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ABSTRACT

In this paper, we consider two queueing models. Model I is on a single-server queueing system in which
the arrival process follows MAP with representation D = (Dy, D1) of order m and service time follows
phase-type distribution (B,S) of order n. When a customer enters into service, a generalized Erlang
clock is started simultaneously. The clock has k stages. The pt" stage parameter is O, for1 <p<k.If
a customer completes the service in between the realizations of stages k1 and ko (1 < k1 < ko < k) of
the clock, it is a perfect one. On the other hand, if the service gets completed either before the kfh stage
realization or after the k&' stage realization, it is discarded because of imperfection. We analyse this model
using the matriz-geometric method. We obtain the expected service time and expected waiting time of a
tagged customer. Additional performance measures are also computed. We construct a revenue function
and numerically analyse it. In Model 11, a single server queueing system in which all assumptions are
the same as in Model I except the assumption on service time, is considered. Up to stage ki service time
follows phase-type distribution (a',T/) of order ny and beyond stage ki, the service time follows phase
type distribution (,BI, S,) of order na. We compare the values of the revenue function of the two models
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1 INTRODUCTION

Queueing models play an important role in our everyday life. Important application areas of queueing
models are production systems, transportation and stocking systems, communication systems, infor-
mation processing systems, etc. In a manufacturing system, a product goes through several stages to
getting processed; the processing time of a product is very important.

Phase type distribution was introduced by Neuts (Neuts,1975) as a generalization of the exponential
distribution . Phase type distribution is defined as the distribution of time to absorption of a Markov
chain with finite transient states and one absorbing state. Let X = {X(¢) : t > 0} denote a continuous
time Markov chain with state space S = {1,2,3,...,m, m + 1} where the first m states are transient
and the last state is absorbing and with infinitesimal generator matrix

~ T T°
©= [ 0 0
The initial probability distribution of X is @ = (@, i, +1) Where a is a row vector of dimension m and
amt1 =1—ae. Let Z =inf{t > 0: X(t) =m+ 1} be a random variable of time until absorption in
state m + 1. The distribution of Z is called a continuous phase-type distribution (PH distribution) with
parameter (e, T). The distribution function of a continuous phase type distribution PH (a, T is given
by F(t) =1 —ae’'e for t > 0 and probability density function is f(t) = ae’*T° for ¢t > 0. The Laplace
Stieltjes transform of PH (a,T) is given by ¢(s) = a1 +a(sI —T)"1TY for all s € C with Re(s) > 0.

}, where T is a square matrix of order m and T° is a column vector and 70 = —Te.

The Markovian Arrival Process(MAP) was introduced by David M. Lucantoni (Lucantoni,1990)
as a simpler version of an earlier model proposed by Neuts (Neuts,1979). It is a generalization of the
Markov process where arrivals are governed by an underlying m-states Markov chain. A continuous
time Markov chain {(N(¢),J(¢)) : t > 0} with state space {(4,j) : i = 0,1,2,...;1 < j < m} and
infinitesimal generator matrix

Dy Dy

_ Dy Dy
Q= Dy D is called a M AP with matrix representation (Dg, D1).

Dy and D; are square matrices of order m. N(t) counts the number of arrivals during (0,¢) and
J(t) represents the phase of the arrival process. Dy has negative diagonal elements and non-negative
off-diagonal elements, and its elements correspond to state transition without an arrival. D is a
non-negative matrix whose elements represent state transition with one arrival. Let the matrix D be
defined as D = Dy + D;. Then D is an irreducible infinitesimal generator of the underlying Markov
chain {J(t)}. Let 7 be the invariant probability vector of D, then

D = 0,me = 1. The average rate of events in a M AP, which is called the fundamental rate of the
MAP, is given by A = wDe.

The arrival of a negative customer to a queueing system causes the removal of one ordinary customer
(called a positive customer) who is present in the queue. But the Negative arrivals have no effect if
the system is empty. We can therefore represent a Negative customer as a type of work canceling
signal. Queues with negative arrivals were first introduced by Gelenbe (Gelenbe,1991a). So queues with
negative arrivals are called G-queues. Those who are interested in a comprehensive analysis of G-queues
may refer to Gelenbe et al. (Gelenbe,1991b), Artalejo (Artalejo,2000), and Bocharov and Vishnevskii
(Bocharov,2003).

Valentina Klimenok and Alexander Dudin (Klimenok,2012) consider a multi-server queueing system
with finite and infinite buffers. The input flow is described by Batch Markovian Arrival Process(BMAP)
and the service time has the PH distribution. Besides positive customers, the negative customers arrive
according to the Markovian Arrival Process. A negative customer can remove an ordinary customer in
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service if the state service process does not belong to protected phases.

S R Chakravarthy (Chakravarthy,2009) has considered a single server queueing system in which
arrivals occur according to a Markovian arrival process. All the customers in the system are lost when
the system undergoes disastrous failures. In G-queues a regular customer is pushed out of the system
by a negative customer. But here we consider a queueing system in which a customer is discarded if his
service completion is not within a stipulated time interval.

The queueing models considered so far in the literature did not look at the possibility of service
completion of customers before a threshold or beyond a second threshold. Several real-life situations
warrant the completion of services between the lower and upper thresholds. This is necessitated by the
fact that the raw material used for the production of a specified item may not get completely processed
if completed before time. Similarly, it could get over-processed if the processing completion time gets
beyond a threshold. The subject matter of this paper addresses this important aspect in production
and manufacturing.

This Queueing model can be applied in various fields in our day-to-day life. For example, in a food
manufacturing unit, the correct baking time of a product is a crucial factor. If the baking time exceeds
a threshold, the product gets burnt. On the other hand, if the baking time is not sufficient, the product
will only be half cooked and will not be acceptable.

Another example is the manufacturing of Nylon wires and films. In the manufacture of nylon,
caprolactam (a chemical used as raw material), is melted and the molten caprolactam is catalytically
polymerized at previously optimized conditions of temperature, pressure, the concentration of the
catalyst, etc. Further, the output of the above process is subjected to another process like extrusion or
calendering. Extrusion is used to produce nylon wires, whereas calendering is used to produce nylon
films. The condition of this is also an optimized one, in which any variation will cause defective wires
and films which will not be suitable for end-use. The condition is optimized based on laboratory and
pilot plant situations.

In this paper, we first consider a single-server queueing system in which the arrival process follows
MAP and service time follows the continuous phase-type distribution. When a customer enters into
service, a generalized Erlang clock is started simultaneously. The clock has k stages. The p'" stage
parameter is 0, for 1 < p < k. If a customer completes the service in between the realizations of stages
k1 and ko (1 < k1 < ko < k) of the clock, the final product is perfect. If it gets completed either before
the k:ﬁh stage realization or after the k:éh stage realization, it has to be discarded.

Salient features of this paper are

e it deviates from the classical assumption of merely specifying a service time distribution.
e the lower and upper thresholds for service are the most important additions.
e When a customer enters into service, a generalized Erlang clock is started simultaneously.

e If a customer completes service in between the realizations of stages k1 and kg (1 < k1 < ko < k)
of the Erlang clock, it is perfect.

e If a customer completes the service either before the kih stage realization or after the kgh stage
realization, it is discarded.

e To maximise revenue, in Model II we consider the service time as phase-type distributed with
representation (’yl, L) of order n = nj + ngy, which is the convolution of the two phase type
distributions (a’, T") of order ny and (8',5") of order ns.
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Notations and abbreviations used

LIQBD: Level independent Quasi-Birth and Death.
e M AP: Markovian Arrival Process.

CTMC: Continuous time Markov chain.

Ip: Identity matrix of order P.

€q: Column vector of 1’s of order a.

e: Column vector of 1’s of appropriate order.

!
e z : Transpose of a vector z.

The remaining part of this paper is organized as follows. In section 2 the model under study is
mathematically formulated. In section 3 we perform the steady-state analysis of the queueing model.
Service time analysis and waiting time analysis of a customer are discussed in sections 4 and 5
respectively. Some additional performance measures are provided in section 6. A revenue function is
discussed in section 7. Model description and mathematical formulation of model 2 are given in section
8. In section 9 we perform the steady state analysis of model 2. Numerical results are discussed in
section 10.

2 Mathematical formulation of Model |

We consider a single-server queueing system in which the arrival process follows MAP with representation
D = (Dy, Dy) of order m and service time follows continuous phase-type distribution (8, .S) of order n.
When a customer enters into service, a generalized Erlang clock is started simultaneously. The clock has
k stages. The p* stage parameter is 0, for 1 < p < k. If a customer completes the service in between
the realizations of stages k1 and ko (1 < k1 < ko < k) of the clock, it is perfect. If a customer completes
the service either before the ki stage realization or after the k4" stage realization, it is discarded. The
expected service rate is u = [B(—S)'e]™!. Let D = Dy + D; be the infinitesimal generator matrix of
the arrival process and  be its stationary probability vector, then d D = 0,8e = 1. The constant A =
dD; e referred to as the fundamental rate, gives the expected number of arrivals per unit of time.

2.1 The QBD process

The model described in section 1 can be studied as a LIQBD process. First, we define the following
notations:

N(t) : number of customers in the system at time ¢,

J(t)= j, if the Erlang clock is in the jth stage at time ¢, j = 1,2, ..., ko,

I5(t): the phase of service process at time ¢,

I,(t): the phase of arrival process at time t,

(N(t), J(t), Is(t), Io(t) : t > 0} is a LIQBD with state space

Q= {{(0,5)/1 <j<m}H(a,p.i,4)/g = 1,1 <p<hy,1<i<n1<j<m}}
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The infinitesimal generator of this CTMC is

B,
B

Bo
A1 Ao
Ay A1 Ao

Here B is an m x m matrix which contains the transition within the level 0; By is an m X komn matrix
which contains transitions from level 0 to level 1; Bs is a komn X m matrix that contains transitions
from level 1 to level 0; Ay represents transitions from level ¢ to level ¢ + 1 for ¢ > 1, Ay represents
transitions within the level ¢ for ¢ > 1 and As represents transitions from level ¢ to ¢ — 1 for ¢ > 2. All
these are square matrices of order komn x komn.

By = Dy

Bo=[B®D1 0]

where

S°® I
SO ® I,
S°® I

(SO + enakz) ® Im

e

Imnel

CQ [mnel

Cs

]mnHB

Cr,

Imngkl

Ck2—1 Imn9k2—1
Ck,

Ch=5S®IL,+1I,® Dy—Imnbp, 1 < h<ky

Ay =

3 Steady State Analysis

SB® I,
S°B® I
S°B® I,

In®D1

In®D1

0
0
0

(== )

L (S°+enbr,)B®IL, 0 O

In®D1

o o

In®D1

In this section, we perform the steady state analysis of the queueing model under study by first
establishing the stability condition of the queueing system.
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3.1 Stability Condition
The generator matrix A = Ag + A1 + Ao

[ In®D1+Cl+SOﬂ®Im Imnal ]
SO,B®Im In®D1 +02 Imn92
SO,B®Im 0 In®D1 +C3 ]mn93
A= -
SO,B & Im In & Dl + Ckl Imngkl
(Soﬁ + eokgﬂ) & Im In ® D1 + Ck2 i

Let m = (1, T2, T3, .., Thy 5 -+, Tk, ) denote the steady state probability vector of the generator matrix
A.

Here O(mw) = 1 x kamn and the O(m,) =1 x nm for 1 <r < ks.
Steady state probability vector m satisfying the equations

wA =0,me = 1. (1)
Using equation (1), we get

1 [, @D +C1 +S°BR L)+ (Mo +T3 + Mg+ oo+ Thy Ao+ Thy—1) [SYBR L] + Ty [(S° B+ €01, B) @ 1] = 0 (2)

M1 Lyn b + m2[l, ® Dy + C2] =0 (3)

Mol yn 02 + T3 [In ® Dy + 03} =0 (4)

w3 mnls + ma[l, @ D1+ C4] =0 (5)

wkllmnﬂkl + Thy 41 [In ® D1 + Ck1+1] =0 (6)

Wkg—llmngkz—l + Tk, [In ® D1+ Okz] =0 (7)

M X€e+mMy X e+ ... + Ty, X €+ + 47, xe=1 (8)

From equation (7);
1
TMho—1 = —Tky [In & Dl + Ckg]rlmn (9)
ko—1

By back substitution and using equation (8) we get all the values of m,'s. Thus we get the steady-state
probability vector of A.

The LIQBD description of the model indicates that the queueing system is stable if and only if the
left drift exceeds that of the right drift. That is,

TApe < wAse. (10)
k2
nApe =1 (I, ® D1)e+me(I, @ Di)e+ ... + Ty (I, @ Dy)e+ ... +ky (I, @ Dy)e = Y 7, (I, @ Dy)e (11)
r=1
mAse =m[S°B @ I,)e +ma[S°B@ Iule + ... + i, [S°B@ I)e+ ... + Ty [(S° + €,0k,)B @ e
k:gfl 0 o (12)
= mp[SOB @ L] + Tk, [(S° + €01, )B @ In]e
r=1
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Therefore the stability condition is

k?g k}g*l
> m(In®@Di)e < Y mp[S°B® Ln] + My [(S° + €nbi,)B ® In]e (13)
r=1 r=1

3.2 The Steady State Probability Vector of Q
Let  be the steady state probability vector of Q.

x = (xg, 1,22 ...), where xg is of dimension 1 x m and 1, %2, ... are each of dimension 1 x kemn.

Under the stability condition, we have x; = £;R*"',i > 2, where the matrix R is the minimal
nonnegative solution to the matrix quadratic equation

R2A2 + RA1+Ap=0

and the vectors £g and xjare obtained by solving the equations

xoB1 +x1B2 =0 (14)
2By +x1(A1 + RA3) =0 (15)

subject to the normalizing condition
zoe+x1(I —R)le=1 (16)

Solving equations (15),(16) and(17), we get zg and 1. Hence we can find all ;’s.

4 Analysis of Service Time of a Customer

We consider a Markov Process Y (t) = {(J(t), Is(t)) : ¢ > 0} where
J(t)= j, if the Erlang clock is in the jth stage at time ¢, j = 1,2, ..., ko.
I5(t): the phase of service process at time ¢

The state space of this process is
O = {1,2, ..k, ...k2} x {1,2,3, ....,n} U{A1} U{A2},where A; and Ay denote the absorbing states.
A1 denotes the absorption occur due to service completion and Ao denotes absorption occur due to
realization of k4" stage of the Erlang clock.

The infinitesimal generator matrix is

S —0,1I 6,1 SO0
S — 01 61 SO0
@r= S —Op I 01
L S — (9]@] SO e0k2 ]

[ S —0,1  6;1
S — 6051 651

where S7 = S—OuI Opl

i S — O, 1
The initial probability vector is & = (83,0,0, ....,0)
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The expected service time of a customer is the time until absorption of the above process
which is given by ES = a(—S7!)e

5 Waiting Time Analysis

To find the expected waiting time of a tagged customer who joins as the rth customer in system, we
consider the Markov Processes

W ={W(t):t>0} ={(N(t),J(t), Is(t)) : t > 0} where
N(t)-Rank of the customer in the system at time ¢
J(t)= j, if the Erlang clockis in the jth stage at time ¢, j = 1,2, ..., ko.

I5(t) - Phase of the service at time ¢

The rank of the customer decrease by one when a customer ahead of him completes the service. The
rank of the customer is assumed to be r if he joins as the rth customer in the system. State-space of
W(t)is Qo ={{r,r —1,r—2,--- 2} x {1,2,3,...ko} x {1,2,3,.....n}} U{A*}
where A* denotes the absorbing state. That is A* denotes the state that the tagged customer selected
for service.

The infinitesimal generator is

0 0
70 T
W — 8 T
°8 T
[ S —60,1 6,1 ]
S — 0> 051
where T = S—Ou1 Opl
| S — Ok, I
i S0 0 0]
S0 0 0
T0 — S0 0 0
i SO +eb, O 0

Let y,p; be the steady-state probability that an arriving customer finds the server in busy with
current service phase i, Erlang clock is in p** level and the number of customers in the system including
the current arrival tobe r for 1 <p<kosand 1 <i<n

Let Yr = (yr‘lla Yr12,, .- Yrin, Yr21, Yr22, «---- Yrony «e--- s Yrkols YUrko2s ----- yrk‘zn)
and y = (0,y2, y3.....Yr)
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Then y, = z,—1(I ® %),r > 2

Waiting time is the time until absorption of the Markov chain is given by Q9. Let W (s) denote the
Laplace Stieltjes Transform (LST) of waiting time in the queue of an arrival.

Theorem 1. The LST of the waiting time distribution of an arriving customer is
W(s) =cY o oyr(sI = T)'TOB(sI — T)~*T°"~2, Re(s) > 0, where the normalising constant ¢ is given by
c= [ el

6 Additional Performance Measures

e probability that the system is empty:
Py = xge.

e Probability that g customers in the system:

P, = zq4e.
e Probability that the server is busy:

c© ka n m

Pousy = Z Z Z qupij-

g=1p=1i=1 j=1
e Expected number of customers in the queue:
ECQ = Z(q — 1)zqe.
q=1

e Expected number of customers in the system:

ECS = quqe.
q=0
e Rate at which customers discarded before ki stage realization of Erlang clock

o~ ki n m

RK, = Z Z Z qupijsoe.

g=1p=1i=1 j=1

e Rate at which customers discard after kéh stage realization of Erlang clock
RK2 = Z Z quk2ij9k2.

q=1 i=1 j=1

e Rate at which customers depart with successful completion of service

oo ko
RP:Z Z ZqupijSOe.

q=1 p=ky +1 i=1 j=1
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7 Revenue Function

Based on the above performance measures, we construct a revenue function as follows.
CK7 - Unit time cost of service when customer discarded before the k{h stage realization of Erlang Clock.

CK3 - Unit time cost of service when customer discarded after kéh stage realization of Erlang clock.

RS - Revenue per unit time for successful service.

Then the expected revenue per unit time, FR = RP x RS — RK1 x CK; — RKy x CKs.

In this model, customers are discarded when either their service completes before reachig the stage
k1 or goes beyond the stage ko. To minimise the rate of discarding customers before reaching stage
k1, we have to slow down the service rate up to k{h stage realization of Erlang clock so as to get the
service cross the stage k1. Similarly to minimse the rate of discarding customers after kéh stage, we
have to increase the service rate beyond k”ih stage realization of the Erlang clock to get the service
completed before crossing the boundary ko. Accordingly, we can reduce the loss to the system due
to imperfect service. The extra cost involved while increasing the service rate beyond ki gets com-
pensated through slow down of service rate up to the stage k1, and also through reduced imperfect service.

Next, we proceed to the analysis of Model II.

8 Model Il

8.1 Model description and Mathematical Formulation

We consider a single server queueing system in which all assumptions are exactly same as in Model 1

except the assumption on service time. Upto the stage ki service time follows phase-type distribution

(a', T') of order n; and beyond the stage k;, the service time follows phase-type distribution (,3', S') of
. . . . . . ’

order ngy. Therefore the entire service time follows phase-type distribution (v, L) of order n = ny + no,

which is the convolution of the two phase-type distributions (', T) of order n; and (8, ") of order ny.

’ o ’ ’ T/ T/O !

Then’y—(a,anlﬂﬁ)—(a,O),L:[O S'ﬂ]
Here we take O‘Im+1 =0 and 5;2“ =0

The above described model can be studied as a LIQBD process.
Let

N(t): Number of customers in the system at time ¢,

J(t)= p, if the Erlang clock is in the pth stage at time ¢, p = 1,2, ..., ko,

I4(t): the phase of service process at time ¢,

I,(t): the phase of arrival process at time ¢.

(N(t), J(t), Is(t), Io(t) - t > 0} is a LIQBD with state space

Q3 = {{(0,7)/1 <j <m}yU{(¢,p,5,5)/qa> 1,1 <p<k,1<i<ng,1<ji<m}U{(¢,p,i,5)/q>
L(ki4+1)<p<ky(ni+1) <i<(n+n2),1 <j<m}}
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The infinitesimal generator of this CTMC is

B, By
| By Ay A
Q= Ay Ay A

Here B/1 is an m X m matrix that contains the transition within the level 0; BE) is an m x [kynim+ (ko —
k1)mns] matrix which contains transitions from level 0 to level 1; B/2 is a [kynim + (ko — k1)mng] x m
matrix which contains transitions from level 1 to level 0; AE) represents transitions from level ¢ to ¢ + 1
forg > 1, A/1 represents transitions within the level ¢ for ¢ > 1 and AI2 represents transitions from level
q to level ¢ — 1 for ¢ > 2. All these are square matrices of order [kinim + (ko — k1)mna).

B =B, =Dy

Bo=|a @D 0]

T°® In
T°® I,

T°® I,
By = 5°® I,
50 I,

5’0 é Im
L (S0 + enybiy) ® I |

Fl Imnlel
F2 Imnlel

A;: Fy, oklﬂl ®Im
Ek1+1 ]mn29k1+2
Ek1+2 Imn29k1+1

Ey,

where Fy = T' ® Iy, + Iy, ® Do — Imn16;,1 <t < ky
E, =8 @I+ 1I,,® Dy — Imngbyp, k1 +1 < r < ky

7% ® In 00 0
7% @I, 00 0
, 7% ® I, 00 0
AQ = ‘0 !
5% ® I, 0 0 0
5% ® I, 0 0 0
L %" +en,0p0 @I, 0 0 0 .
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[ Inl ®D1
Inl ®D1
A;) = Inl ® D1
I’)’L2 ®D1
L ]nz ®D1 |
[ 1 ® (Iny ® D) 0
0 Iiiy—k1) ® (Iny ® D1)

9 Steady State Analysis

In this section, we perform the steady state analysis of the queueing model under study by first

establishing the stability condition of the queueing system.

9.1 Stability Condition
The generator matrix A" = Ay + A} + A,

- ’ !
Iniep, + F1 + T % ® 1, Limn, 01

!’ ’

T % ®Ip In,@Dy + F2 Liny 02

/ ‘o ! ' ’ '
A = T "aa ® Iy, Iny@py + Fiy gklﬁ & Im

!’ ’

5% ® I, Iny, @ D1 + Egy 41 Linng Okq+1

7 ’
(S0 + engOry)e | ® Iy I, ® D1 + Eg, |

Let m = (m1, T2, W3, .., My 5 ----, Mhy) denote the steady state probability vector of the generator matrix

A

Here O(m) = 1 x[kinim+ (k2 —Fk1)nam] and the O(my) = 1xnym for 1 <r < k; and O(m,) = 1xnam

for k1+1 S T S kg.
Steady state probability vector m satisfying the equations

A = 0,me = 1.
Using equation (18), we get

Tl ® D1+ Fy + T @ I, + (mg + 73 + 4 + .o +75,)[T0 @ 1]

T (Thyg1 + oo+ Thg1)S 00" @ Ly + 74y (S0 + €1, 00 )0 @ L) =0

7T1]mn191 +‘Il’2[[n1 ® D1 + FQ] =0
7T2]mn192 +‘Il'3[[n1 X D1 + FB] =0

W3 Lyn, 03 + Ta[lnn ® D1+ F4] =0

(18)

(19)
(20)

(21)
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Te1—1 Lmng Ok, —1 +7Tk1[fn1 ® Dy +Fk1] =0 (22)

Thy (05,8 @ L) + Tog1[Iny © D1 + Ejy 1] =0 (23)

7rk2—2Imn29k272 + 7rk2—1 [Inz ® D]. + Ek271] = 0 (24)

sz—llmnfzekQ—l + Tk, [Inz ® Dy + Ekz] =0 (25)

M Xe+Tg Xe+ ... + Ty, Xe+ . + 47, xe=1 (26)

From equation (25);
1
Tho—1 = Tk, [In2 ® Dl + Ekz]ei[mng (27)
ko—1

By back substitution and using equation (26) we get all the values of m,’s. Thus we get the steady-state
probability vector of A

The LIQBD description of the model indicates that the queueing system is stable if and only if the
left drift exceeds that of the right drift. That is,

1rA£)e < 1rA/2e. (28)
Therefore the stability condition is
k1 ko k1 , ko , ,
ZW’"(IM ® Di)e + Z 7 (Ine ® Di)e < ZTI’,-[T ‘a @ I,)e+ Z 7 (S ‘a ® I,)e + g, (en,Or,0 @ Iy)e
r=1 r=kq+1 r=1 r=ki+1
(29)

9.2 The Steady State Probability Vector of Q
Let  be the steady state probability vector of Q.

x = (x9,Z1,Z2...), where zg is of dimension 1 x m and @j,%2,... are each of dimension 1 x
[klmnl + (kg — kl)ngm] .

Under the stability condition, we have x; = 1R, i > 2, where the matrix R is the minimal
nonnegative solution to the matrix quadratic equation

R2A2 + RA1 + Ay =0

and the vectors zg and xjare obtained by solving the equations

xoB1 + 1B, =0 (30)
2By +x1(A1 + RA3) =0 (31)

subject to the normalizing condition
zoe+x1(I —R)le=1 (32)

Solving equations (31), (32) and (33), we get o and 21
Hence we can find all x;’s.
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10 Numerical Results

For the arrival process of customers, we consider the following three sets of matrices for Dy and D;

MAP with positive correlation (MPC)

—1.7615 1.7615 0 0 0 0
Dy = 0 —1.7615 0 , Dy =1 16294 0 0.1321
0 0 —11.7054 0.1233 0 11.5821

MAP with negative correlation (MNC)

-5 9 0 0 0 O
Dy = 0 -5 0 ,Di=1 015 0 4.85
5

0 0 —40. 403 0 0.2

MAP with zero correlation (MZC)

-1 0 1 0 0 O
Dy = 0 -1 0 , Di=109 0 0.05
0 0 -525 015 0 5.1

The arrival process labeled M PC' has correlated arrivals with the correlation between two successive
interarrival times given by 0.5315, the arrival process corresponding to the one labeled M NC' has
correlated arrivals with the correlation between two successive interarrival times given by -0.4470 and
the arrival process labeled M ZC has zero correlation between two successive interarrival times.
Service time follows continuous phase-type distribution (8, S) of order 6 in Model I.

Here we take 8 = (0.2,0.1,0.2,0.1,0.2,0.2)

—6.7 0.5 0 1.2 0 0.5
0 -5.5 0.5 0.2 1 0.8
0 01 =55 09 0.3 1.2

0.1 0 08 —6.5 0.3 0
0.3 0 0.5 0 —4.5 1.3
0.2 03 0 0.4 0 —9.9

S:

In Model II, &' = (0.2,0.5,0.3),8 = (0.1,0.4,0.5),7 = (a,0) = (0.2,0.5,0.3,0,0,0).

—28.19 0.5 0 —4.5583 0.3 0
S = 0 —2821 01 |, T = 0 —4582 0.3 |,
0 0.2  —28.46 0 0.1 —4.6

—4.5583 0.3 0 0.4258 1.7033 2.1292

0 —4.582 0.3 04282  1.7128  2.1410
I { T T8 } 0 0.1 —46 045 1.8 2.25
0 S 0 0 0 —281900 0.5 0
0 0 0 0 —28.2100 0.1
0 0 0 0 0.2 —28..46

Service rate in Model I = Service rate in Model II= 3.7649. Fix n =6,n1 = 3,n9s =3, m = 3, k1 =
2,kg=6,k=7,CK1=12,CK2 =20, RS = 40.
Let ERjand F Ry denote the expected revenue in Model I and Model II respectively.
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10.1 MAP with positive correlation (MPC) and the clock follows generalized Erlang distribution

0 ECS | BECQ | RK, | RKy | RP ER,
12-12.5 | 51.2838 | 50.6032 | 8.0993 | 0.6468 | 7.4011 | 185.9164
13-13.5 | 48.9982 | 48.3254 | 7.8161 | 0.7322 | 7.5104 | 191.9783
14-14.5 | 46.7988 | 46.1337 | 7.5605 | 0.8178 | 7.5929 | 196.6326
15-15.5 | 44.6870 | 44.0296 | 7.3284 | 0.9032 | 7.6535 | 200.1340
16-16.5 | 42.6620 | 42.0121 | 7.1163 | 0.9881 | 7.6960 | 202.6849
17-17.5 | 40.7213 | 40.0788 | 6.9215 | 1.0722 | 7.7237 | 204.4475
18-18.5 | 38.8617 | 38.2264 | 6.7416 | 1.1555 | 7.7390 | 205.5523
10-19.5 | 37.0791 | 36.4510 | 6.5748 | 1.2378 | 7.7439 | 206.1053
20-20.5 | 35.3607 | 34.7486 | 6.4194 | 1.3190 | 7.7401 | 206.1931
21-21.5 | 33.7293 | 33.1151 | 6.2741 | 1.3990 | 7.7289 | 205.8866
922-22.5 | 32.1541 | 31.5466 | 6.1377 | 1.4778 | 7.7113 | 205.2444
23-23.5 | 30.6401 | 30.0393 | 6.0093 | 1.5554 | 7.6883 | 204.3152
24-24.5 | 29.1838 | 28.5895 | 5.8879 | 1.6316 | 7.6604 | 203.1393
25-25.5 | 27.7819 | 27.1041 | 5.7727 | 1.7065 | 7.6288 | 201.7505
26-26.5 | 26.4132 | 25.8498 | 5.6633 | 1.7800 | 7.5934 | 200.1771

Table 1 — Effect of 6;’s on performance measures in Model I when the arrival process is M PC

0ls ECS ECQ RK1 RK> RP ER>
12-12.5 | 19.3578 | 18.8077 | 6.0942 | 0.0214 | 7.0839 | 209.7992
14-14.5 | 15.2272 | 14.7401 | 5.6427 | 0.0350 | 7.7778 | 242.6997
16-16.5 | 11.8777 | 11.3801 | 5.2328 | 0.0524 | 8.3303 | 269.3707
18-18.5 9.168- 8.6946 4.8598 | 0.0374 | 8.7588 | 290.5665
20-20.5 7.0021 6.5515 4.5207 | 0.0977 | 9.0821 | 307.0833
22-22.5 5.3114 4.8821 4.2149 | 0.1248 | 9.3219 | 319.7984
24-24.5 4.0354 3.6254 3.9425 | 0.1546 | 9.5012 | 329.6455
26-26.5 3.1050 2.7124 3.7025 | 0.1868 | 9.6401 | 337.4388
28-28.5 2.4421 2.0649 3.4912 | 0.2211 | 9.7500 | 343.6853
30-30.5 1.9721 1.6087 3.3036 | 0.2573 | 9.8350 | 348.6118
32-32.5 1.6352 1.2844 3.1352 | 0.2951 | 9.8966 | 352.3382
34-34.5 1.3886 1.0493 2.9829 | 0.3342 | 9.9367 | 354.9907
36-36.5 1.2035 0.8749 2.8443 | 0.3742 | 9.9582 | 356.7130
37-37.5 1.1279 0.8044 2.7796 | 0.3946 | 9.9629 | 357.2698
38-38.5 1.0611 0.7425 2.7177 | 0.4151 | 9.9640 | 357.6454
39-39.5 1.0019 0.6879 2.6585 | 0.4357 | 9.9618 | 357.8543
40-40.5 0.9490 0.6395 2.6018 | 0.4565 | 9.9565 | 357.9098
41-41.5 0.9015 0.5964 2.5474 | 0.4774 | 9.9485 | 357.8242
42-42.5 0.8587 0.5578 2.4952 | 0.4983 | 9.9379 | 357.6082
43-43.5 0.8200 0.5231 2.4451 | 0.5194 | 9.9250 | 357.2720
44-44.5 0.7847 0.4918 2.3970 | 0.5405 | 9.9100 | 356.8247
45-45.5 0.7525 0.4634 2.3507 | 0.5616 | 9.8929 | 356.2746

Table 2 — Effect of 6;’s on performance measures in Model II when the arrival process is M PC

Table 1 and Table 2 show the effect of 6}s on various performance measures and the revenue function
in Model I and II respecively when the arrival process is MPC. In Model I, when ;s values increases,
the values of ER; increase and reach the maximum at ¢;s=19-19.5 and then decreases. The maximum
revenue in this case is 206.1931. In Model II, when 6.s values increases, the values of F Ry increase and
reach the maximum at 0/s = 40 — 40.5, and then decreases. The maximum value of ERy is 357.9098.
When we compare Model I and II, the values expected revenue in Model 11 is greater than that of the
corresponding values of expected revenue in Model I. Also, the values of the rate of perfect service
(RP) in Model II are greater than the corresponding values in Model I. In both models values of RK}
decreases when 6s values increases. Also in both models, RK>5 increases when 6s values increases. This
is because when 6/s values increase, the expected service time of the customer in each stage decreases.
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10.2 MAP with positive correlation (MPC) and the clock follows Erlang distribution

Now we consider the case when all the values of 0.s are equal.

0ls ECS ECQ RK1 RK> RP ERy

12 | 51.8634 | 51.1808 | 8.0856 | 0.6256 | 7.4584 | 188.7979
13 | 49.5574 | 48.8826 | 7.8021 | 0.7110 | 7.5679 | 194.8694
14 | 47.3366 | 46.6696 | 7.5466 | 0.7960 | 7.6500 | 199.5104
15 | 45.2033 | 44.5439 | 7.3147 | 0.8820 | 7.7100 | 202.9824
16 | 43.1571 | 42.5053 | 7.1028 | 0.9670 | 7.7517 | 205.4928
17 | 41.1959 | 40.5515 | 6.9084 | 1.0513 | 7.7784 | 207.2073
18 | 39.3166 | 38.6795 | 6.7289 | 1.1348 | 7.7926 | 208.2591
19 | 37.5154 | 36.8855 | 6.5626 | 1.2174 | 7.7964 | 208.7561
20 | 35.7882 | 35.1654 | 6.4076 | 1.2988 | 7.7914 | 208.7864
21 | 34.1312 | 33.5152 | 6.2628 | 1.3792 | 7.7790 | 208.4219
22 | 32.5401 | 31.9310 | 6.1270 | 1.4583 | 7.7603 | 207.7220
23 | 31.0113 | 30.4089 | 5.9990 | 1.5362 | 7.7362 | 206.7358
24 | 29.5411 | 28.9452 | 5.8781 | 1.6127 | 7.7074 | 205.5043
25 | 28.1260 | 27.5366 | 5.7635 | 1.6879 | 7.6746 | 204.0613
26 | 26.7629 | 26.1799 | 5.6545 | 1.7618 | 7.6381 | 202.4354

Table 3 — Effect of 6;’s on performance measures in Model I when the arrival process is M PC

0s | ECS ECQ | RKi | RKs RP ER>

12 | 19.4795 | 18.9287 | 6.1059 | 0.0197 | 7.0686 | 209.0797
T4 | 17.2946 | 16.7574 | 5.8739 | 0.0257 | 7.4369 | 226.4730
16 | 15.3286 | 14.8048 | 5.6532 | 0.0327 | 7.7676 | 242.2119
18 | 9.2393 | 8.7652 | 4.8685 | 0.0700 | 8.7578 | 290.4893
20 | 7.0610 | 6.6097 | 4.5287 | 0.0937 | 9.0849 | 307.1775
22 | 5.3588 | 4.9288 | 4.2221 | 0.1204 | 9.3277 | 320.0353
24 | 4.0723 | 3.6617 | 3.9480 | 0.1498 | 9.5094 | 329.9940
26 | 3.1320 | 2.7397 | 3.7081 | 0.1816 | 9.6501 | 337.8737
28 | 2.4629 | 2.0852 | 3.4961 | 0.2156 | 9.7614 | 344.1917
30 | 1.9877 | 1.6238 | 3.3080 | 0.2515 | 9.8477 | 349.1815
32 | 1.6470 | 1.2957 | 3.1392 | 0.2801 | 9.0104 | 352.9645
34 | 1.3977 | 1.0580 | 2.9865 | 0.3280 | 9.9516 | 355.6660
36 | 1.2108 | 0.8818 | 2.8476 | 0.3678 | 9.9739 | 357.4204
37 | 1.1345 | 0.8105 | 2.7827 | 0.3881 | 9.9790 | 358.0040
38 | 1.0671 | 0.7479 | 2.7207 | 0.4085 | 9.9804 | 358.3955
39 | 1.0073 | 0.6928 | 2.6614 | 0.4291 | 9.9785 | 358.6188
40 | 0.9539 | 0.6440 | 2.6045 | 0.4499 | 9.9735 | 358.6872
41 | 0.9060 | 0.6005 | 2.5500 | 0.4707 | 9.9657 | 358.6131
42 | 0.8629 | 0.5615 | 2.4978 | 0.4917 | 9.9553 | 358.4074
43 | 0.8238 | 0.5265 | 2.4476 | 0.5127 | 9.9426 | 358.0803
44 | 0.7882 | 0.4949 | 2.3993 | 0.5338 | 9.9277 | 357.6409
45 | 0.7558 | 0.4663 | 2.3530 | 0.5540 | 9.9108 | 357.0078

Table 4 — Effect of 6;’s on performance measures in Model II when the arrival process is M PC

Tables 3 and 4 show the effect of §; on performance measures and expected revenue (ER) when the
arrival process is MPC. In Model I ER is maximum at § = 20 and the maximum revenue is 208.7864.
In Model II ER is maximum at 6§ = 40 and the maximum revenue is 358.6872. When 6,’s values
increases, the values of RK; decrease at the same time the values of RK>5 increase. This is because the
expected service time of the customer in each stage decreases. When we compare Models I and II, the
values of expected revenue in Model II are greater than that of the corresponding values of expected
revenue in Model I. Also the values of the rate of perfect service (RP) in Model II are greater than the
corresponding values of RP in Model 1.

10.3 MAP with negative correlation (MNC) and the clock follows generalized Erlang distribution

Tables 5 and 6 show the effect of #]s on various performance measures and the revenue function when
the arrival process is MNC and the clock is a generalized Erlang clock. FR is maximum when 6;’s
= 15— 15.5 in Model I and the maximum revenue is 273.7589. In Model II ER is maximum when
0;’s = 40 — 40.5 and the maximum revenue is 357.9432. When we compare Model I and II, the values
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0}s ECS ECQ RKq RK> RP ERy
12-12.5 | 18.1197 | 17.1597 | 11.4736 | 0.9058 | 10.4146 | 260.7828
13-13.5 | 12.6645 | 11.7209 | 11.0056 | 1.0202 | 10.5100 | 267.9301
14-14.5 9.2711 8.3467 10.5469 | 1.1295 | 10.5303 | 272.0594
15-15.5 7.0945 6.1913 10.1019 | 1.2330 | 10.4910 | 273.7589
16-16.5 5.6478 3.7669 9.6761 1.3309 | 10.4083 | 273.6003
17-17.5 4.6497 3.7914 9.2740 1.4239 | 10.2959 | 272.0712
18-18.5 3.9353 3.0993 8.8974 1.5120 | 10.1639 | 269.5493
19-19.5 3.4061 2.5918 .5466 1.5959 | 10.0197 | 266.3116
20-20.5 3.0018 2.2084 8.2205 1.6760 9.8681 262.5575
21-21.5 2.6844 1.9112 7.9172 1.7525 9.7122 258.4313
22-22.5 2.4294 1.6755 7.6350 1.8256 9.5543 254.0392
23-23.5 2.2204 1.4850 7.3718 1.8955 9.3958 249.4616
24-24.5 2.0461 1.3283 7.1260 1.9623 9.2380 244.7604
25-25.5 1.8985 1.1978 6.8959 2.0263 9.0815 239.9836

Table 5 — Effect of 6;’s on performance measures in Model I when the arrival process is M NC

0ls ECS ECQ RK1 RK> RP ER3
12-12.5 | 1.2636 | 0.6835 | 6.4269 | 0.0218 | 7.4496 | 220.4267
14-14.5 | 1.0887 | 0.5487 | 5.8233 | 0.0353 | 8.0099 | 249.8111
16-16.5 | 0.9632 | 0.3591 | 5.3212 | 0.0526 | 8.4581 | 273.4177
18-18.5 | 0.8684 | 0.2997 | 4.8976 | 0.0734 | 8.8175 | 292.4617
20-20.5 | 0.7938 | 0.2558 | 4.5356 | 0.0976 | 9.1056 | 307.8438
22-22.5 | 0.7335 | 0.2221 | 4.2230 | 0.1248 | 9.3354 | 320.2465
24-24.5 | 0.6834 | 0.1957 | 3.9503 | 0.1547 | 9.5174 | 330.1971
26-26.5 | 0.6410 | 0.1744 | 3.7105 | 0.1870 | 9.6594 | 338.1110
28-28.5 | 0.6046 | 0.1569 | 3.4980 | 0.2215 | 9.7681 | 344.3199
30-30.5 | 0.5728 | 0.1424 | 3.3083 | 0.2577 | 9.8486 | 349.0926
32-32.5 | 0.5449 | 0.1301 | 3.1381 | 0.2954 | 9.9054 | 352.6495
34-34.5 | 0.5200 | 0.1196 | 2.9845 | 0.3344 | 9.9418 | 355.1727
36-36.5 | 0.4977 | 0.1105 | 2.8451 | 0.3743 | 9.9611 | 356.8142
37-37.5 | 0.4874 | 0.1064 | 2.7802 | 0.3946 | 9.9650 | 357.3450
38-38.5 | 0.4775 | 0.1026 | 2.7182 | 0.4151 | 9.9655 | 357.7017
39-39.5 | 0.4681 | 0.0990 | 2.6588 | 0.4358 | 9.9630 | 357.8971
40-40.5 | 0.4592 | 0.0957 | 2.6020 | 0.4565 | 9.9574 | 357.9432
41-41.5 | 0.4506 | 0.0925 | 2.5476 | 0.4774 | 9.9492 | 357.8508
42-42.5 | 0.4424 | 0.0895 | 2.4954 | 0.4984 | 9.9386 | 357.6303
43-43.5 | 0.4346 | 0.0867 | 2.4452 | 0.5194 | 9.9256 | 357.2909
44-44.5 | 0.4270 | 0.0840 | 2.3971 | 0.5405 | 8.9104 | 356.8414
45-45.5 | 0.4197 | 0.0815 | 2.3508 | 0.5617 | 8.7875 | 356.2899

Table 6 — Effect of 6;’s on performance measures in Model II when the arrival process is M NC

of expected revenue in Model II is greater than that of the corresponding values of expected revenue
in Model 1. Also, the values of the rate of perfect service (RP) in Model II are greater than the
corresponding values in Model I. In both models values of RK; decreases when 6s values increases.
Also in both models, RK5 increases when 6/s values increases. This is because when 6.s values increase,
the expected service time of the customer in each stage decreases.

10.4 MAP with negative correlation (MNC) and the clock follows Erlang distribution

Tables 7 and 8 show the effect of 6 on various performance measures and expected revenue, when the
arrival process is MNC and the clock is an Erlang clock. FR is maximum at § = 15 and the maximum
revenue is 278.5231 in Model I and FR is maximum at # = 40 and the maximum revenue is 358.7241
in Model II.

10.5 MAP with zero correlation (MZC) and the clock follows generalized Erlang distribution

Tables 9 and 10 show the effect of @/s on various performance measures and the revenue function
when the arrival process is MZC and the clock is generalized Erlang clock. FR is maximum when 6;’s
= 16—16.5 and the maximum revenue is 266.1353 in Model I and E R is maximum when 6;’s = 40 —40.5
and the maximum revenue is 350.9024 in Model II . When we compare Model I and II, the values
expected revenue in Model II is greater than the corresponding values of expected revenue in Model I.
Also, the values of the rate of perfect service (RP) in Model II are greater than the corresponding values
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0}s ECS ECQ RK1 RK> RP ERy

12 19.9412 | 18.9776 | 11.4650 | 0.8768 | 10.5037 | 265.0314
13 13.7816 | 12.8336 | 11.0061 | 0.9923 | 10.6089 | 272.4372
14 9.9745 9.0450 10.5547 | 1.1029 | 10.6364 | 276.7431
15 7.5522 6.6436 10.1148 | 1.2078 | 10.6014 | 278.5231
16 5.9568 5.0703 9.6919 1.3071 | 10.5201 | 278.3574
17 4.8662 4.0022 9.2908 1.4012 | 10.4067 | 276.7548
18 4.0925 3.2510 8.9143 1.4905 | 10.2724 | 274.1164
19 3.5241 2.7044 8.5629 1.5754 | 10.1250 | 270.7381
20 3.0930 2.2945 8.2359 1.6565 9.9698 266.8317
21 2.7567 1.9786 7.9317 1.7338 9.8102 262.5493
22 2.4880 1.7294 7.6485 1.8077 9.6485 258.0019
23 2.2688 1.5288 7.3845 1.8784 9.4864 253.2722
24 2.0867 1.3646 7.1379 1.9460 9.3249 248.4235
25 1.9331 1.2282 6.9071 2.0106 9.1651 243.5047

Table 7 — Effect of 6;’s on performance measures in Model I when the arrival process is M NC

0s | ECS | ECQ | RK: | RK RP ER>

12 | 1.2692 | 0.6879 | 6.4435 | 0.0200 | 7.4383 | 219.8071
T4 | 1.0928 | 0.5517 | 5.8370 | 0.0330 | 8.0032 | 249.4221
16 | 0.9663 | 0.3609 | 5.3327 | 0.0497 | 8.4553 | 273.2238
I8 | 0.8709 | 0.3010 | 4.9073 | 0.0700 | 8.8181 | 292.4344
20 | 0.7960 | 0.2567 | 4.5440 | 0.0936 | 9.1090 | 307.9595
22 | 0.7353 | 0.2229 | 4.2303 | 0.1204 | 9.3414 | 320.4850
24 | 0.6850 | 0.1963 | 3.9567 | 0.1499 | 9.5255 | 330.5411
26 | 0.6424 | 0.1749 | 3.7161 | 0.1818 | 9.6694 | 338.5454
28 | 0.6059 | 0.1574 | 3.5030 | 0.2159 | 9.7796 | 344.8316
30 | 0.5740 | 0.1428 | 3.3128 | 0.2519 | 9.8615 | 349.6701
32 | 0.5460 | 0.1305 | 3.1421 | 0.2893 | 9.9194 | 353.2827
34 | 0.5210 | 0.1199 | 2.0881 | 0.3281 | 9.9568 | 355.8528
36 | 0.4986 | 0.1108 | 2.8484 | 0.3679 | 9.9768 | 357.5335
37 | 0.4874 | 0.1067 | 2.7834 | 0.3882 | 9.9811 | 358.0814
38 | 0.4784 | 0.1029 | 2.7212 | 0.4086 | 9.9820 | 358.4535
39 | 0.4690 | 0.0993 | 2.6617 | 0.4292 | 9.9797 | 358.6628
40 | 0.4600 | 0.0959 | 2.6048 | 0.4499 | 9.9744 | 358.7241
41 | 0.4514 | 0.0927 | 2.5502 | 0.4707 | 9.9655 | 358.6404
42 | 0.4432 | 0.0897 | 2.4979 | 0.4917 | 9.9560 | 358.4299
43 | 0.4353 | 0.0869 | 2.4477 | 0.5127 | 9.9431 | 358.0995
44 | 0.4278 | 0.0842 | 2.3995 | 0.5338 | 9.9282 | 357.6579
45 | 0.4205 | 0.0817 | 2.3531 | 0.5549 | 9.9112 | 357.1132

Table 8 — Effect of 6;’s on performance measures in Model II when the arrival process is MNC

0ls ECS ECQ RK1 RK> RP ERy
12-12.5 | 16.8978 | 15.9692 11.963 0.8768 | 10.0764 | 252.3641
13-13.5 | 12.9656 | 12.0530 | 10.6422 | 0.9873 | 10.1672 | 259.2338
14-14.5 | 10.1494 9.2542 10.2102 | 1.0943 | 10.1985 | 263.5313
15-15.5 8.1129 7.2366 9.7986 1.1970 | 10.1805 | 265.6982
16-16.5 6.6205 5.7639 9.4070 1.2949 | 10.1229 | 266.1353
17-17.5 5.5094 4.6729 9.0355 1.3881 | 10.0346 | 265.1977
18-18.5 4.6677 3.8516 8.6844 1.4765 9.9233 263.1907
19-19.5 4.0190 3.2230 8.3536 1.5605 9.7956 260.3689
20-20.5 3.5102 2.7339 8.0430 1.6403 9.6565 256.9832
21-21.5 3.1044 2.3473 7.7517 1.7162 9.5102 253.0616
22-22.5 2.7757 2.0372 7.4789 1.7885 9.3595 248.8655
23-23.5 2.5057 1.7850 7.2233 1.8574 | 9.2069 244.4474
24-24.5 2.2807 1.5773 6.9837 1.9232 9.0538 239.8815
25-25.5 2.0912 1.4043 6.7591 1.9861 8.9014 235.2248

Table 9 — Effect of 6;’s on performance measures in Model I when the arrival process is M ZC

in Model I. In both models values of RK; decreases when 6s values increases. Also in both models,
RK> increases when 6.s values increases. This is because when 6s values increase, the expected service
time of the customer in each stage decreases.
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0ls ECS ECQ RKq RK> RP ER3
12-12.5 | 1.2979 0.7292 6,3005 | 0.0213 | 7.3031 | 216.0909
14-14.5 | 1.0927 | 0.5633 5.7087 | 0.0346 | 7.8524 | 244.8974
16-16.5 | 0.9490 0.3537 5.2165 | 0.0516 | 8.2917 | 268.0396
18-18.5 | 0.8426 0.2848 | 4.8012 | 0.0720 | 8.6441 | 286.7090
20-20.5 | 0.7607 | 0.2350 | 4.4464 | 0.0956 | 8.9265 | 301.7886
22-22.5 | 0.6861 0.1942 4.0935 | 0.1115 | 9.0690 | 311.4098
24-24.5 | 0.6421 0.1691 3.8726 | 0.1517 | 9.3302 | 323.7022
26-26.5 | 0.5977 | 0.1466 3.6375 | 0.1834 | 9.4694 | 331.4603
28-28.5 | 0.5601 0.1285 3.4292 | 0.2171 | 9.5760 | 337.5471
30-30.5 | 0.5277 | 0.1138 3.2432 | 0.2526 | 9.6549 | 342.2260
32-32.5 | 0.4995 0.1016 3.0764 | 0.2896 | 9.7105 | 345.7129
34-34.5 | 0.4746 0.0913 2.9258 | 0.3278 | 9.7463 | 348.1865
36-36.5 | 0.4526 0.0827 2.7892 | 0.3670 | 9.7651 | 349.7957
37-37.5 | 0.4425 0.0788 2.7255 | 0.3869 | 9.7690 | 350.3161
38-38.5 | 0.4328 0.0752 2.6647 | 0.4070 | 9.7695 | 350.6657
39-39.5 | 0.4237 | 0.0719 2.6065 | 0.4272 | 9.7670 | 350.8573
40-40.5 | 0.4150 0.0688 2.5508 | 0.4475 | 9.7616 | 350.9024
41-41.5 | 0.4068 0.0659 2.4975 | 0.4680 | 9.7535 | 350.8119
42-42.5 | 0.3989 0.0632 2.4463 | 0.4886 | 9.7431 | 350.5957
43-43.5 | 0.3914 | 0.0607 | 2.3971 | 0.5092 | 9.7303 | 350.2630
44-44.5 | 0.3842 | 0.05583 | 2.3499 | 0.5299 | 9.7155 | 349.8224
45-45.5 | 0.3773 0.0561 2.3046 | 0.5506 | 9.6987 | 3492817.

Table 10 — Effect of 6;’s on performance measures in Model II when the arrival process is M ZC

0]s ECS ECQ RK1 RK> RP ERy

12 | 18.0958 | 17.1635 | 11.0909 | 0.8490 | 10.1654 | 256.5463
13 | 13.8212 | 12.9044 | 10.6417 | 0.9602 | 10.2618 | 263.5676
14 | 10.7643 9.8647 10.2140 | 1.0681 | 10.2973 | 267.9635
15 8.5599 7.6789 9.8059 1.1719 | 10.2821 | 270.1769
16 6.9502 6.0887 9.4169 1.2710 | 10.2259 | 270.6121
17 5.7566 4.9151 9.0473 1.3654 | 10.1376 | 269.6305
18 4.8564 4.0352 8.6972 1.4550 | 10.0253 | 267.5456
19 4.1654 3.3645 8.3669 1.5400 9.8956 264.6201
20 3.6258 2.8447 8.0563 1.6208 9.7540 261.0680
21 3.1973 2.4354 7.7647 1.6977 9.6047 257.0590
22 2.8514 2.1063 7.4914 1.7708 9.4510 252.7250
23 2.5682 1.8432 7.2352 1.8406 9.2950 248.1673
24 2.3331 1.6255 6.9951 1.9071 9.1387 243.4630
25 2.1355 1.4446 6.7698 1.9708 8.9831 238.6709

Table 11 — Effect of 8;’s on performance measures in Model I when the arrival process is M ZC

0s | ECS | ECQ | RK: | RK RP ER>

12 | 1.3046 | 0.7347 | 6.3168 | 0.0197 | 7.2910 | 215.4835
14 | 1.0074 | 0.5670 | 5.7222 | 0.0324 | 7.8457 | 244.5159
16 | 0.9525 | 0.3558 | 5.2278 | 0.0487 | 8.2880 | 267.8495
I8 | 0.8454 | 0.2863 | 4.8108 | 0.0686 | 8.6446 | 286.6823
20 | 0.7630 | 0.2361 | 4.4546 | 0.0918 | 8.9298 | 301.9020
22 | 0.6974 | 0.1987 | 4.1471 | 0.1180 | 9.1576 | 314.1811
24 | 0.6438 | 0.1699 | 3.8789 | 0.1469 | 9.3381 | 324.0394
26 | 0.5992 | 0.1472 | 3.6430 | 0.1782 | 9.4792 | 331.8862
28 | 0.5614 | 0.1290 | 3.4341 | 0.2117 | 9.5873 | 338.0488
30 | 0.5280 | 0.1142 | 3.2476 | 0.2469 | 9.6675 | 342.7921
32 | 0.5006 | 0.1020 | 3.0803 | 0.2837 | 9.7243 | 346.3337
34 | 0.4757 | 0.0017 | 2.0293 | 0.3217 | 9.7610 | 348.8537
36 | 0.4535 | 0.0820 | 2.7924 | 0.3607 | 9.7806 | 350.5000
37 | 0.4434 | 0.0791 | 2.7286 | 0.3805 | 9.7848 | 351.0379
38 | 0.4337 | 0.0755 | 2.6677 | 0.4006 | 9.7856 | 351.4027
39 | 0.4246 | 0.0721 | 2.6094 | 0.4207 | 9.7843 | 351.6079
40 | 0.4159 | 0.0690 | 2.5536 | 0.4411 | 9.7782 | 351.6654
41 | 0.4076 | 0.0661 | 2.5001 | 0.4615 | 9.7704 | 351.5859
42 | 0.3997 | 0.0643 | 2.4488 | 0.4820 | 9.7601 | 351.3796
43 | 0.3921 | 0.0609 | 2.3996 | 0.5026 | 9.7476 | 351.0556
44 | 0.3849 | 0.0585 | 2.3523 | 0.5233 | 9.7329 | 350.6227
45 | 0.3780 | 0.0563 | 2.3068 | 0.5440 | 9.7163 | 350.0888

Table 12 — Effect of 8;’s on performance measures in Model II when the arrival process is M ZC
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10.6  MAP with zero correlation (MZC)and the clock follows Erlang distribution

Tables 11 and 12 show the effect of # on various performance measures and the revenue function, when
the arrival process is MZC and the clock, is an Erlang clock. FR is maximum at ¢ = 16 and the
maximum revenue is 270.6121 in Model I and ER is maximum when 6 = 40 and the maximum revenue
is 351.6654 in Model II. Also, the values of the rate of perfect service (RP) in Model II are greater than
the corresponding values in Model I.

From Tables 1-12, we can conclude that in all cases, the values of ER and RP in Model I1 is greater
than the corresponding values of FR and RP in Model I. Moreover the values of RK; and RK5 in
Model II are less than the corresponding values of RK; and RK5 in Model I.

WAF & 1 Posihe Corrplston cormelaficn . MAP wrih g aie coore idan

i i il
[F [1r]

[ ]

Figure 1 — Graph of Revenue Function

11  CONCLUSIONS

In this paper, we considered a M AP/PH/1 queue. We analysed this model by using the matrix-analytic
method. We obtained the expected service time of a customer and also found the waiting time of
a tagged customer. Also, we constructed a revenue function and other performance measures. To
increase revenue, in Model II we consider the service time as the phase-type distribution (yl,L) of
order n = nj + ng, which is the convolution of the two phase-type distributions (o/, T/) of order nq
and (ﬁl, S/) of order ny. We also performed some numerical experiments to evaluate some performance
measures and also found that the revenue is maximum in Model II.
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