?
Cdam exp| =4
2
with F = 2222 0= £ andy = 2849 The principal goal

Vaa ' T Va 16a
of this subsection is to determine the energy spectrum

AE#—_;‘gocp (k+l nl al bﬁ CP dﬁ eﬁf’ aljl ll S) = AEu_ng

n-—-so

And
AEY" 9P (k_ n,a,b,c,d, e, f,a,j,1,s) = AEZ"IP.

which produced to HZ? correspond to j = 1 +%andj =1-
% at the first order of two parameters @ and 6 for hydrogenic
atoms for (n,l) states by applying standard perturbation
theory and through the structure constants which specified
the dimensionality of the IEGACp model of hydrogenic
atoms He*, Li*> and Be*. Thus, we obtain the following

results for the ground state and first excited state,
respectively:

2] 1
AE:]J_—S%CP = ¢k, <n(0, a,b,c,f,d)oO + Z) if j=1 +§,

LAE(?_‘S%C” = ek_ (n(o, a,b,c f,d)6 + i) if j=1- :
2u 2
(59)
This allows us to generalize the above results to the case of
nthexcited states in (3DNRQmM-NCPS) symmetries for the
hydrogenic atoms He*, Li*> and Be" as follows:

_ CAYPS
AE) 9P = ek, (n(n, a,b,c, f,d)O + ﬂ) ifj =1+ %,

AESP = ek_(n(n,ab,c,f,d)0 + %) if j=1-1/2.
(60)

For the heavy quarkonium systems, such as charmonium cc
and bottomonium bb, which quarks and antiquarks of the

same system QQ, the eigenvalues of the spin-orbit coupling,
we obtain the following results, for the ground state and first
excited state, respectively:

) (4a)" = ag(4a) ' (2L + 2)D_(5142)(2) + a; (4a) I (2L + 6)D_(3146)(2) + 2a0a, (4) ™2
I'2L + 4)D_(z144)(2). (58)

ABLTST = ek, (1L a b e, f,d)0 + ) if j = L+3,(61)

1-so 2

and

1-so

_ 0\ .o . 1
AESP = ek_(n(La,b,c,f,d)O +Z) if j=1-2.(62)

This allows us to generalize the above results to the case of
nt" excited states in (3DNRQM-NCPS) symmetries for the

heavy quarkonium systems QQ(Q = b, c) as follows:

(AES? = goky (1) (77(0, a,b,c,f,d)0 + %) if j=1+1,
J 2B, = goky O (10, 0,b,c. £, )0 + 1) if =1,
LAEé’ff = goks () (10,0,b,¢,f, )0 + 1) i j =11

(63)
(AEI? = gk, (1) (n(l,a, b,c,f,d)O + %) if j=1+1,
J 2B, = goky O (n(L @by, f, )0 + 1) if =1,

LAEé’ff’ = gsks() (n(Lab,c f,d)0 + ) if j=1-1.

(64)
and

AEJ? = gods () (n(n, @ b, c, f,d)0 + %) if j=1+1,
A
A%, = gok, 1) (n(n,a,b,c, £, )0 +Z) if j=1,

\AELT = goks ) (n(n,a,byc, f,d)6 + ) if j =1 1.
(65)

with

- d - 1 1 b 1
N a,b,c,f,d) = dEEE D)0y + 2 D) iy + F + L+ DY D aim) — = D i) — 2 Onim) — . (66)

2

For diatomic molecules CO, NO, CH, and N, the eigenvalues
AEJP | and AEZP | for the ground state and first excited
state, which are produced by the effect of spin-orbit coupling

LS , we obtain the following results, respectively:

Lat. Am. J. Phys. Educ. Vol. 12, No. 2, June, 2022 2304-10

AEY = ek (@) (1(0,7., D)0 + ),

0—mol 2u
()
BE{ 5 = ek (11,7, D)0 + 7).

This allows us to generalize the above results to the case of
nth excited states in (3DNRQM-NCPS) symmetries for
diatomic molecules CO, NO, CH, and N as follows:

http://www.lajpe.org
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0 D
E?fffnol = ¢ek(l) (n(n, 7,,D,)0 +Z) (68) a- r—:, b~ D, c—-D,1,,d—-> —2D,1,,e > 2D,
e
. . . andd - —2D,r, and f - D,r2. (69)
Four diatomic molecules CO, NO, CH and N, Rani and
Chand were selected and adjusted with the potential This

allows wus to be obtained , 1., D,)from
parameters as [15,33]: n(n, ., D)

n(n,a,b,c, f,d) as follows:

exp(—ar)

N1, 7e, De) = =2DeTe(— ) n1m) — @DeTe(

exp(—ar)
7'2

Dere bD,
Yntm) + (Derd + 10+ DN im) = "2 uam) — 2 Dty — @ (70)

IEGACp model. This physical phenomenon is induced

D Bound state solution for modified Zeeman effect for automatically from the influence of an external uniform

IEGACp model magnetic field X if we make the following two simultaneous
transformations to ensure that the previous calculations are

In this subsection, having obtained the energy spectrum not reputed:

(AEX=9%and AELZ9%)which produced to  HIP(p,x) (0,0) - (0,0)X (71)

correspondtoj =1+ 1/2andj =1—1/2 atthe first order

of two parameters @ and 6 for hydrogenic atoms, He*, Li*?, Here o and @ are just two infinitesimal real proportional

and Be* for (n,l) states, the degenerated energy (AE;‘ZEZ' constants, and to simplify the calculations without

AES | AESPY of the heavy quarkonium systems, such as compromising the physical content we choose the magnetic

. _ . — field parallel to the (Oz) axis. Then we transform the spin-
charmor!lum cc and bottomonium bband the energy AEff_ﬁlql orbit coupling to the new physical phenomena as follows:
of the diatomic molecules CO, NO, CH and N.. Now, it is

possible to obtain the second automatic symmetry for the

dexp(-ar) . adexp(-ar) . f' c b 0 dexp(—ar) , adexp(—ar) fr c b 7

[( e R +r—4—ﬁ—;—a)9+z]w = (5 R G e a) o+ | KL (72)
the IEGACp model in global (3DNRQmM-NCPS) symmetries

This allowed us to derive the modified magnetic Hamiltonian as:

operator HY? (r, 5, @) for previous hydrogenic atoms under

_ _ ! —
HYP(r,0,5) = |(“2G R + S22 L L - © 2 —a) o + 2 Hipa: (73)

2r3 2r2 ré  2r3  2r

Here HZ,,,=R] — H, denote to Zeeman effect in (3DNRQm-

NCPS), while H, = —XS is just the ordinary Zeeman effect. and _

To obtain the exact NC magnetic modifications of energy for (AE}T9P = gox [TI(O. ab,c f,d)o+ % m

the ground state, the first excited state and nt" excited states him—gcp 7

of the hydrogenic atoms He*, Li+2, and Be*, the heavy AE; zgsx["(l’a'b'c’f'd)a"'ﬂ] m (76)

quarkonium systems, and the diatomic molecules under the kEﬁTn_gcp = g.X [n(n, ab,c f,d)o +i] m.

IEGACP model (AEMY-G6CP AEM-GCP ApMY-GP), i

(AEM™-GCP ARPM=GCP ARMM-GCPY  and  (AETC-ECP, We have (—I < m < +1 ), which allows us to fix (20 + 1)

AET-CP | AEN 9°PY of the diatomic molecules CO, NO, values for the discrete number m.

CH and N2, we just replace (k,or k(1) ) and (@, 8) in the Egs. Now, for our purposes, we are interested in finding a new

(41a), (41b), (42a), (42b), (42c), (44a) and (44b), by third automatically important symmetry for the improved

the following parameters mand (o, o)X, respectively: generalized Cornell potential model at zero temperature in

B DSE symmetries. This physical phenomenon is induced

{AEg_y;f’C” = eX (n(o,a, b,c,f)o +i) m, automatically from the influence of a perturbed effective
4 ETO79%P — ex (77(0. 7., Dy)o +%) m, (74) potential Hggft or the induced rotational Fermi Hamiltonian

which we have seen in Eqg. (23a). We discover these
important physical phenomena when our studied system
consists of non-interacting is considered as Fermi gas, it is

AElhg’;lgCP = X (n(l, a,b,c,flo+ %) m,

hy— 4
(AE.207 = X (Tl(”» a,b,¢c,f)o + 5) m, formed from all the particles in their gaseous state (CO, NO,
EMO79% = oy (77(", 10, Do)0 + %)m (75) CH, and N) undergoing rotation with angular velocity 02 if

we make the following two simultaneous transformations to
ensure that the previous calculations are not repeated:

Lat. Am. J. Phys. Educ. Vol. 16, No. 2, June, 2022 2304-11 http://www.lajpe.org
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O-x2 and 6 - ¥N =LO -
yLQ and LO — yLQ. (77)

Here y and y are just infinitesimal real proportional

constants. We can express the effective potential Hosr, ™"

chp—rot — (X (d exp(—ar) |, adexp(—ar) f_’ c b
pert 2r3 212 rt  2r3  2r

To simplify the calculations without compromising physical
content, we choose the rotational velocity 2 parallel to the
(0z) axis. Then we transform the spin-orbit coupling to the
new physical phenomena as follows:

A, x, 1LY = A(y, x, L, , (79)
with
dexp(—ar) , adexp(—ar)
— 3 2 X
Axn =x| o ST |+ 60

+=———-——aqa
rt  2r3  2r

El " (na,b,c,f,d,x, x,m) = (r](n, a,b,c,f,d)y+ %) .Qm{

It is worth mentioning that the authors in Ref. [82] studied
rotating isotropic and anisotropic harmonically confined
ultra-cold Fermi gas in a two and three-dimensional space at
zero temperature, but in this study, the rotational term was
added to the Hamiltonian operator, in contrast to our case,
where this rotation term A(y, x, v)LQ automatically appears
due to the large symmetries resulting from the deformation
of the space-phase. It should be noted that the results obtained
in Egs. (74), (78), and (81) can find it by direct calculation:

+0oo <]
A2 9P = AET 9P = exm [ i (%_0
+o00 © 2
EN9P = gSNme (%_0 ar2"+L) exp(—2ar? — 2pr) [(

and
2

e For the hydrogenic atoms and diatomic molecules
Js For the heavy-light mesons.

2
ar2"+L> exp(=2ar? — 2pr) [(d exp(-ar)

which induced the rotational movements of the diatomic
molecules as follows:

z) Lo {s For the hydrogenic atoms and diatomic molecules

gs For the Heavy-light mesons. (78)

All of this data allows for the discovery of the new energy
shift AE/ 7" (n,a, b, ¢, f,d, x,¥,m) due to the perturbed

gcp
Fermi gas effect V27 7°'(r) which is generated

automatically by the influence of the modified Mobius
squared potential for the nt" excited-state in DSE symmetries
as follows:

(81)

(AERL0%, AERS 9, AERLIP) = (WIHIP T |w),
and

AE) 7 (n,a,b,c. f,d, x. 0 m) = (Y [HITT ),

that takes the following explicit relation:

adexp(-ar) , fr ¢ b i
+ + a) o+ Zu] dr, (82)

2r3 2r2 ré 2rd  2r

denien | wepCen e 2oy Tl @)

2r3 2r? ré 2r3  2r

gcp

V. RESULTS AND DISCUSSION
A Global results

In the previous subsections, we obtained the solution of the
deformed Schrédinger equation for the IEGACp model in
(3DNRQmM-NCPS) symmetry, which is described by the
Hamiltonian operator given in Eq. (21) by using the
generalized Bopp's shift method and standard perturbation
theory. The energy eigenvalues are calculated in the three-
dimensional space phase. The modified eigenenergies for the
ground state, the first excited state, and n*" excited states of
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273 21r? rt 2r3 2r
{s For hydrogenic atoms and diatomic molecules
gs For heavy-light mesons

+0oo %)
d - d - ! b
AES T = .me (Z ar2"+L> exp(—2ar? — 2pr) [( exp( — ar) +2 exp( — ar) + r_c_b_ a) o+ —|dr.
0 n=0

2p
(84)

the hydrogenic atoms He*, Li*> and Be* under the IEGACp
model:

Er(fctfi(),hy(O, a,b,cdef,ajlms)= E‘r(zléii())hy'
E"’(lléiiiacp (1’ a’ b’ C’ d’ e’ f’ a!j! l! m; S) = E‘r([.l;iiihya
EXD" (n a,b,c,de, f,a,j,l,ms) = EXDM

with spin-1/2, the degenerated energy

hi ; — phl
Ey(m,a,b,c,d e, f,a,j,l,ms) = E;77,

hl ; — phi
Extn(n,a,b,c,de f,a,jl,ms) = EpT,

him P — phim
En—l (nl a, b; c, d; e, fl al]l ll m, S) = E‘n,—l
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(61), (62),(63), (64), (66), (68) and (81), in addition to the

of the heavy quarkonium systems QQ(Q = b,c) and the ordinary energy for the exponential, generalized, Cornell
energy EM(n,a,j,l,m,s,1,,D,,0,0,x) = E™ of the potential model presented in Eq. (11) takes the form:
diatomic molecules CO, NO, CH and N: are obtained in this ) R .

paper based on our original results presented in Egs. ; For the hydrogenic atoms He*, Li*, and Be

7 o
Xﬂm] o k, (n(o, ab,c f,d)o +¥) forj=1+1/2, )
2u

E®O — g +£[n(0 a,b,c, f,d)(Ro + 2y) ( 9)
k_(n(0,a,b,c, f,d)O +2— forj=1-1/2,
u

nc—0

ke (1L, a,b,c, f, )6 +%) forj=1+1/2,
]m+£ p . (86)
k_(n(a,b,c.f,d)6 +Z) forj=1—1/2.

XQ+NU

E®4Y — g +£[17(1 a,b,c, f,d)(Ra + 2y) +

nc—1

and
0
ki(n(n,ab,c f,d)0+—) forj=1+1/2,
E®OY —f 4 [n(n a,b,c, f,d)(Ra + Qy) + me? m+e ( 2_”) (87)
]
k_ (r](n, ab,c f,d)o + 5) forj=1—1/2.
¢t and bottomoniumbb :
> For the Heavy quarkonium systems, charmonium
| da
|6a - —(b i T)
LT
-2
hlm _ 2 _ _ 2 2
En_’g_e+(4n+1+ @2l+1) +8,uf)\| o 2u(c — d) (4n+1+ @2l+1) +8;1f)
+9s [n(n, a,b,c,f,d)(Ra + Qy) + Xﬂm?m + gk, (D [n(n a,b,c,f,d)6 + —] if j=14+1, (88)
' d
[l
|6a - g
-2
him  _ J@I+ 1) + 8uf - —d)2 JQI+ 12 +8uf
Ehm e+(4n+1+ 2l+1) +8uf)\l o 2u(c —d) (4n+1+ 2l+1) +8uf)
+9s [n(n, a,b,c,f,d)(Ra + 0y) + meq m+ gk, () [n(n a,b,c,f,d)6 + —] if j=10+1, (89)

EM =e+ (4n+ 1+ /(2L + 1) + 8uf) —]— 2u(c—d)?(4n+ 1+ QL+ 1)? + 8,uf)_2 +

+9; [n(n, a,b,c,f,d)(Ra + Qy) +;m+xa]m + gsks (D) [n(n a,b,c,f,d)o0 + ] if j=101+1, (90)

>
»  For the diatomic molecules CO, NO, CH and Ng:

ER 0, @], L, 5,72, D, 0,0,7) = By (1, De) + € [0, 70, D) (R + ) + E22 k1) (. 72, D)0 + 2 ).
(91)
Where the energy of the ground state E; and the first excited

state E;; in the symmetries of quantum mechanics under the
exponential, generalized, Cornell potential model:
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CE
2U (b +d%)
6a — iB
Eq = e+ (1+@+ 17 + 84f) \ o — (- (14 @I P 8f) . (92)
En=e+(5+ @+ D2 +8uf) |———L —2u(c —dy?(5+ @I+ DZ+ 8f) (93)

and

Eni(r D) = 2D, + (4 + 1+ @1+ D)2 + 8uD.17)

Thus, the total energy E\w®)", (ERm | EMm | EMmYy and

EM™otfor the hydrogenic atoms He*, Li*? and, Be*, the heavy

quarkoniums systems QQ(Q = b,c)and the diatomic
molecules CO, NO, CH, and, N, respectively, under the
IEGACp model in (3DNRQmM-NCPS) symmetries, is the sum
of the ordinary part of the energy E,,; and the three corrections
of energy that are produced automatically with the effect of
the perturbed spin-orbit, modified Zeeman effect, and the
induced rotational Fermi Hamiltonian. This is one of the main
objectives of our research. It is useful to refer to the new
quantitative results of this work as:

Rn
H3, (p, ) 22 v (6, )

» Case 3: For the diatomic molecules CO, NO, CH and Na:
(1) ni(r)
HE, (p, %) R Y0, ¢) = Bl 2520, 4). (64)

This is one of the main motivations for the topic of this work.
It is clear that the obtained energies are real, which allows us

3

4B

D3
[2#(De——3e
—  Tel

| ;
—18uDZ72 (4n + 1+ Q@I+ D7 +8uD7Z) . (94)

> Case 1: For the hydrogenic atoms He*, Li*> and, Be*

1
u,hy .
nc R, () . E. = forj=1+ >
Hie (0, 2) ==Y (0. 9)9 2
Ene2forj=1-2,

EDym g, ¢)).

L (95)
> Case 2: For the heavy quarkoniums systems QQ(Q =
b,c) :

EMTif j=141,

it j=1 (22vm,) (%6)
EMmif j=1-1.
to consider  the NC diagonal Hamiltonian

HIP (r,0,6,0,3,x,%) as a Hermitian operator. In addition,
and regarding the previously obtained results (22), (34), (73),
and (78), the global Hamiltonian operator, at first order in and
with the effect of the IEGACp model for hydrogenic atoms
for (n, [) states takes the form as:

HpS,(r, 0,0,0,5,0,%) =

A c dexp(—ar) f dexp(—ar) adexp(—ar) f' c b a
=(—-— 2 7 47 z —_
( 2M+ar + br r+ - +r2+e)+ >3 72 e B U+2H (RJ + XS)
( dexp(—ar)+adexp(—ar) dexp(—ar) adexp(—ar) \ ]
2r3 2r2 o1, 2r3 2r2 X
+{ NI R Lt L | RN S a7 'm}
( rt 2r3 2r ré 2r3 2r / )

{s for the hydrogenic atoms and diatomic molecules
g, for the Heavy-light mesons.

This is the equation for the hydrogenic atoms He*, Li*? and

Be*, the heavy quarkonium systems, QQ (Q = c,b) and the
diatomic molecules CO, NO, CH, and N under the influence
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97

of the IEGACp model interactions. It should be pointed out
that this treatment considers only the first-order terms in
either ® or 6. The first part of Eq. (97) presents the
Hamiltonian operator Hy.,(p, x) (Eq. (22)) in the ordinary
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guantum mechanics for the EGACp model while the second
term is the perturbed spin-orbit interaction HZ? (Eq. (34)),
the third term is the modified Zeeman Hamiltonian operator
HI?(r,0,5) (Eq. (73)) and the fourth part is the induced
rotational Fermi Hamiltonian (Eq. (78)), respectively,
present, which are induced automatically by the NC
properties of space and phase. It is evident to consider the
atomic quantum number m can take (21 + 1) values and we
have also two values for j=141/2 and j=1-1/2
corresponding to up and down polarities for the hydrogenic
atoms He*, Li*? and Be*. For the heavy quarkonium systems,
QQ (Q =b,c), we have also three values forj =1+
1and j = L. For the diatomic molecules CO, NO, CH, and N,
we have also three values |l —s| <j <1+ s . Thus, every

N: value

state in the usual 3D-space of energy for the IEGACp model
will be 2(21 + 1) substate in (3DNRQmM-NCPS). Thus, the
total complete degeneracy of the energy level of the IEGACp
model is obtained as a sum of all allowed values. Total
degeneracy is thus,

n-1
Z 221+ 1) =2n% >
ne1 =1
Y 2(2l + 1) = 2n? For the hydrogenic atoms, (98)
=1
n-1 n-1
Z 2(2[+1)=2n2—>z 3(20 + 1) = 3n?
=1 =1
For heavy quarkonioum systems, (99)
and
n-1 n—-1
Z 2020+ 1) = 2n? > NZ Ql+1) = Nn?
=1 =1

For diatomic molecules. (100)
B New mass spectra of heavy quarkonium systems

This subsection is devoted to deriving the mass spectra of

QQ(Q = b,c) charmonium and bottomonium under the
IEGACp model. It is well known that the spin of charmonium
and bottomonium equal two values (0 or 1), because consist
of quark and anti-quark. For spin-1, we have three values of
jare (jy=101+1,j,=1j;=1-1), which allows us the
corresponding three values (kq, k,, k3) = %(l, —-2,-21-2)
and thus, we obtain three values of energy:

BT = En + g5 (100, @, by, f, ) (Ro + 0) +

AN
gsl(n(a.b.c.f,d)e +Z) if j=1+1,

xX02+Ra
LLNT) |
2u

(101)

ER = En + g5 (0.0, b,¢, f,d)(Ro + 0x) +

E)m=gs(n(@b.c.f,d)e +7) it j=1
(102)
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And

ZO4RG
E;[ll—nll = Enl + gS (U(n, a, b, C!f! d)(xo- + QX) + . 2-:‘ U) B

g5+ 1) (na,bc.f,d)6 +%) if j=1—1. (103)

In the symmetries of ordinary quantum mechanics, the mass
spectra QQ(Q = b, c)obtained by applying the following
formula [9, 10, 11]:

Heremgyis bare quark masses. Thus, the modified

mass MJP (s = 1)with spin-1 of QQ(Q = b, ¢) charmonium
and bottomonium become as follows:

M (s = 1) = 2mg + = (BRI + EM™ 4+ ERT). (105)
The value § (EM™ + EfM™, + ER™') represents the physically

non-polarized energy (energy independent of spin). After a
simple calculation, we obtain §M:

SM(s=1) =g, (n(n, a,b,c,f,d)(Ra + 2y) +

xX02+Ro

0
D) m =29, (n@bc,f,d)6 + 1) (106)
WithéM(s =1) = M9P(s =1) —M, this is the

noncommutativity contribution for the mass spectra of
QQ(Q = b,c) charmonium and bottomonium, in the
IEGACp model. For spin-0, we have only one value of j = [,
which allows us the corresponding values k = 0, and thus,
we obtain the energy:

n(n,a,b,c,f,d)Ro + 02yx)
+70+NE
2u

ERM = Eny + gs ( >m. (107)

Thus, the modified mass M9 (s = 0) with spin-1 of
QQ(Q = b,c) charmonium and bottomonium become as
follows:

SM(s=0)=MP(s=0)—M=

Js (r](n, a,b,c,f,d)(Ra + 02y) + XQZJ;M)

(108)

We now look at some special cases and relationships between
our recent results and some other existing results in our
previous work:

1-Whenwe setc = —gandd = 0,e = §,and f = 0, the
IEGACp model reduces to the extended Heavy-Light Mesons
with the additional condition h = 0, it is easy to show that
Egs. (21), (88), (89) and (90) are reduced to the modified
interaction Hj4t(p,x) of a particle in the extended
nonrelativistic quark-antiquark potential and corresponding
NC spectrum (Eghim, pehtm  pehimy - ragpectively [30]:

b Lo
i) = (5 -7 -a)LO+1, (109)
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and

o
Eghm = E  + goX <E(n, g,b,a)o + Z) m

+gsk: () (2, g,b,@)0 +12) if j=14+1,  (110)

o
ESMm = E + goR <E(n, g,b,a)o + Z) m

- AN
+gska () (:(n.g,b, a)@ +Z) if j=1 (111

2p
- A
+95ks () (2(n, 9,b,0)0 +Z) if j=1-1, (112

o
ESHm — .+ g.R <E(n, g,b,a)o + —) m

here

- g, 1 b 1
E(n,g,b,a) = 2 (Zaim — 3 Omim — @

in addition to the condition y = ¥ = 0.

2-When we set d =0, f =0, and e = 0, the IEGACp
model reduces to extended quark-antiquark interaction
potential, it is easy to show that Egs. (21), (88), (89) and (90)
are reduced to the modified interaction Hji't(p,x) of a
particle in the extended nonrelativistic quark-antiquark
potential and corresponding NC
spectrum Eghtm  gehlm and EEhim respectively [27]:

b Lo
H;;lelz?lt (pnc; xnc) = (— # o a) LO + Z' (113)
and
G
ESM™ = Epy + gsR (2(71, a,b,c)o + Z) m
+g.k, (D) (Z‘(n, a,b,c)0 + %) if j=1+1, (114)

G
ESHm — F  + g.R (Z‘(n, a,b,c)o + 2—) m
u

+5k;(1) (£(n. @, b, c)0 +%) if j=1, (115)

o
EEMm = E + goR (Z‘(n, a,b,c)o + Z) m
+5ks(1) (£(n. @, b, )0 +%) if j=1-1, (116)

with

c,1 b 1
Z(n,a,b,0) = =S (Faim — 5 Omim —

in addition to the conditiony = ¥ = 0.

—c —c
N + KXo 0
EMl(n,a,j,l,m,s,1,D,, 0°0c¢ x) = Ey (1,,D,) + £ |n(n,7,,D,)(Ra€ + Qx°) + XT] m + k(1) [n(n, 7,,D,)0¢ + —

At the end of this section, we write down the main result of
our research: the Schrddinger equation, known in the
literature, as the most well-known nonrelativistic wave
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C. Composite systems cases

Now, considering composite systems such as molecules
made of N = 2 particles of masses m,(n = 1,2) in the
frame of noncommutative algebra, it is worth taking into
account features of descriptions of the systems in space. In
NRQM symmetries, it was obtained those composite systems
with different masses are described with different
noncommutative parameters [54, 55, 56, 57, 58]:

(s 2] = [0 (0 7 (0] =[x (®); 7 (0] = 6,

[pr<s p7] = [P pF(0)] = [P} (©); PRE ()] = By,
(117)

with

2
05 =% (205",
n=21 (n)
— —(n
guv = Z (#1210ij )!
n=1

Mn

and u, = S

The indices (n = 1,2) label the particle, and 9&’3) is the
parameter of non-commutativity, corresponding to the
particle of massm,,. Note that in the case of a system of two
particles with the same mass m; =m, such as the
homogeneous N, diatomic molecule is the parameter 0!51}) =
6, Thus, the three parameters @, o, and y which appear in
Eq. (91) are changed to the new form:

Y‘CZZ
2 2 2 2 2 2
(2 wveR) +(x_ wy®) +(s mvy), @)
n=1 n=1 n=1

with Y¢ can take the noncommutativity parameters

(0,6,0,5, x,x). As mentioned above, in the case of a system
of two particles with the same mass, m; = m, such as the
homogeneous N, diatomic molecules:

o =6,
o™=
uv uv-
(n)

and X, = Xuv-

Finally, we can generalize the nonrelativistic global
energy EM™°l(n,a,j,l,m,s, 1., D, 0°0°x°) under the
improved generalized Cornell potential model considering
that composite systems with different masses are described
with different noncommutative parameters for the diatomic
CO, NO, and CH as:

—C

2p
(119)
equation described without spin, but its extension in
(3DNRQmM-NCPS) symmetries under the improved
generalized Cornell potential model has a physical behavior
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similar to the Dirac equation (Dirac, 1928) [83] for fermionic
particles with spin-1/2, it can describe the dynamic state of a
particle with spin-1/2 (the hydrogenic atoms He*, Li*? and
Be*) or similar to the relativistic Duffin-Kemmer equation
(Duffin, 1938; Kemmer, 1938; Petiau, 1936) [84, 85,86] for
meson with spin-s (the heavy quarkonium systems cc and

bb), it can describe a dynamic state of a particle with spin
one in the symmetries of relativistic noncommutative
guantum mechanics. The conventional nonrelativistic
approach of SE under an improved generalized Cornell
potential model involves solving the second-order Klein-
Gordon equation for spin-0 and the Proca equation for spin-
1 [87]. Worthwhile it is better to mention that for the two
simultaneous limits (0,0, ) and (0¢ 6 x°) — (0,0,0)
we recover the results of the in Ref. [15]. It is easy to check
the extremely results:

Lim EWOW —f

©8)-00) "
(@EL)”T(IO ” ENME  ERT L ERMY) = Eyy,
and " EL)in(lo O)E,T"l = E,(r,,D,).

It should be noted that the following physical endings in this
way give a logical indication of the validity of the results of
our research.

VI. CONCLUSIONS

In this paper three-dimensional RSE has been performed for
the IEGACp model by using the generalized Bopp's shift
method, and standard perturbation theory including the effect
of the centrifugal term in (3DNRQmM-NCPS) symmetries, we
resume the main results:

> The energy eigenvalues
E“D" (n a,b,c,d,e, f,a,j,1,m,s) of the bound states of

the hydrogenic atoms He*, Li*?> and Be* under the IEGACp
model with spin-1/2 for n‘" excited states have been
analytically found. The energy eigenvalues depend on
(a,b,c,d,e, f,a) parameters and the discrete atomic
quantum numbers (j,l,m,s) have a finite number of the
quantized energy spectrum for the IEGACp model.

> The energy eigenvaluesE™ ERM . ENTT of the

bound states of the heavy quarkonium systems cc and bb
under the IEGACp model with spin-(0,1) for excited states
have been analytically found.

> The energy eigenvalues
EMl(n,a,j,l,m,s,1,D,, 0°c¢ x¢) of the bound states of
the diatomic molecules CO, NO, CH, and N, under the
IEGACp model with spins for excited states have been
analytically found. The energy eigenvalues depend on
(r,,D,, ) parameters and the discrete atomic quantum
numbers (j, [, m, s).

> The usual Kkinetic term —;i# modified to the new
form (—A—E—E—Q) under the influence of the
2u 2u 2u 2u

IEGACp model in (3DNRQmM-NCPS) symmetries,
> The Hamiltonian operator in (3DNRQmM-NCPS)
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symmetry H2S,(r,0,6,0,5) is the sum of the Hamiltonian
operator of the IEGACp model Hy.,(p,x) and three
operators, the first one is the modified spin-orbit interaction
H&P (r,0,6), the second is the modified Zeeman operator

H{"(r,0,) while the third operator ~HZ., "'is the
perturbed Fermi Hamiltonian for the hydrogenic atoms, the
heavy quarkonium systems, and the diatomic molecules.

» The ordinary Schrddinger equation under the improved
generalized Cornell potential model has a physical behavior
similar to the Dirac equation for fermionic particles with
spin-1/2, it can describe the dynamic state of a particle with
spin-1/2 (the hydrogenic atoms He", Li*? and Be*).

» The most important thing that can be evaluated through
this new research is the possibility of upgrading the
Schrédinger equation known in the literature to the
description of the relativistic Duffin-Kemmer—Petiau
equation by describing the state of the boson particles with
spin (0 or 1).

It has been shown that the DSE under the improved
generalized Cornell potential model presents useful
symmetry to standing the hydrogenic atoms He*, Li+2, and

Be*, the heavy quarkonium systems (cc and bb) and the
diatomic molecules CO, NO and CH, and N influenced by
the IEGACp model. It should be noted that the results
obtained in this research would be identical to corresponding
results in ordinary quantum mechanics when the two limits
(06,0,y) and (6°0° x°)—(0,00) are applied
simultaneously.
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