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ABSTRACT

In this manuscript, we study continuous-time risk-sensitive finite-horizon time-homogeneous zero-sum
dynamic games for controlled Markov decision processes (MDP) on a Borel space. Here, the transition
and payoff functions are extended real-valued functions. We prove the existence of the game’s value
and the uniqueness of the solution of Shapley equation under some reasonable assumptions. Moreover,
all possible saddle-point equilibria are completely characterized in the class of all admissible feedback
multi-strategies. We also provide an example to support our assumptions.
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1 INTRODUCTION

In the literature of game theory, there are two types of game models: a zero-sum model and a nonzero-
sum game model. We know that in the zero-sum two-person game, one player tries to maximize his/her
payoff and another tries to minimize his/her payoff, whereas in the nonzero-sum game, both players
try to minimize their payoff. We can study game theory either in discrete-time or in continuous-time.
In continuous time, the players observe the state space continuously, whereas in discrete-time, they
observe the state space in discrete-time. Also, there are two types of game models with respect to
the risk measure; one is a risk-neutral game, and another is a risk-sensitive game. Risk-sensitive, or
“exponential of integral utility” cost criterion is popular, particularly in finance (see, e.g., Bielecki and
Pliska (1999)) since it has the property to capture the effects of more than first order (expectation)
moments of the cost.

There are large number of literatures for the risk-neutral utility cost criterion for continuous-time
controlled Markov decision processes (CTCMDPs) with different setup, see Guo (2007), Guo and
Hernandez-Lerma (2009), Guo et al. (2015), Guo et al. (2012), Guo and Piunovskiy (2011), Huang
(2018), Piunovskiy and Zhang (2011), Piunovskiy and Zhang (2014) for single controller model and
Guo and Hernandez-Lerma (2003), Guo and Hernandez-Lerma (2005), Guo and Hernandez-Lerma
(2007), wei and Chen (2016), Zhang and Guo (2012) for game models. Players want to ignore risk in
risk-neutral stochastic games because of the additive feature of this criterion. If the variance is high,
the risk-neutral criterion is not useful since there can be issues with optimal control. Regarding risk
preferences, different controllers may exhibit various perspectives. So, risk preferences are considered
by the decision-makers to be the performance criterion. Bell (1995) gave a model containing the
interpretation of risk-sensitive utility. This paper considers finite-horizon risk-sensitive two-person
zero-sum dynamic games for controlled CTMDPs with unbounded rates (transition and payoff rates)
under admissible feedback strategies. State and action spaces are considered to be Borel spaces. The
main target of this manuscript is to find the solution of the optimality equation (6) (Shapley equation),
to provide the proof of the existence of game’s value, and to give a proof of complete characterization
of saddle-point equilibrium.

The finite-horizon optimality criterion generally comes up in real-life scenarios. where the cost
criterion may not be risk-neutral. For finite-horizon risk-neutral CTMDPs, see Guo et al. (2015),
Huang (2018) while for the corresponding game, see Wei and Chen (2016) and its references. In this
context, for risk-sensitive finite-horizon controlled CTMDP, one can see Ghosh and Saha (2014), Guo
et al. (2019), Wei (2016), while the research for infinite-horizon risk-sensitive CTMDP are available
in, Ghosh and Saha (2014), Golui and Pal (2022), Guo and Zhang (2018), Kumar and Pal (2013),
Kumar and Pal (2015), Zhang (2017) and the references therein. At the same time the corresponding
finite/infinite-horizon dynamic games are studied in Ghosh et at. (2022), Golui and Pal (2021a), Golui
and Pal (2021b), Golui et al. (2022), wei (2019). Study on CTMDPs for risk-sensitive control on a
denumerable state space are available greatly, see Ghosh and saha (2014), Guo and Liao (2019), Guo et
al. (2019) but some times we see the countable state space dose not help to study some models specially
in chemical reactions problem, water reservoir management problem, inventory problem, cash-flow
problem, insurance problem etc. We see that the literature in controlled CTMDPs considering on
general state space is very narrow. Some exceptions for single controller are Golui and Pal (2022),
Guo et al. (2012), Guo and Zhang (2019), Pal and Pradhan (2019), Piunovskiy and Zhang (2014),
Piunovskiy and Zhang (2020) and for corresponding stochastic games are Bauerle and Rieder (2017),
Golui and Pal (2021b), Guo and Hernandez-Lerma (2007), Wei (2017). So, it is very interesting and
very important to consider the game problem in some general state space. In Guo and Zhang (2019), the
authors studied the same as in Guo et al. (2019) but on general state space, whereas in Wei (2017), the
finite-horizon risk-sensitive zero-sum game for a controlled Markov jump process with bounded costs
and unbounded transition rates was studied. Where in Ghosh et al. (2016), the authors studied dynamic
games on the infinite-horizon for controlled CTMDP by considering bounded transition and payoff rates.
However this boundedness condition is a restrictive conditon for many real life scenarios. Someone may
note queuing and population processes for the requirement of unboundedness in transition and payoff
functions. In Golui and Pal (2021a), finite-horizon continuous-time risk-sensitive zero-sum games for
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unbounded transition and payoff function on countable state space is considered. But the extension
of the same results to a general Borel state space were unknown to us. We solve this problem in this
paper. Here we are dealing with finite-horizon risk-sensitive dynamic games employing the unbounded
payoff and transition rates in the class of all admissible feedback strategies on some general Borel
state space, whose results were unknown until now. In this paper, we try to find the solution to the
risk-sensitive finite-horizon optimality equation and, at the same time, try to obtain the existence of
an optimal equilibrium point for this jump process. We take homogeneous game model. In Theorem
4, we prove our final results, i.e., we show that if the cost rates are real-valued functions, then the
Shapley equation (6), has a solution. The existence of optimal-point equilibria is proved by using the
measurable selection theorem in Nowak (1985). The claim of uniqueness of the solution is due to the
well known Feynman-Kac formula. The value of the game has also been established.

The remaining portions of this work are presented. Section 2 describes the model of our stochastic
game, some definitions, and the finite-horizon cost criterion. In Section 3, preliminary results, conditions,
and the extension of the Feynman-Kac formula are provided. Also, we establish the probabilistic
representation of the solution of the finite horizon optimality equation (6) there. The uniqueness of this
optimal solution as well as the game’s value are proved in section 4. We also completely characterize
the Nash equilibrium among the class of admissible Markov strategies for this game model here. In
Section 5, we verify our results with an example.

2 THE ZERO-SUM DYNAMIC GAME MODEL

First, we introduce a time-homogeneous continuous-time zero-sum dynamic game model in this section,
which contains the following:

G := {X, U, V, (U(x) ⊂ U, x ∈ X), (V (x) ⊂ V, x ∈ X), q(·|x, u, v), c(x, u, v), g(x)}. (1)

Here X is our state space which is a Borel space and the corresponding Borel σ-algebra is B(X).
The action spaces are U and V for first and second players, respectively, and are considered to be
Borel spaces. Their corresponding Borel σ-algebras are, respectively, B(U) and B(V ). For each x ∈ X,
the admissible action spaces are denoted by U(x) ∈ B(U) and V (x) ∈ B(V ), respectively and these
spaces are assumed to be compact. Now let us define a Borel subset of X × U × V denoted by
K := {(x, u, v)|x ∈ X, u ∈ U(x), v ∈ V (x)}.

Next, for any (x, u, v) ∈ K, we know that the transition rate of the CTMDPs denoted by q(·|x, u, v)
is a signed kernel on X such that q(D|x, u, v) ≥ 0 where (x, u, v) ∈ K and x /∈ D. Also, q(·|x, u, v) is
assumed to be conservative i.e., q(X|x, u, v) ≡ 0, as well as stable i.e.,

q∗(x) := sup
u∈U(x),v∈V (x)

[qx(u, v)] < ∞ ∀x ∈ X, (2)

qx(u, v) := −q({x}|x, u, v) ≥ 0 for all (x, u, v) ∈ K. Our running cost is c, assumed to be measurable on
K and the terminal cost is g, assumed to be measurable on X. These costs are taken to be real-valued.

The dynamic game is played as following. The players take actions continuously. At time moment
t ≥ 0, if the system’s state is x ∈ S, the players take their own actions ut ∈ U(x) and vt ∈ V (x)
independently as their corresponding strategies. As a results the following events occurs:

• the first player gets an reward at rate c(x, ut, vt) immediately and second player gives a cost at a
rate c(x, ut, vt); and

• staying for a random time in state x, the system leaves the state x at a rate given by the quantity

qx(ut, vt), and it jumps to a set D, (x /∈ D) with some probability determined by
q(D|x, ut, vt)
qx(ut, vt)

(for details, see Proposition B.8 in Guo and Hernandez-Lerma (2009), p. 205 for details).

Now suppose the system is at a new state y. Then the above operation is replicated till the fixed time
T̂ > 0. Moreover, at time T̂ if the system occupies a state yT̂ , second player pays a terminal cost g(yT̂ )
to first player.
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unbounded transition and payoff function on countable state space is considered. But the extension
of the same results to a general Borel state space were unknown to us. We solve this problem in this
paper. Here we are dealing with finite-horizon risk-sensitive dynamic games employing the unbounded
payoff and transition rates in the class of all admissible feedback strategies on some general Borel
state space, whose results were unknown until now. In this paper, we try to find the solution to the
risk-sensitive finite-horizon optimality equation and, at the same time, try to obtain the existence of
an optimal equilibrium point for this jump process. We take homogeneous game model. In Theorem
4, we prove our final results, i.e., we show that if the cost rates are real-valued functions, then the
Shapley equation (6), has a solution. The existence of optimal-point equilibria is proved by using the
measurable selection theorem in Nowak (1985). The claim of uniqueness of the solution is due to the
well known Feynman-Kac formula. The value of the game has also been established.

The remaining portions of this work are presented. Section 2 describes the model of our stochastic
game, some definitions, and the finite-horizon cost criterion. In Section 3, preliminary results, conditions,
and the extension of the Feynman-Kac formula are provided. Also, we establish the probabilistic
representation of the solution of the finite horizon optimality equation (6) there. The uniqueness of this
optimal solution as well as the game’s value are proved in section 4. We also completely characterize
the Nash equilibrium among the class of admissible Markov strategies for this game model here. In
Section 5, we verify our results with an example.

2 THE ZERO-SUM DYNAMIC GAME MODEL

First, we introduce a time-homogeneous continuous-time zero-sum dynamic game model in this section,
which contains the following:

G := {X, U, V, (U(x) ⊂ U, x ∈ X), (V (x) ⊂ V, x ∈ X), q(·|x, u, v), c(x, u, v), g(x)}. (1)

Here X is our state space which is a Borel space and the corresponding Borel σ-algebra is B(X).
The action spaces are U and V for first and second players, respectively, and are considered to be
Borel spaces. Their corresponding Borel σ-algebras are, respectively, B(U) and B(V ). For each x ∈ X,
the admissible action spaces are denoted by U(x) ∈ B(U) and V (x) ∈ B(V ), respectively and these
spaces are assumed to be compact. Now let us define a Borel subset of X × U × V denoted by
K := {(x, u, v)|x ∈ X, u ∈ U(x), v ∈ V (x)}.

Next, for any (x, u, v) ∈ K, we know that the transition rate of the CTMDPs denoted by q(·|x, u, v)
is a signed kernel on X such that q(D|x, u, v) ≥ 0 where (x, u, v) ∈ K and x /∈ D. Also, q(·|x, u, v) is
assumed to be conservative i.e., q(X|x, u, v) ≡ 0, as well as stable i.e.,

q∗(x) := sup
u∈U(x),v∈V (x)

[qx(u, v)] < ∞ ∀x ∈ X, (2)

qx(u, v) := −q({x}|x, u, v) ≥ 0 for all (x, u, v) ∈ K. Our running cost is c, assumed to be measurable on
K and the terminal cost is g, assumed to be measurable on X. These costs are taken to be real-valued.

The dynamic game is played as following. The players take actions continuously. At time moment
t ≥ 0, if the system’s state is x ∈ S, the players take their own actions ut ∈ U(x) and vt ∈ V (x)
independently as their corresponding strategies. As a results the following events occurs:

• the first player gets an reward at rate c(x, ut, vt) immediately and second player gives a cost at a
rate c(x, ut, vt); and

• staying for a random time in state x, the system leaves the state x at a rate given by the quantity

qx(ut, vt), and it jumps to a set D, (x /∈ D) with some probability determined by
q(D|x, ut, vt)
qx(ut, vt)

(for details, see Proposition B.8 in Guo and Hernandez-Lerma (2009), p. 205 for details).

Now suppose the system is at a new state y. Then the above operation is replicated till the fixed time
T̂ > 0. Moreover, at time T̂ if the system occupies a state yT̂ , second player pays a terminal cost g(yT̂ )
to first player.
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Consequently, first player always tries to maximize his/her payoff, whereas second player wants
to minimize his/her payoff according to some cost measurement criterion H·,·(·, ·), that is presented
below by equation (4). Next the construction of the CTMDPs will be presented under possibly pair of
admissible feedback strategies. For construction of the corresponding CTMDPs (as in Kitaev (1986),
Piunovskiy and Zhang (2011)), we imopse some usefull notations: define X(∆) := X ∪ {∆} (for some
∆ /∈ X),
Ω0 := (X × (0,∞))∞, Ω := Ω0 ∪ {(x0, θ1, x1, · · · , θk̂, xk̂,∞,∆,∞,∆, · · · )|x0 ∈ X, xl ∈ X, θl ∈ (0,∞),

for each 1 ≤ l ≤ k̂, k̂ ≥ 1}, and suppose F be the corresponding Borel σ-algebra on Ω. Then we get
a Borel measurable space (Ω,F). For each k̂ ≥ 0, ω := (x0, θ1, x1, · · · , θk̂, xk̂, · · · ) ∈ Ω, let us define
T0(ω) := 0, Tk̂(ω)− Tk̂−1(ω) := θk̂, T∞(ω) := limk̂→∞ Tk̂(ω). Now in view of the definition of {Tk̂}, we
define the state process {ξt}t≥0 defined by

ξt(ω) :=
∑

k̂≥0

I{Tk̂≤t<Tk̂+1}xk̂ + I{t≥T∞}∆, t ≥ 0. (3)

Here IE is the standard notation for indicator function corresponding to a set E, and we use 0 + z =: z
and 0z =: 0 for any z ∈ X(∆) as convention. The process after the time T∞ is treated for absorbtion in
the state ∆. Hence, let us define q(·|∆, u∆, v∆) :≡ 0, U(∆) := U ∪ U∆, V (∆) := V ∪ V∆, U∆ := {u∆},
V∆ := {v∆}, c(∆, u, v) :≡ 0 for all (u, v) ∈ U(∆) × V (∆), u∆, v∆ are treated as isolated points.
Furthermore, define Ft := σ({Tk̂ ≤ s, ξTk̂

∈ D} : D ∈ B(X), 0 ≤ s ≤ t, k̂ ≥ 0) ∀t ∈ R+, and
Fs− =:

∨
0≤t<s Ft. Lastly the σ-algebra of predictable sets on Ω× [0,∞) corresponding to {Ft}t≥0 is

denoted by P := σ({U × {0}, U ∈ F0} ∪ {V × (s,∞), V ∈ Fs−}). Now we intoduce strategies of players
to define the risk sensitive cost criterion:

Definition 1. An admissible feedback strategy for player 1, denoted by ζ1 = {ζ1t }t≥0, is defined to be a
transition probability ζ1(du|ω, t) from (Ω× [0,∞),P) onto (U∆,B(U∆)), for which ζ1(U(ξt−(ω))|ω, t) =
1.

For more informations, one can see [Guo and Song (2011), Definition 2.1, Remark 2.2], Piunovskiy
and Zhang (2011), Zhang (2017).

Let Π1
Ad denote the set of all admissible feedback strategies for player 1. A strategy ζ1 ∈ Π1

Ad for
player 1, is said to be Markov if for every ω ∈ Ω and t ≥ 0 the relation ζ1(du|ω, t) = ζ1(du|ξt−(ω), t)
holds, lims↑t ξs(ω) := ξt−(w). We call a Markov strategy {ζ1t } as a stationary Markov for player 1, if it
not explicitly dependent on time t. The family of all Markov strategies and all stationary strategies are
denoted by Π1

M and Π1
SM , respectively, for first player. The sets Π2

Ad, Π
2
M , Π2

SM stand for all admissible
feedback strategies, all Markov strategies, and all stationary strategies, respectively, for second player
are defined similarly. In view of Assumption 1, below, for any initial distribution γ on X and any
multi-strategy (ζ1, ζ2) ∈ Π1

Ad ×Π2
Ad, in view of Theorem 4.27 in Kitaev and Rykov (1985) a unique

probability measure exists and denoted by P ζ1,ζ2
γ (depending on γ and (ζ1, ζ2)) on (Ω,F) for which

P ζ1,ζ2
γ (ξ0 = x) = 1. Let us define the corresponding expectation operator as Eζ1,ζ2

γ . Particularly, when
γ represents the Dirac measure at a state x ∈ X, P ζ1,ζ2

γ and Eζ1,ζ2
γ will be written as P ζ1,ζ2

x and Eζ1,ζ2
x ,

respectively. For any compact metric space Y , the space of probability measures on Y is denoted by
P(Y ) with Prohorov topology. As U(x) and V (x) are compact sets for each x ∈ X, P(U(x)) and
P(V (x)) are also compact and convex metric spaces. Now for each fixed x ∈ X, ϑ ∈ P(U(x)) and
η ∈ P(V (x)), the corresponding transition and payoff rates are defined, as below:

q(D|x, ϑ, η) :=
∫

V (x)

∫

U(x)
q(D|x, u, v)ϑ(du)η(dv), D ⊆ X.

c(x, ϑ, η) :=

∫

V (x)

∫

U(x)
c(x, u, v)ϑ(du)η(dv),

Note that ζ1 ∈ Π1
SM can be identified by a mapping ζ1 : X → P(U) for which ζ1(·|x) ∈ P(U(x))

for each x ∈ X. So, we can write Π1
SM = Πx∈SP(U(x)) and Π2

SM = Πx∈XP(V (x)). So, the sets Π1
SM

and Π2
SM are compact metric spaces by using Tychonoff theorem.
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Next take λ ∈ (0, 1] as a fixed risk-sensitivity coefficient and fix a finite time horizon T̂ > 0. Then
for each x ∈ X, t ∈ [0, T̂ ] and (ζ1, ζ2) ∈ Π1

Ad ×Π2
Ad, define the risk-sensitive finite-horizon (T̂ -horizon)

cost criterion as

Hζ1,ζ2(0, x) := Eζ1,ζ2

x

[
eλ

∫ T̂
0

∫
V

∫
U c(ξt,u,v)ζ1(da|ω,t)ζ2(dv|ω,t)dt+λg(ξT̂ )

]
, (4)

whence it is given that the integral is well defined. For each (ζ1, ζ2) ∈ Π1
M ×Π2

M , we know that {ξt,≥ 0}
is a controlled Markov Process on (Ω,F, P ζ1,ζ2

γ ), and hence for any γ (initial distribution on X), for
each x ∈ X, t ∈ [0, T̂ ],

Hζ1,ζ2(t, x) := Eζ1,ζ2

γ

[
eλ

∫ T̂
t

∫
V

∫
U c(ξt,u,v)ζ1(du|ξt,t)ζ2(dv|ξt,t)dt+λg(ξT̂ )|ξt = x

]
, (5)

is well defined.
We define the lower value of the game on X as L(x) := sup

ζ2∈Π2
Ad

inf
ζ1∈Π1

Ad

Hζ1,ζ2(0, x).

Similarly, define the upper value of the game on X as U(x) := inf
ζ1∈Π1

Ad

sup
ζ2∈Π2

Ad

Hζ1,ζ2(0, x).

It is easy to see that
L(x) ≤ U(x) for each x ∈ X.

If L(x) = U(x), ∀x ∈ X, define L(·) ≡ U(·) :≡ H∗(·), and then the function H∗(x) is called the value of
the game. Also, if sup

ζ2∈Π2
M

inf
ζ1∈Π1

M

Hζ1,ζ2(t, x) = inf
ζ1∈Π1

M

sup
ζ2∈Π2

M

Hζ1,ζ2(t, x), ∀(t, x) ∈ [0, T̂ ]×X, the common

function is denoted by H∗(·, ·).
A strategy ζ∗1 ∈ Π1

Ad is called optimal for first player if

Hζ∗1,ζ2(x, c) ≤ sup
ζ2∈Π2

Ad

inf
ζ1∈Π1

Ad

Hζ1,ζ2(x) = L(x) ∀ x ∈ X, ∀ζ2 ∈ Π2
Ad.

Similarly, for second player, the strategy ζ∗2 ∈ Π2
Ad is optimal if

Hζ1,ζ∗2(x, c) ≥ inf
ζ1∈Π1

Ad

sup
π2∈Π2

Ad

Hζ1,ζ2(x) = U(x) ∀ x ∈ X, ∀ζ1 ∈ Π1
Ad.

If for kth player, (k=1,2), ζ∗k ∈ Πk
Ad is optimal, then (ζ∗1, ζ∗2) is said to be a pair of optimal strategies.

Now for the pair of strategies (ζ∗1, ζ∗2) if

Hζ∗1,ζ2(x, c) ≤ Hζ∗1,ζ∗2(x, c) ≤ Hζ1,ζ∗2(x, c), ∀ζ1 ∈ Π1
Ad, ∀ζ2 ∈ Π2

Ad,

then (ζ∗1, ζ∗2) is said to a saddle-point equilibrium, and then the strategies ζ∗1 and ζ∗2 are optimal
strategies corresponding to first player and second player, respectively.

3 PRELIMS

For proving the existence of an optimal pair of strategies, we recall some statndard results for the
risk-sensitive finite time horizon CTMDPs. Due to the unboundedness of the rates q(dy|x, u, v) and
c(x, u, v), we impose some conditions to make the processes {ξt, t ≥ 0} nonexplosive, and to make
Hπ1,π2

(0, x) finite, which were used greatly in CTMDPs; see, Golui and Pal (2021a), Guo and Liao
(2019), Guo et al. (2019), Guo and Zhang (2019) and references therein. For bounded rates, following
Assumption 1 (ii)-(iii) are not required, see Ghosh and Saha (2014), Kumar and Pal (2015).

Assumption 1. There exists a function W : X → [1,∞) for which the followings hold:

(i) The relation
∫
S W(y)q(dy|x, u, v) ≤ ρ1W(x) + b1 holds, for each (x, u, v) ∈ K, for some constants

ρ1 > 0, b1 ≥ 0;
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Consequently, first player always tries to maximize his/her payoff, whereas second player wants
to minimize his/her payoff according to some cost measurement criterion H·,·(·, ·), that is presented
below by equation (4). Next the construction of the CTMDPs will be presented under possibly pair of
admissible feedback strategies. For construction of the corresponding CTMDPs (as in Kitaev (1986),
Piunovskiy and Zhang (2011)), we imopse some usefull notations: define X(∆) := X ∪ {∆} (for some
∆ /∈ X),
Ω0 := (X × (0,∞))∞, Ω := Ω0 ∪ {(x0, θ1, x1, · · · , θk̂, xk̂,∞,∆,∞,∆, · · · )|x0 ∈ X, xl ∈ X, θl ∈ (0,∞),

for each 1 ≤ l ≤ k̂, k̂ ≥ 1}, and suppose F be the corresponding Borel σ-algebra on Ω. Then we get
a Borel measurable space (Ω,F). For each k̂ ≥ 0, ω := (x0, θ1, x1, · · · , θk̂, xk̂, · · · ) ∈ Ω, let us define
T0(ω) := 0, Tk̂(ω)− Tk̂−1(ω) := θk̂, T∞(ω) := limk̂→∞ Tk̂(ω). Now in view of the definition of {Tk̂}, we
define the state process {ξt}t≥0 defined by

ξt(ω) :=
∑

k̂≥0

I{Tk̂≤t<Tk̂+1}xk̂ + I{t≥T∞}∆, t ≥ 0. (3)

Here IE is the standard notation for indicator function corresponding to a set E, and we use 0 + z =: z
and 0z =: 0 for any z ∈ X(∆) as convention. The process after the time T∞ is treated for absorbtion in
the state ∆. Hence, let us define q(·|∆, u∆, v∆) :≡ 0, U(∆) := U ∪ U∆, V (∆) := V ∪ V∆, U∆ := {u∆},
V∆ := {v∆}, c(∆, u, v) :≡ 0 for all (u, v) ∈ U(∆) × V (∆), u∆, v∆ are treated as isolated points.
Furthermore, define Ft := σ({Tk̂ ≤ s, ξTk̂

∈ D} : D ∈ B(X), 0 ≤ s ≤ t, k̂ ≥ 0) ∀t ∈ R+, and
Fs− =:

∨
0≤t<s Ft. Lastly the σ-algebra of predictable sets on Ω× [0,∞) corresponding to {Ft}t≥0 is

denoted by P := σ({U × {0}, U ∈ F0} ∪ {V × (s,∞), V ∈ Fs−}). Now we intoduce strategies of players
to define the risk sensitive cost criterion:

Definition 1. An admissible feedback strategy for player 1, denoted by ζ1 = {ζ1t }t≥0, is defined to be a
transition probability ζ1(du|ω, t) from (Ω× [0,∞),P) onto (U∆,B(U∆)), for which ζ1(U(ξt−(ω))|ω, t) =
1.

For more informations, one can see [Guo and Song (2011), Definition 2.1, Remark 2.2], Piunovskiy
and Zhang (2011), Zhang (2017).

Let Π1
Ad denote the set of all admissible feedback strategies for player 1. A strategy ζ1 ∈ Π1

Ad for
player 1, is said to be Markov if for every ω ∈ Ω and t ≥ 0 the relation ζ1(du|ω, t) = ζ1(du|ξt−(ω), t)
holds, lims↑t ξs(ω) := ξt−(w). We call a Markov strategy {ζ1t } as a stationary Markov for player 1, if it
not explicitly dependent on time t. The family of all Markov strategies and all stationary strategies are
denoted by Π1

M and Π1
SM , respectively, for first player. The sets Π2

Ad, Π
2
M , Π2

SM stand for all admissible
feedback strategies, all Markov strategies, and all stationary strategies, respectively, for second player
are defined similarly. In view of Assumption 1, below, for any initial distribution γ on X and any
multi-strategy (ζ1, ζ2) ∈ Π1

Ad ×Π2
Ad, in view of Theorem 4.27 in Kitaev and Rykov (1985) a unique

probability measure exists and denoted by P ζ1,ζ2
γ (depending on γ and (ζ1, ζ2)) on (Ω,F) for which

P ζ1,ζ2
γ (ξ0 = x) = 1. Let us define the corresponding expectation operator as Eζ1,ζ2

γ . Particularly, when
γ represents the Dirac measure at a state x ∈ X, P ζ1,ζ2

γ and Eζ1,ζ2
γ will be written as P ζ1,ζ2

x and Eζ1,ζ2
x ,

respectively. For any compact metric space Y , the space of probability measures on Y is denoted by
P(Y ) with Prohorov topology. As U(x) and V (x) are compact sets for each x ∈ X, P(U(x)) and
P(V (x)) are also compact and convex metric spaces. Now for each fixed x ∈ X, ϑ ∈ P(U(x)) and
η ∈ P(V (x)), the corresponding transition and payoff rates are defined, as below:

q(D|x, ϑ, η) :=
∫

V (x)

∫

U(x)
q(D|x, u, v)ϑ(du)η(dv), D ⊆ X.

c(x, ϑ, η) :=

∫

V (x)

∫

U(x)
c(x, u, v)ϑ(du)η(dv),

Note that ζ1 ∈ Π1
SM can be identified by a mapping ζ1 : X → P(U) for which ζ1(·|x) ∈ P(U(x))

for each x ∈ X. So, we can write Π1
SM = Πx∈SP(U(x)) and Π2

SM = Πx∈XP(V (x)). So, the sets Π1
SM

and Π2
SM are compact metric spaces by using Tychonoff theorem.
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Next take λ ∈ (0, 1] as a fixed risk-sensitivity coefficient and fix a finite time horizon T̂ > 0. Then
for each x ∈ X, t ∈ [0, T̂ ] and (ζ1, ζ2) ∈ Π1

Ad ×Π2
Ad, define the risk-sensitive finite-horizon (T̂ -horizon)

cost criterion as

Hζ1,ζ2(0, x) := Eζ1,ζ2

x

[
eλ

∫ T̂
0

∫
V

∫
U c(ξt,u,v)ζ1(da|ω,t)ζ2(dv|ω,t)dt+λg(ξT̂ )

]
, (4)

whence it is given that the integral is well defined. For each (ζ1, ζ2) ∈ Π1
M ×Π2

M , we know that {ξt,≥ 0}
is a controlled Markov Process on (Ω,F, P ζ1,ζ2

γ ), and hence for any γ (initial distribution on X), for
each x ∈ X, t ∈ [0, T̂ ],

Hζ1,ζ2(t, x) := Eζ1,ζ2

γ

[
eλ

∫ T̂
t

∫
V

∫
U c(ξt,u,v)ζ1(du|ξt,t)ζ2(dv|ξt,t)dt+λg(ξT̂ )|ξt = x

]
, (5)

is well defined.
We define the lower value of the game on X as L(x) := sup

ζ2∈Π2
Ad

inf
ζ1∈Π1

Ad

Hζ1,ζ2(0, x).

Similarly, define the upper value of the game on X as U(x) := inf
ζ1∈Π1

Ad

sup
ζ2∈Π2

Ad

Hζ1,ζ2(0, x).

It is easy to see that
L(x) ≤ U(x) for each x ∈ X.

If L(x) = U(x), ∀x ∈ X, define L(·) ≡ U(·) :≡ H∗(·), and then the function H∗(x) is called the value of
the game. Also, if sup

ζ2∈Π2
M

inf
ζ1∈Π1

M

Hζ1,ζ2(t, x) = inf
ζ1∈Π1

M

sup
ζ2∈Π2

M

Hζ1,ζ2(t, x), ∀(t, x) ∈ [0, T̂ ]×X, the common

function is denoted by H∗(·, ·).
A strategy ζ∗1 ∈ Π1

Ad is called optimal for first player if

Hζ∗1,ζ2(x, c) ≤ sup
ζ2∈Π2

Ad

inf
ζ1∈Π1

Ad

Hζ1,ζ2(x) = L(x) ∀ x ∈ X, ∀ζ2 ∈ Π2
Ad.

Similarly, for second player, the strategy ζ∗2 ∈ Π2
Ad is optimal if

Hζ1,ζ∗2(x, c) ≥ inf
ζ1∈Π1

Ad

sup
π2∈Π2

Ad

Hζ1,ζ2(x) = U(x) ∀ x ∈ X, ∀ζ1 ∈ Π1
Ad.

If for kth player, (k=1,2), ζ∗k ∈ Πk
Ad is optimal, then (ζ∗1, ζ∗2) is said to be a pair of optimal strategies.

Now for the pair of strategies (ζ∗1, ζ∗2) if

Hζ∗1,ζ2(x, c) ≤ Hζ∗1,ζ∗2(x, c) ≤ Hζ1,ζ∗2(x, c), ∀ζ1 ∈ Π1
Ad, ∀ζ2 ∈ Π2

Ad,

then (ζ∗1, ζ∗2) is said to a saddle-point equilibrium, and then the strategies ζ∗1 and ζ∗2 are optimal
strategies corresponding to first player and second player, respectively.

3 PRELIMS

For proving the existence of an optimal pair of strategies, we recall some statndard results for the
risk-sensitive finite time horizon CTMDPs. Due to the unboundedness of the rates q(dy|x, u, v) and
c(x, u, v), we impose some conditions to make the processes {ξt, t ≥ 0} nonexplosive, and to make
Hπ1,π2

(0, x) finite, which were used greatly in CTMDPs; see, Golui and Pal (2021a), Guo and Liao
(2019), Guo et al. (2019), Guo and Zhang (2019) and references therein. For bounded rates, following
Assumption 1 (ii)-(iii) are not required, see Ghosh and Saha (2014), Kumar and Pal (2015).

Assumption 1. There exists a function W : X → [1,∞) for which the followings hold:

(i) The relation
∫
S W(y)q(dy|x, u, v) ≤ ρ1W(x) + b1 holds, for each (x, u, v) ∈ K, for some constants

ρ1 > 0, b1 ≥ 0;
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(ii) q∗(x) ≤ M1W(x), ∀x ∈ X, for some nonnegative constant M1 ≥ 1, where q∗(x) is as in (2.2);

(iii) e2(T̂+1)λ|c(x,u,v)| ≤ M2W(x) for any (x, u, v) ∈ K, and e2(T̂+1)λ|g(x)| ≤ M2W(x) for each x ∈ X,
for some constant M2 ≥ 1.

The non-exlposion of the state process {ξt, t ≥ 0} and the finiteness of Hζ1,ζ2(0, x) is shown in
following Lemma. Here we see that the function Hζ1,ζ2(0, x) has upper and lower bound in terms of the
function W.

Lemma 1. We grant Assumption 1. Then for each (ζ1, ζ2) ∈ Π1
Ad × Π2

Ad, we obtain the following
results.

(a) P ζ1,ζ2
x (T∞ = ∞) = 1, P ζ1,ζ2

x (ξt ∈ X) = 1, and P ζ1,ζ2
x (ξ0 = x) = 1 for each t ≥ 0 and x ∈ X.

(b) (b1) e−L1W(x) ≤ Hζ1,ζ2(0, x) ≤ L1W(x) for x ∈ X and (ζ1, ζ2) ∈ Π1
Ad × Π2

Ad, where L1 :=

M2e
ρ1T̂

[
1 + b1

ρ1

]
.

(b2) e−L1W(x) ≤ Hζ1,ζ2(t, x) ≤ L1W(x) for (t, x) ∈ [0, T̂ ]×X and (ζ1, ζ2) ∈ Π1
M ×Π2

M .

Proof. These results can be proved by using Guo et al. (2019), Lemma 3.1 and Guo and Zhang
(2019), Lemma 3.1.

In order to apply the extended Feynman-Kac formula, we impose the following assumption for
unbounded functions. If the rates are bounded, the following Assumption is not required, see Ghosh
and Saha (2014). Since we are dealing with unbounded rates, we require the following condition.

Assumption 2. There exists [1,∞)-valued function W1 on X such that

(i)
∫
X W2

1 (y)q(dy|x, u, v) ≤ ρ2W2
1 (x) + b2, for each (x, u, v) ∈ K for some constants ρ2 > 0 and

b2 > 0;

(ii) W2(x) ≤ M3W1(x), ∀x ∈ X, for some constant M3 ≥ 1, where the function W is as in
Assumption 1.

In addition of Assumptions 1, 2, we impose the following conditions to guarantee the existence of a
pair of optimal strategies.

Assumption 3. (i) The cost and transition rate functions, c(x, u, v) and q(·|x, u, v) are continuous
on U(x)× V (x), for each x ∈ X.

(ii) The integral functions
∫

X
f(y)q(dy|x, u, v) and

∫

X
W(y)q(dy|x, u, v) are continuous on U(x)×

V (x), for each x ∈ X, for all bounded measurable functions f on X and W as previous in
Assumption 1.

We next introduce some useful notations. Let Ac(Ω× [0, T̂ ]×X) denote the space of all real-valued,
P×B(X)-measurable functions φ(ω, t, x) which are differentiable in t ∈ [0, T̂ ] a.e. i.e., Ac(Ω× [0, T̂ ]×X)
contains the said measurable functions φ with the following facets: Given any x ∈ X, (ζ1, ζ2) ∈
Π1

Ad ×Π2
Ad, and a.s. ω ∈ Ω, there exists a E(φ,ω,x,ζ1,ζ2) ⊆ [0, T̂ ] (a Borel subset of [0, T̂ ] that depends

on φ, ω, x, ζ1, ζ2) such that ∂φ
∂t (the partial derivative with respect to time t ∈ [0, T̂ ]) exists for every

t ∈ E(φ,ω,x,ζ1,ζ2) and mL(E
c
(φ,ω,x,ζ1,ζ2)) = 0, where mL is the Lebesgue measure on R. Now if for some

(ω, t, x) ∈ Ω× [0, T̂ ]×X, ∂φ
∂t (ω, t, x) does not exists, we take this as any real number, and so ∂φ

∂t (·, ·, ·)
can be made definable on Ω× [0, T̂ ]×X. For any given function W ≥ 1 on X, a function f (real-valued)
on Ω × [0, T̂ ] × X is said to be a W -bounded if ∥f∥∞W := sup(ω,t,x)∈Ω×[0,T̂ ]×X

|f(ω,t,x)|
W (x) < ∞. The

W -bounded Banach space is denoted by BW (Ω× [0, T̂ ]×X). Note that if W ≡ 1, B1(Ω× [0, T̂ ]×X)
is the space of all bounded functions on Ω× [0, T̂ ]×X.
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Now define C1
W0,W1

(Ω × [0, T̂ ] × X) := {ψ ∈ BW0(Ω × [0, T̂ ] × X) ∩ Ac(Ω × [0, T̂ ] × X) : ∂ψ
∂t ∈

BW1(Ω× [0, T̂ ]×X)}. If any function ψ(ω, t, x) ∈ C1
W0,W1

(Ω× [0, T̂ ]×X) does not depend on ω, we
write it as ψ(t, x) and the corresponding space is C1

W0,W1
([0, T̂ ]×X).

In the the next theorem, we state the extended Feynman-Kac formula, which is very useful for us.

Theorem 1. We grant Assumptions 1 and 2.

(a) Then, for each x ∈ X, (ζ1, ζ2) ∈ Π1
Ad ×Π2

Ad and ψ ∈ C1
W,W1

(Ω× [0, T̂ ]×X),

Eζ1,ζ2

x

[∫ T̂

0

(
∂ψ

∂t
(ω, t, ξt) +

∫

X
ψ(ω, t, y)

∫

V

∫

U
q(dy|ξt, u, v)ζ1(du|ω, t)ζ2(dv|ω, t)

)
dt

]

= Eζ1,ζ2

x [ψ(ω, T̂ , ξT̂ )]− Eζ1,ζ2

x ψ(ω, 0, x).

Note that since (ζ1, ζ2) ∈ Π1
Ad × Π2

Ad may be dependent on histories, {ξt, t ≥ 0} may be not
Markovian.

(b) For each x ∈ X, (ζ1, ζ2) ∈ Π1
M ×Π2

M and ψ ∈ C1
W,W1

([0, T̂ ]×X),

Eζ1,ζ2

γ

[∫ T̂

s

((
∂ψ

∂t
(t, ξt) + λc(ξt, ζ

1
t , ζ

2
t )

)
e
∫ t
s λc(ξβ ,ζ

1
β ,ζ

2
β)dβψ(t, ξt)

+

∫

X
e
∫ t
s λc(ξβ ,ζ

1
β ,ζ

2
β)dβψ(t, y)q(dy|ξt, ζ1t , ζ2t )

)
dt|ξs = x

]

= Eζ1,ζ2

γ

[
e
∫ T̂
s λc(ξβ ,ζ

1
β ,ζ

2
β)dβψ(T̂ , ξT̂ )|ξs = x

]
− ψ(s, x).

Proof. See Guo and Zhang (2019), Theorem 3.1.

Next, we present a theorem which shows that the solutions of the optimality equations (Shapley
equations) have unique probabilistic representations. In section 4, we also illustrate how this verification
theorem can be used to determine the game’s value.

Theorem 2. Assume that Assumptions 1 and 2 are true. If there exist a function ψ ∈ C1
W,W1

([0, T̂ ]×X)

and a pair of stationary strategies (ζ∗1, ζ∗2) ∈ Π1
SM ×Π2

SM for which

ψ(s, x)− eλg(x)

= E1 =

∫ T̂

s
sup

ϑ∈P(U(x))
inf

η∈P(V (x))

[
λc(x, ϑ, η)ψ(t, x) +

∫

X
ψ(t, y)q(dy|x, ϑ, η)

]
dt

= E2 =

∫ T̂

s
inf

η∈P(V (x))
sup

ϑ∈P(U(x))

[
λc(x, ϑ, η)ψ(t, x) +

∫

X
ψ(t, y)q(dy|x, ϑ, η)

]
dt

=

∫ T̂

s
inf

η∈P(V (x))

[
λc(x, ζ∗1(·|x, t), η)ψ(t, x) +

∫

X
ψ(t, y)q(dy|x, ζ∗1(·|x, t), η)

]
dt

=

∫ T̂

s
sup

ϑ∈P(U(x))

[
λc(x, ϑ, ζ∗2(·|x, t))ψ(t, x) +

∫

X
ψ(t, y)q(dy|x, ϑ, ζ∗2(·|x, t))

]
dt

s ∈ [0, T̂ ], x ∈ X, (6)

then

(a)

ψ(0, x) = sup
ζ1∈Π1

Ad

inf
ζ2∈Π2

Ad

Hζ1,ζ2(0, x) = inf
ζ2∈Π2

Ad

sup
ζ1∈Π1

Ad

Hζ1,ζ2(0, x)

= inf
ζ2∈Π2

Ad

Hζ∗1,ζ2(0, x) = sup
ζ1∈Π1

Ad

Hζ1,ζ∗2(0, x), x ∈ X (7)

and
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(ii) q∗(x) ≤ M1W(x), ∀x ∈ X, for some nonnegative constant M1 ≥ 1, where q∗(x) is as in (2.2);

(iii) e2(T̂+1)λ|c(x,u,v)| ≤ M2W(x) for any (x, u, v) ∈ K, and e2(T̂+1)λ|g(x)| ≤ M2W(x) for each x ∈ X,
for some constant M2 ≥ 1.

The non-exlposion of the state process {ξt, t ≥ 0} and the finiteness of Hζ1,ζ2(0, x) is shown in
following Lemma. Here we see that the function Hζ1,ζ2(0, x) has upper and lower bound in terms of the
function W.

Lemma 1. We grant Assumption 1. Then for each (ζ1, ζ2) ∈ Π1
Ad × Π2

Ad, we obtain the following
results.

(a) P ζ1,ζ2
x (T∞ = ∞) = 1, P ζ1,ζ2

x (ξt ∈ X) = 1, and P ζ1,ζ2
x (ξ0 = x) = 1 for each t ≥ 0 and x ∈ X.

(b) (b1) e−L1W(x) ≤ Hζ1,ζ2(0, x) ≤ L1W(x) for x ∈ X and (ζ1, ζ2) ∈ Π1
Ad × Π2

Ad, where L1 :=

M2e
ρ1T̂

[
1 + b1

ρ1

]
.

(b2) e−L1W(x) ≤ Hζ1,ζ2(t, x) ≤ L1W(x) for (t, x) ∈ [0, T̂ ]×X and (ζ1, ζ2) ∈ Π1
M ×Π2

M .

Proof. These results can be proved by using Guo et al. (2019), Lemma 3.1 and Guo and Zhang
(2019), Lemma 3.1.

In order to apply the extended Feynman-Kac formula, we impose the following assumption for
unbounded functions. If the rates are bounded, the following Assumption is not required, see Ghosh
and Saha (2014). Since we are dealing with unbounded rates, we require the following condition.

Assumption 2. There exists [1,∞)-valued function W1 on X such that

(i)
∫
X W2

1 (y)q(dy|x, u, v) ≤ ρ2W2
1 (x) + b2, for each (x, u, v) ∈ K for some constants ρ2 > 0 and

b2 > 0;

(ii) W2(x) ≤ M3W1(x), ∀x ∈ X, for some constant M3 ≥ 1, where the function W is as in
Assumption 1.

In addition of Assumptions 1, 2, we impose the following conditions to guarantee the existence of a
pair of optimal strategies.

Assumption 3. (i) The cost and transition rate functions, c(x, u, v) and q(·|x, u, v) are continuous
on U(x)× V (x), for each x ∈ X.

(ii) The integral functions
∫

X
f(y)q(dy|x, u, v) and

∫

X
W(y)q(dy|x, u, v) are continuous on U(x)×

V (x), for each x ∈ X, for all bounded measurable functions f on X and W as previous in
Assumption 1.

We next introduce some useful notations. Let Ac(Ω× [0, T̂ ]×X) denote the space of all real-valued,
P×B(X)-measurable functions φ(ω, t, x) which are differentiable in t ∈ [0, T̂ ] a.e. i.e., Ac(Ω× [0, T̂ ]×X)
contains the said measurable functions φ with the following facets: Given any x ∈ X, (ζ1, ζ2) ∈
Π1

Ad ×Π2
Ad, and a.s. ω ∈ Ω, there exists a E(φ,ω,x,ζ1,ζ2) ⊆ [0, T̂ ] (a Borel subset of [0, T̂ ] that depends

on φ, ω, x, ζ1, ζ2) such that ∂φ
∂t (the partial derivative with respect to time t ∈ [0, T̂ ]) exists for every

t ∈ E(φ,ω,x,ζ1,ζ2) and mL(E
c
(φ,ω,x,ζ1,ζ2)) = 0, where mL is the Lebesgue measure on R. Now if for some

(ω, t, x) ∈ Ω× [0, T̂ ]×X, ∂φ
∂t (ω, t, x) does not exists, we take this as any real number, and so ∂φ

∂t (·, ·, ·)
can be made definable on Ω× [0, T̂ ]×X. For any given function W ≥ 1 on X, a function f (real-valued)
on Ω × [0, T̂ ] × X is said to be a W -bounded if ∥f∥∞W := sup(ω,t,x)∈Ω×[0,T̂ ]×X

|f(ω,t,x)|
W (x) < ∞. The

W -bounded Banach space is denoted by BW (Ω× [0, T̂ ]×X). Note that if W ≡ 1, B1(Ω× [0, T̂ ]×X)
is the space of all bounded functions on Ω× [0, T̂ ]×X.
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Now define C1
W0,W1

(Ω × [0, T̂ ] × X) := {ψ ∈ BW0(Ω × [0, T̂ ] × X) ∩ Ac(Ω × [0, T̂ ] × X) : ∂ψ
∂t ∈

BW1(Ω× [0, T̂ ]×X)}. If any function ψ(ω, t, x) ∈ C1
W0,W1

(Ω× [0, T̂ ]×X) does not depend on ω, we
write it as ψ(t, x) and the corresponding space is C1

W0,W1
([0, T̂ ]×X).

In the the next theorem, we state the extended Feynman-Kac formula, which is very useful for us.

Theorem 1. We grant Assumptions 1 and 2.

(a) Then, for each x ∈ X, (ζ1, ζ2) ∈ Π1
Ad ×Π2

Ad and ψ ∈ C1
W,W1

(Ω× [0, T̂ ]×X),

Eζ1,ζ2

x

[∫ T̂

0

(
∂ψ

∂t
(ω, t, ξt) +

∫

X
ψ(ω, t, y)

∫

V

∫

U
q(dy|ξt, u, v)ζ1(du|ω, t)ζ2(dv|ω, t)

)
dt

]

= Eζ1,ζ2

x [ψ(ω, T̂ , ξT̂ )]− Eζ1,ζ2

x ψ(ω, 0, x).

Note that since (ζ1, ζ2) ∈ Π1
Ad × Π2

Ad may be dependent on histories, {ξt, t ≥ 0} may be not
Markovian.

(b) For each x ∈ X, (ζ1, ζ2) ∈ Π1
M ×Π2

M and ψ ∈ C1
W,W1

([0, T̂ ]×X),

Eζ1,ζ2

γ

[∫ T̂

s

((
∂ψ

∂t
(t, ξt) + λc(ξt, ζ

1
t , ζ

2
t )

)
e
∫ t
s λc(ξβ ,ζ

1
β ,ζ

2
β)dβψ(t, ξt)

+

∫

X
e
∫ t
s λc(ξβ ,ζ

1
β ,ζ

2
β)dβψ(t, y)q(dy|ξt, ζ1t , ζ2t )

)
dt|ξs = x

]

= Eζ1,ζ2

γ

[
e
∫ T̂
s λc(ξβ ,ζ

1
β ,ζ

2
β)dβψ(T̂ , ξT̂ )|ξs = x

]
− ψ(s, x).

Proof. See Guo and Zhang (2019), Theorem 3.1.

Next, we present a theorem which shows that the solutions of the optimality equations (Shapley
equations) have unique probabilistic representations. In section 4, we also illustrate how this verification
theorem can be used to determine the game’s value.

Theorem 2. Assume that Assumptions 1 and 2 are true. If there exist a function ψ ∈ C1
W,W1

([0, T̂ ]×X)

and a pair of stationary strategies (ζ∗1, ζ∗2) ∈ Π1
SM ×Π2

SM for which

ψ(s, x)− eλg(x)

= E1 =

∫ T̂

s
sup

ϑ∈P(U(x))
inf

η∈P(V (x))

[
λc(x, ϑ, η)ψ(t, x) +

∫

X
ψ(t, y)q(dy|x, ϑ, η)

]
dt

= E2 =

∫ T̂

s
inf

η∈P(V (x))
sup

ϑ∈P(U(x))

[
λc(x, ϑ, η)ψ(t, x) +

∫

X
ψ(t, y)q(dy|x, ϑ, η)

]
dt

=

∫ T̂

s
inf

η∈P(V (x))

[
λc(x, ζ∗1(·|x, t), η)ψ(t, x) +

∫

X
ψ(t, y)q(dy|x, ζ∗1(·|x, t), η)

]
dt

=

∫ T̂

s
sup

ϑ∈P(U(x))

[
λc(x, ϑ, ζ∗2(·|x, t))ψ(t, x) +

∫

X
ψ(t, y)q(dy|x, ϑ, ζ∗2(·|x, t))

]
dt

s ∈ [0, T̂ ], x ∈ X, (6)

then

(a)

ψ(0, x) = sup
ζ1∈Π1

Ad

inf
ζ2∈Π2

Ad

Hζ1,ζ2(0, x) = inf
ζ2∈Π2

Ad

sup
ζ1∈Π1

Ad

Hζ1,ζ2(0, x)

= inf
ζ2∈Π2

Ad

Hζ∗1,ζ2(0, x) = sup
ζ1∈Π1

Ad

Hζ1,ζ∗2(0, x), x ∈ X (7)

and
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(b)

ψ(t, x) = sup
ζ1∈Π1

M

inf
ζ2∈Π2

M

Hζ1,ζ2(t, x) = inf
ζ2∈Π2

M

sup
ζ1∈Π1

M

Hζ1,π2
(t, x)

= inf
ζ2∈Π2

M

Hζ∗1,ζ2(t, x) = sup
ζ1∈Π1

M

Hζ1,ζ∗2(t, x) = H∗(t, x), t ∈ [0, T̂ ], x ∈ X. (8)

Proof.

(a) See Golui and Pal (2021a), Corollary 3.1.

(b) This proof follows from part (a).

4 THE EXISTENCE OF OPTIMAL SOLUTION AND SADDLE POINT EQUILI-
BRIUM

This section provides the proof that optimality equation (6) has a solution in the space C1
W,W1

([0, T̂ ]×X).
Furthermore, we use the optimality equation (6) to prove the existence of saddle point equilibrium.
The next Proposition proves the optimality equation (6) has a solution when the rates are bounded.

Proposition 1. Suppose Assumption 3 holds. Also, assume that ∥q∥ < ∞, ∥c∥ < ∞, ∥g∥ < ∞,
c(x, u, v) ≥ 0 and g(x) ≥ 0, for all (x, u, v) ∈ K. Then the following results are true.

(a) There exists a bounded function ψ ∈ B1([0, T̂ ]×X) satisfying first two equations (E1 and E2) of
(6).

(b) There exists a pair of strategies (ζ∗1, ζ∗2) ∈ Π1
SM × Π2

SM satisfying the equations (6), (7) and (8)
and hence this forms a saddle-point equilibrium.

(c) H∗(t, x) (and so ψ(t, x)) is non-increasing in t for fixed x ∈ X, where t ∈ [0, T̂ ].

Proof. (a) From Wei (2017), Theorem 4.1, there exists ψ ∈ B1([0, T̂ ] × X) satisfying first two
equations (E1 and E2) of (6).

(b) In view of measurable selection theorem as in Nowak (1985), we get the existence of (ζ∗1, ζ∗2) ∈
Π1

SM ×Π2
SM for which (6) holds. So, by Theorem 2, we get

sup
ζ1∈Π1

Ad

inf
ζ2∈Π2

Ad

Hζ1,ζ2(0, x) = inf
ζ2∈Π2

Ad

sup
ζ1∈Π1

Ad

Hζ1,ζ2(0, x) = sup
ζ1∈Π1

Ad

Hζ1,ζ∗2(0, x)

= inf
ζ2∈Π2

Ad

Hζ∗1,ζ2(0, x) = ψ(0, x) (9)

and

sup
ζ1∈Π1

M

inf
ζ2∈Π2

M

Hζ1,ζ2(t, x) = inf
ζ2∈Π2

M

sup
ζ1∈Π1

M

Hζ1,ζ2(t, x) = sup
ζ1∈Π1

M

Hζ1,ζ∗2(t, x)

= inf
ζ2∈Π2

M

Hζ∗1,ζ2(t, x) = H∗(t, x) = ψ(t, x). (10)

Thus the game’s value exists and (ζ∗1, ζ∗2) ∈ Π1
SM ×Π2

SM forms a saddle-point equilibrium.

(c) First we fix any s, t ∈ [0, T̂ ] where s < t. Also fix any (ζ1, ζ2) ∈ Π1
M ×Π2

M . Now for each x ∈ X,
define a Markov strategy corresponding to ζ1 ∈ Π1

M as

ζ1s,t(du|x, β) =
{

ζ1(du|x, β + t− s) if β ≥ s
ζ1(du|x, β) otherwise. (11)
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Similarly, for each ζ2 ∈ Π2
M , we define ζ2s,t.

Then, for each β ∈ [s, s+ T̂ − t] and x ∈ X, q(dy|x, ζ1s,t(du|x, β), ζ2s,t(dv|x, β)) = q(dy|x, ζ1(du|x, β +
t− s), ζ2(dv|x, β + t− s)),
c(x, ζ1s,t(du|x, β), ζ2s,t(dv|x, β)) = c(x, ζ1(du|x, β + t− s), ζ2(dv|x, β + t− s)). Next define

Hζ1,ζ2(s ⇝ t, x) := Eζ1,ζ2

γ

[
eλ

∫ t
s c(ξβ ,ζ

1(du|ξβ ,β),ζ2(dv|ξβ ,β))dβ+λg(ξt)|ξs = x

]
, (12)

H∗(s ⇝ t, x) := inf
ζ2∈Π2

M

sup
ζ1∈Π1

M

Hζ1,ζ2(s ⇝ t, x). (13)

Now in view of the Markov property of {ξt, t ≥ 0} under any (ζ1, ζ2) ∈ Π1
M ×Π2

M and (11)-(13), we
have Hζ1,ζ2(t ⇝ T̂ , x) = Hζ1s,t,ζ

2
s,t(s ⇝ T̂ + s− t, x).

It can be easily shown that supζ1s,t∈Π1
M
Hζ1s,t,ζ

2
s,t(s ⇝ T̂ + s − t, x) ≤ sup

ζ1∈Π1
M

Hζ1,ζ2(t ⇝ T, x) and

sup
ζ1∈Π1

M

Hζ1,ζ2(t ⇝ T̂ , x) ≤ sup
ζ1s,t∈Π1

M

Hζ1s,t,ζ
2
s,t(s ⇝ T̂ + s− t, x) for all ζ2 ∈ ΠM

2 . Hence, sup
ζ1∈Π1

M

Hζ1,ζ2(t ⇝

T̂ , x) = sup
ζ1s,t∈Π1

M

Hζ1s,t,ζ
2
s,t(s ⇝ T̂ + s− t, x) for all ζ2 ∈ ΠM

2 . Similarly, we can show that H∗(t ⇝ T̂ , x) =

H∗(s ⇝ T̂ +s− t, x). Now since c(x, u, v) ≥ 0 on K, by (13) and t > s, we have H∗(t ⇝ T̂ , x) = H∗(s ⇝
T̂ + s− t, x) ≤ H∗(s ⇝ T̂ , x). But by (10), (12) and (13), we have H∗(t ⇝ T̂ , x) = H∗(t, x). Hence, we
obtain H∗(s, x) ≥ H∗(t, x) i.e. H∗(t, x) is decreasing in t. Now from part (b), we have H∗(t, x) = ψ(t, x).
Hence, ψ(t, x) is also decreasing in t.

Theorem 3. Suppose Assumptions 1, 2 and 3 hold. Also, in addition suppose c(x, u, v) ≥ 0 and g(x) ≥ 0
for all (x, u, v) ∈ K. Then there exist a unique ψ ∈ C1

W,W1
([0, T̂ ] × X) and some pair of strategies

(ζ∗1, ζ∗2) ∈ Π1
SM × Π2

SM satisfying the equations (6), (7) and (8) and hence this is a saddle-point
equilibrium.
Proof. First observe that 1 ≤ e2(T̂+1)λc(x,u,v) ≤ M2W(x) and 1 ≤ e2(T̂+1)λg(x) ≤ M2W(x). For each
integer n ≥ 1, x ∈ X, define Xn := {x ∈ X|W(x) ≤ n}, Un(x) := U(x) and Vn(x) := V (x). Also for
each (x, u, v) ∈ Kn := {(x, u, v) : x ∈ X, u ∈ Un(x), v ∈ Vn(x)}, define

qn(dy|x, u, v) :=
{

q(dy|x, u, v) if x ∈ Xn,
0 if x /∈ Xn,

(14)

c+n (x, u, v) :=

{
c(x, u, v) ∧ min

{
n, 1

λ(T̂+1)
ln

√
M2W(x)

}
if x ∈ Xn,

0 if x /∈ Xn.
(15)

and

g+n (x) :=

{
g(x) ∧ min

{
n, 1

λ(T̂+1)
ln

√
M2W(x)

}
if x ∈ Xn,

0 if x /∈ Xn.
(16)

By (14), obviously qn(dy|x, u, v) is transition rates on X satisfying conservative and stable conditions.
Now consider the sequence of CTMDPs models with bounded rates G+

n := {X, U, V, (Un(x), Vn(x), x ∈
X), c+n , g

+
n , qn}. Fix a n. Corresponding to a pair of Markov strategies (ζ1, ζ2) ∈ Π1

M ×Π2
M , suppose

for this model the risk-sensitive cost criterion is Hζ1,ζ2
n (t, x) and the value function is

Hn(t, x) := sup
ζ1∈Π1

M

inf
ζ2∈Π2

M

Hζ1,ζ2

n (t, x).

Then by Proposition 1, for each n ≥ 1, we get a unique ψn in C1
1,1([0, T̂ ])×S and (ζ∗1n , ζ∗2n ) ∈ Π1

SM×Π2
SM

satisfying

ψn(s, x)− eλg
+
n (x)
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(b)

ψ(t, x) = sup
ζ1∈Π1

M

inf
ζ2∈Π2

M

Hζ1,ζ2(t, x) = inf
ζ2∈Π2

M

sup
ζ1∈Π1

M

Hζ1,π2
(t, x)

= inf
ζ2∈Π2

M

Hζ∗1,ζ2(t, x) = sup
ζ1∈Π1

M

Hζ1,ζ∗2(t, x) = H∗(t, x), t ∈ [0, T̂ ], x ∈ X. (8)

Proof.

(a) See Golui and Pal (2021a), Corollary 3.1.

(b) This proof follows from part (a).

4 THE EXISTENCE OF OPTIMAL SOLUTION AND SADDLE POINT EQUILI-
BRIUM

This section provides the proof that optimality equation (6) has a solution in the space C1
W,W1

([0, T̂ ]×X).
Furthermore, we use the optimality equation (6) to prove the existence of saddle point equilibrium.
The next Proposition proves the optimality equation (6) has a solution when the rates are bounded.

Proposition 1. Suppose Assumption 3 holds. Also, assume that ∥q∥ < ∞, ∥c∥ < ∞, ∥g∥ < ∞,
c(x, u, v) ≥ 0 and g(x) ≥ 0, for all (x, u, v) ∈ K. Then the following results are true.

(a) There exists a bounded function ψ ∈ B1([0, T̂ ]×X) satisfying first two equations (E1 and E2) of
(6).

(b) There exists a pair of strategies (ζ∗1, ζ∗2) ∈ Π1
SM × Π2

SM satisfying the equations (6), (7) and (8)
and hence this forms a saddle-point equilibrium.

(c) H∗(t, x) (and so ψ(t, x)) is non-increasing in t for fixed x ∈ X, where t ∈ [0, T̂ ].

Proof. (a) From Wei (2017), Theorem 4.1, there exists ψ ∈ B1([0, T̂ ] × X) satisfying first two
equations (E1 and E2) of (6).

(b) In view of measurable selection theorem as in Nowak (1985), we get the existence of (ζ∗1, ζ∗2) ∈
Π1

SM ×Π2
SM for which (6) holds. So, by Theorem 2, we get

sup
ζ1∈Π1

Ad

inf
ζ2∈Π2

Ad

Hζ1,ζ2(0, x) = inf
ζ2∈Π2

Ad

sup
ζ1∈Π1

Ad

Hζ1,ζ2(0, x) = sup
ζ1∈Π1

Ad

Hζ1,ζ∗2(0, x)

= inf
ζ2∈Π2

Ad

Hζ∗1,ζ2(0, x) = ψ(0, x) (9)

and

sup
ζ1∈Π1

M

inf
ζ2∈Π2

M

Hζ1,ζ2(t, x) = inf
ζ2∈Π2

M

sup
ζ1∈Π1

M

Hζ1,ζ2(t, x) = sup
ζ1∈Π1

M

Hζ1,ζ∗2(t, x)

= inf
ζ2∈Π2

M

Hζ∗1,ζ2(t, x) = H∗(t, x) = ψ(t, x). (10)

Thus the game’s value exists and (ζ∗1, ζ∗2) ∈ Π1
SM ×Π2

SM forms a saddle-point equilibrium.

(c) First we fix any s, t ∈ [0, T̂ ] where s < t. Also fix any (ζ1, ζ2) ∈ Π1
M ×Π2

M . Now for each x ∈ X,
define a Markov strategy corresponding to ζ1 ∈ Π1

M as

ζ1s,t(du|x, β) =
{

ζ1(du|x, β + t− s) if β ≥ s
ζ1(du|x, β) otherwise. (11)
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Similarly, for each ζ2 ∈ Π2
M , we define ζ2s,t.

Then, for each β ∈ [s, s+ T̂ − t] and x ∈ X, q(dy|x, ζ1s,t(du|x, β), ζ2s,t(dv|x, β)) = q(dy|x, ζ1(du|x, β +
t− s), ζ2(dv|x, β + t− s)),
c(x, ζ1s,t(du|x, β), ζ2s,t(dv|x, β)) = c(x, ζ1(du|x, β + t− s), ζ2(dv|x, β + t− s)). Next define

Hζ1,ζ2(s ⇝ t, x) := Eζ1,ζ2

γ

[
eλ

∫ t
s c(ξβ ,ζ

1(du|ξβ ,β),ζ2(dv|ξβ ,β))dβ+λg(ξt)|ξs = x

]
, (12)

H∗(s ⇝ t, x) := inf
ζ2∈Π2

M

sup
ζ1∈Π1

M

Hζ1,ζ2(s ⇝ t, x). (13)

Now in view of the Markov property of {ξt, t ≥ 0} under any (ζ1, ζ2) ∈ Π1
M ×Π2

M and (11)-(13), we
have Hζ1,ζ2(t ⇝ T̂ , x) = Hζ1s,t,ζ

2
s,t(s ⇝ T̂ + s− t, x).

It can be easily shown that supζ1s,t∈Π1
M
Hζ1s,t,ζ

2
s,t(s ⇝ T̂ + s − t, x) ≤ sup

ζ1∈Π1
M

Hζ1,ζ2(t ⇝ T, x) and

sup
ζ1∈Π1

M

Hζ1,ζ2(t ⇝ T̂ , x) ≤ sup
ζ1s,t∈Π1

M

Hζ1s,t,ζ
2
s,t(s ⇝ T̂ + s− t, x) for all ζ2 ∈ ΠM

2 . Hence, sup
ζ1∈Π1

M

Hζ1,ζ2(t ⇝

T̂ , x) = sup
ζ1s,t∈Π1

M

Hζ1s,t,ζ
2
s,t(s ⇝ T̂ + s− t, x) for all ζ2 ∈ ΠM

2 . Similarly, we can show that H∗(t ⇝ T̂ , x) =

H∗(s ⇝ T̂ +s− t, x). Now since c(x, u, v) ≥ 0 on K, by (13) and t > s, we have H∗(t ⇝ T̂ , x) = H∗(s ⇝
T̂ + s− t, x) ≤ H∗(s ⇝ T̂ , x). But by (10), (12) and (13), we have H∗(t ⇝ T̂ , x) = H∗(t, x). Hence, we
obtain H∗(s, x) ≥ H∗(t, x) i.e. H∗(t, x) is decreasing in t. Now from part (b), we have H∗(t, x) = ψ(t, x).
Hence, ψ(t, x) is also decreasing in t.

Theorem 3. Suppose Assumptions 1, 2 and 3 hold. Also, in addition suppose c(x, u, v) ≥ 0 and g(x) ≥ 0
for all (x, u, v) ∈ K. Then there exist a unique ψ ∈ C1

W,W1
([0, T̂ ] × X) and some pair of strategies

(ζ∗1, ζ∗2) ∈ Π1
SM × Π2

SM satisfying the equations (6), (7) and (8) and hence this is a saddle-point
equilibrium.
Proof. First observe that 1 ≤ e2(T̂+1)λc(x,u,v) ≤ M2W(x) and 1 ≤ e2(T̂+1)λg(x) ≤ M2W(x). For each
integer n ≥ 1, x ∈ X, define Xn := {x ∈ X|W(x) ≤ n}, Un(x) := U(x) and Vn(x) := V (x). Also for
each (x, u, v) ∈ Kn := {(x, u, v) : x ∈ X, u ∈ Un(x), v ∈ Vn(x)}, define

qn(dy|x, u, v) :=
{

q(dy|x, u, v) if x ∈ Xn,
0 if x /∈ Xn,

(14)

c+n (x, u, v) :=

{
c(x, u, v) ∧ min

{
n, 1

λ(T̂+1)
ln

√
M2W(x)

}
if x ∈ Xn,

0 if x /∈ Xn.
(15)

and

g+n (x) :=

{
g(x) ∧ min

{
n, 1

λ(T̂+1)
ln

√
M2W(x)

}
if x ∈ Xn,

0 if x /∈ Xn.
(16)

By (14), obviously qn(dy|x, u, v) is transition rates on X satisfying conservative and stable conditions.
Now consider the sequence of CTMDPs models with bounded rates G+

n := {X, U, V, (Un(x), Vn(x), x ∈
X), c+n , g

+
n , qn}. Fix a n. Corresponding to a pair of Markov strategies (ζ1, ζ2) ∈ Π1

M ×Π2
M , suppose

for this model the risk-sensitive cost criterion is Hζ1,ζ2
n (t, x) and the value function is

Hn(t, x) := sup
ζ1∈Π1

M

inf
ζ2∈Π2

M

Hζ1,ζ2

n (t, x).

Then by Proposition 1, for each n ≥ 1, we get a unique ψn in C1
1,1([0, T̂ ])×S and (ζ∗1n , ζ∗2n ) ∈ Π1

SM×Π2
SM

satisfying

ψn(s, x)− eλg
+
n (x)
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=

 T̂

s
inf

η∈P(V (x))


λc+n (x, ζ

∗1
n (·|x, t), η)ψn(t, x) +



X
ψn(t, y)qn(dy|x, ζ∗1n (·|x, t), η)


dt

=

 T̂

s
sup

ϑ∈P(U(x))


λc+n (x, ϑ, ζ

∗2
n (·|x, t))ψn(t, x) +



X
ψn(t, y)qn(dy|x, ϑ, ζ∗2n (·|x, t))


dt

s ∈ [0, T̂ ], x ∈ X. (17)

Now, e2λ(T̂+1)c+n (x,u,v) ≤ M2W(x), e2λ(T̂+1)g+n (x) ≤ M2W(x) and ψn(T̂ , x) = eλg
+
n (x). Hence by Lemma

1, Theorem 2 and (17), we have

e−L1W(x) ≤ ψn(t, x) = sup
ζ1∈ΠM

1

Hζ1,ζ∗2n
n (t, x) ≤ L1W(x) ∀ n ≥ 1. (18)

Moreover, since ψn(t, x) ≥ 0, c+n−1(x, u, v) ≤ c+n (x, u, v), and g+n−1(t, x) ≤ g+n (x) ∀(x, u, v) ∈ K, using
(14), (15), (17) and Proposition 1, ∀x ∈ X and a.e. t, we obtain,




∂ψn

∂t (t, x) +


λc+n−1(x, ϑ, ζ

∗2
n (·|x, t))ψn(t, x) +



X
ψn(t, y)qn−1(dy|x, ϑ, ζ∗2n (·|x, t))



≤ 0 if x ∈ Xn−1

(19)

and



∂ψn

∂t (t, x) +


λc+n−1(x, ϑ, ζ

∗2
n (·|x, t))ψn(t, x) +



X
ψn(t, y)qn−1(dy|x, ϑ, ζ∗2n (·|x, t))



= ∂ψn

∂t (t, x) ≤ 0 if x /∈ Xn−1,
(20)

(for details see, Golui and Pal (2021b), Theorem 4.1, p. 24). So, for any ζ1 ∈ Π1
M , by Feynman-Kac

formula (similar proof as in Theorem 2), we get

Hζ1,ζ∗2n
n−1 (t, x) ≤ ψn(t, x).

Since ζ1 ∈ Π1
M is arbitrary

inf
ζ2∈Π2

M

sup
ζ1∈Π1

M

Hζ1,ζ2

n−1 (t, x) ≤ sup
ζ1∈Π1

M

Hζ1,ζ∗2n
n−1 (t, x) ≤ ψn(t, x). (21)

Also using (17) and Feynman-Kac formula (similar proof as in Theorem 2), we have

sup
ζ1∈Π1

M

inf
ζ2∈Π2

M

Hζ1,ζ2

n−1 (t, x) = inf
ζ2∈Π2

M

sup
ζ1∈Π1

M

Hζ1,ζ2

n−1 (t, x) = ψn−1(t, x). (22)

From (21) and (22), we obtain ψn−1(t, x) ≤ ψn(t, x). Also, since ψn has an upper bound, limn→∞ ψn

exists. Let

lim
n→∞

ψn(t, x) := ψ(t, x) ∀t ∈ [0, T̂ ], ∀x ∈ X. (23)

Next by Lemma 1, we get
|ψ(t, x)| ≤ L1W(x) ∀t ∈ [0, T̂ ]. (24)

Let

In(t, x) := sup
ϑ∈P(Un(x))

inf
η∈P(Vn(x))


λc+n (x, ϑ, η)ψn(t, x) +



X
ψn(t, y)qn(dy|x, ϑ, η)


,

∀t ∈ [0, T̂ ], ∀x ∈ X.

Then, applying Fan’s minimax theorem, Fan, (1953), we obtain

In(t, x) := inf
η∈P(Vn(x))

sup
ϑ∈P(Un(x))


λc+n (x, ϑ, η)ψn(t, x) +



X
ψn(t, y)qn(dy|x, ϑ, η)


,
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∀t ∈ [0, T̂ ], ∀x ∈ X.

Then, by Assumptions 1 and 2 and the fact that λ ≤ 1, we get the following result

|In(t, x)| ≤ L1

(
M2W2(x) + (b1 + ρ1)W2(x) + 2M1W2(x)

)

≤ L1M3W1(x)(M2 + b1 + ρ1 + 2M1) =: R(x), (t, x) ∈ [0, T̂ ]×X. (25)

Let

I(t, x) := sup
ϑ∈P(U(x))

inf
η∈P(V (x))

[
λc(x, ϑ, η)ψ(t, x) +

∫

X
ψ(t, y)q(dy|x, ϑ, η)

]
,

∀t ∈ [0, T̂ ], ∀x ∈ X.

Hence in view of Fan’s minimax theorem, Fan, (1953), we obtain

I(t, x) := inf
η∈P(V (x))

sup
ϑ∈P(U(x))

[
λc(x, ϑ, η)ψ(t, x) +

∫

X
ψ(t, y)q(dy|x, ϑ, η)

]
,

∀t ∈ [0, T̂ ], ∀x ∈ X.

We next prove that for each fixed x ∈ X and t ∈ [0, T̂ ], along some suitable subsequence of {n}
(if necessary), limn→∞ In(t, x) = I(t, x). Now, using Assumption 3, the functions c(x, ϑ, η) and∫
X q(dy|x, ϑ, η)ψn(t, y) are continuous on P(U(x)) × P(V (x)) for each x ∈ X. So, we find a se-

quence of pair of measurable functions (ϑ∗
n, η

∗
n) ∈ P(U(x))× P(V (x)) such that

In(t, x) : = inf
η∈P(V (x))

[
λc+n (x, ϑ

∗
n, η)ψn(t, x) +

∫

X
ψn(t, y)qn(dy|x, ϑ∗

n, η)

]

= sup
ϑ∈P(U(x))

[
λc+n (x, ϑ, η

∗
n)ψn(t, x) +

∫

X
ψn(t, y)qn(dy|x, ϑ, η∗n)

]
. (26)

Now, P(U(x)) and P(V (x)) are compact. So, there exists a subsequences (here, we take the same
sequence for simplicity) that ϑ∗

n → ϑ∗ and η∗n → η∗ as n → ∞ for some (ϑ∗, η∗) ∈ P(U(x))× P(V (x)).

Taking n → ∞ in (26), by the generalized version of Fatou’s lemma Feinberge et al. (2014),
Hernandez-Lerma and Lasserre (1999), Lemma 8.3.7, for arbitrarily fixed ϑ ∈ P(U(x)), we have

lim inf
n→∞

In(t, x) ≥
[
λc(x, ϑ, η∗)ψ(t, x) +

∫

X
ψ(t, y)q(dy|x, ϑ, η∗)

]
.

Since ϑ ∈ P(U(x)) is arbitrary,

lim inf
n→∞

In(t, x) ≥ sup
ϑ∈P(U(x))

[
λc(x, ϑ, η∗)ψ(t, x) +

∫

X
ψ(t, y)q(dy|x, ϑ, η∗)

]

≥ inf
η∈P(V (x))

sup
ϑ∈P(U(x))

[
λc(x, ϑ, η)ψ(t, x) +

∫

X
ψ(t, y)q(dy|x, ϑ, η)

]
. (27)

Using analogous arguments from (26), by the generalized version of Fatou’s Lemma, Feinberge et al.
(2014), Hernandez-Lerma and lasserre (1999), Lemma 8.3.7, we have

lim sup
n→∞

In(t, x) ≤ sup
ϑ∈P(U(x))

inf
η∈P(V (x))

[
λc(x, ϑ, η)ψ(t, x) +

∫

X
ψ(t, y)q(dy|x, ϑ, η)

]
. (28)

So, by (27) and (28), we get

lim
n→∞

In(t, x) = I(t, x) ∀t ∈ [0, T̂ ], ∀x ∈ X. (29)
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=

 T̂

s
inf

η∈P(V (x))


λc+n (x, ζ

∗1
n (·|x, t), η)ψn(t, x) +



X
ψn(t, y)qn(dy|x, ζ∗1n (·|x, t), η)


dt

=

 T̂

s
sup

ϑ∈P(U(x))


λc+n (x, ϑ, ζ

∗2
n (·|x, t))ψn(t, x) +



X
ψn(t, y)qn(dy|x, ϑ, ζ∗2n (·|x, t))


dt

s ∈ [0, T̂ ], x ∈ X. (17)

Now, e2λ(T̂+1)c+n (x,u,v) ≤ M2W(x), e2λ(T̂+1)g+n (x) ≤ M2W(x) and ψn(T̂ , x) = eλg
+
n (x). Hence by Lemma

1, Theorem 2 and (17), we have

e−L1W(x) ≤ ψn(t, x) = sup
ζ1∈ΠM

1

Hζ1,ζ∗2n
n (t, x) ≤ L1W(x) ∀ n ≥ 1. (18)

Moreover, since ψn(t, x) ≥ 0, c+n−1(x, u, v) ≤ c+n (x, u, v), and g+n−1(t, x) ≤ g+n (x) ∀(x, u, v) ∈ K, using
(14), (15), (17) and Proposition 1, ∀x ∈ X and a.e. t, we obtain,




∂ψn

∂t (t, x) +


λc+n−1(x, ϑ, ζ

∗2
n (·|x, t))ψn(t, x) +



X
ψn(t, y)qn−1(dy|x, ϑ, ζ∗2n (·|x, t))



≤ 0 if x ∈ Xn−1

(19)

and



∂ψn

∂t (t, x) +


λc+n−1(x, ϑ, ζ

∗2
n (·|x, t))ψn(t, x) +



X
ψn(t, y)qn−1(dy|x, ϑ, ζ∗2n (·|x, t))



= ∂ψn

∂t (t, x) ≤ 0 if x /∈ Xn−1,
(20)

(for details see, Golui and Pal (2021b), Theorem 4.1, p. 24). So, for any ζ1 ∈ Π1
M , by Feynman-Kac

formula (similar proof as in Theorem 2), we get

Hζ1,ζ∗2n
n−1 (t, x) ≤ ψn(t, x).

Since ζ1 ∈ Π1
M is arbitrary

inf
ζ2∈Π2

M

sup
ζ1∈Π1

M

Hζ1,ζ2

n−1 (t, x) ≤ sup
ζ1∈Π1

M

Hζ1,ζ∗2n
n−1 (t, x) ≤ ψn(t, x). (21)

Also using (17) and Feynman-Kac formula (similar proof as in Theorem 2), we have

sup
ζ1∈Π1

M

inf
ζ2∈Π2

M

Hζ1,ζ2

n−1 (t, x) = inf
ζ2∈Π2

M

sup
ζ1∈Π1

M

Hζ1,ζ2

n−1 (t, x) = ψn−1(t, x). (22)

From (21) and (22), we obtain ψn−1(t, x) ≤ ψn(t, x). Also, since ψn has an upper bound, limn→∞ ψn

exists. Let

lim
n→∞

ψn(t, x) := ψ(t, x) ∀t ∈ [0, T̂ ], ∀x ∈ X. (23)

Next by Lemma 1, we get
|ψ(t, x)| ≤ L1W(x) ∀t ∈ [0, T̂ ]. (24)

Let

In(t, x) := sup
ϑ∈P(Un(x))

inf
η∈P(Vn(x))


λc+n (x, ϑ, η)ψn(t, x) +



X
ψn(t, y)qn(dy|x, ϑ, η)


,

∀t ∈ [0, T̂ ], ∀x ∈ X.

Then, applying Fan’s minimax theorem, Fan, (1953), we obtain

In(t, x) := inf
η∈P(Vn(x))

sup
ϑ∈P(Un(x))


λc+n (x, ϑ, η)ψn(t, x) +



X
ψn(t, y)qn(dy|x, ϑ, η)


,
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∀t ∈ [0, T̂ ], ∀x ∈ X.

Then, by Assumptions 1 and 2 and the fact that λ ≤ 1, we get the following result

|In(t, x)| ≤ L1

(
M2W2(x) + (b1 + ρ1)W2(x) + 2M1W2(x)

)

≤ L1M3W1(x)(M2 + b1 + ρ1 + 2M1) =: R(x), (t, x) ∈ [0, T̂ ]×X. (25)

Let

I(t, x) := sup
ϑ∈P(U(x))

inf
η∈P(V (x))

[
λc(x, ϑ, η)ψ(t, x) +

∫

X
ψ(t, y)q(dy|x, ϑ, η)

]
,

∀t ∈ [0, T̂ ], ∀x ∈ X.

Hence in view of Fan’s minimax theorem, Fan, (1953), we obtain

I(t, x) := inf
η∈P(V (x))

sup
ϑ∈P(U(x))

[
λc(x, ϑ, η)ψ(t, x) +

∫

X
ψ(t, y)q(dy|x, ϑ, η)

]
,

∀t ∈ [0, T̂ ], ∀x ∈ X.

We next prove that for each fixed x ∈ X and t ∈ [0, T̂ ], along some suitable subsequence of {n}
(if necessary), limn→∞ In(t, x) = I(t, x). Now, using Assumption 3, the functions c(x, ϑ, η) and∫
X q(dy|x, ϑ, η)ψn(t, y) are continuous on P(U(x)) × P(V (x)) for each x ∈ X. So, we find a se-

quence of pair of measurable functions (ϑ∗
n, η

∗
n) ∈ P(U(x))× P(V (x)) such that

In(t, x) : = inf
η∈P(V (x))

[
λc+n (x, ϑ

∗
n, η)ψn(t, x) +

∫

X
ψn(t, y)qn(dy|x, ϑ∗

n, η)

]

= sup
ϑ∈P(U(x))

[
λc+n (x, ϑ, η

∗
n)ψn(t, x) +

∫

X
ψn(t, y)qn(dy|x, ϑ, η∗n)

]
. (26)

Now, P(U(x)) and P(V (x)) are compact. So, there exists a subsequences (here, we take the same
sequence for simplicity) that ϑ∗

n → ϑ∗ and η∗n → η∗ as n → ∞ for some (ϑ∗, η∗) ∈ P(U(x))× P(V (x)).

Taking n → ∞ in (26), by the generalized version of Fatou’s lemma Feinberge et al. (2014),
Hernandez-Lerma and Lasserre (1999), Lemma 8.3.7, for arbitrarily fixed ϑ ∈ P(U(x)), we have

lim inf
n→∞

In(t, x) ≥
[
λc(x, ϑ, η∗)ψ(t, x) +

∫

X
ψ(t, y)q(dy|x, ϑ, η∗)

]
.

Since ϑ ∈ P(U(x)) is arbitrary,

lim inf
n→∞

In(t, x) ≥ sup
ϑ∈P(U(x))

[
λc(x, ϑ, η∗)ψ(t, x) +

∫

X
ψ(t, y)q(dy|x, ϑ, η∗)

]

≥ inf
η∈P(V (x))

sup
ϑ∈P(U(x))

[
λc(x, ϑ, η)ψ(t, x) +

∫

X
ψ(t, y)q(dy|x, ϑ, η)

]
. (27)

Using analogous arguments from (26), by the generalized version of Fatou’s Lemma, Feinberge et al.
(2014), Hernandez-Lerma and lasserre (1999), Lemma 8.3.7, we have

lim sup
n→∞

In(t, x) ≤ sup
ϑ∈P(U(x))

inf
η∈P(V (x))

[
λc(x, ϑ, η)ψ(t, x) +

∫

X
ψ(t, y)q(dy|x, ϑ, η)

]
. (28)

So, by (27) and (28), we get

lim
n→∞

In(t, x) = I(t, x) ∀t ∈ [0, T̂ ], ∀x ∈ X. (29)
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Since limn→∞ ψn(t, x) = ψ(t, x) and ∀t ∈ [0, T̂ ], ∀x ∈ X, in view of (29) and the dominated convergent
theorem (since |In(t, x)| ≤ R(x)), taking limit n → ∞ in (17), we say that ψ satisfies first two equations
(E1 and E2) of (6) and hence ψ(·, x) is differentiable almost everywhere on [0, T̂ ], see Athreya (2006),
Theorem 4.4.1. Again, by the analogous arguments as in (25), we obtain

∣∣∣∣
∂ψ(t, x)

∂t

∣∣∣∣ = |I(t, x)| ≤ R(x), ∀t ∈ [0, T̂ ], ∀x ∈ X.

Therefore, we see that ψ ∈ C1
W,W1

([0, T̂ ]×X). Furthermore, using analogous arguments as in Proposition
1 (b), ψ is the unique solution of (6) satisfying (7) and (8) and hence saddle-point equilibrium exists.

Next we state the main optimal results that provide the proof of the existence of saddle point
equilibrium and game’s value when payoff rates are extended real valued functions.

Theorem 4. We grant Assumptions 1, 2 and 3. Then, the following claims are true.

(a) There exists a unique function ψ ∈ C1
W,W1

([0, T̂ ]×X) that satisfies first two equations (E1 and
E2) of (6).

(b) There exists a pair of strategies (ζ∗1, ζ∗2) ∈ Π1
SM ×Π2

SM that satisfies the equations (6), (7) and
(8) and hence this pair of strategies becomes a saddle-point equilibrium.

Proof. We only need prove part (a) since part (b) follows from Proposition 1 (b). Now, for each n ≥ 1,
define cn and gn on K as:

cn(x, u, v) := max{−n, c(x, u, v)}, gn(x) := max{−n, g(x)}

for each (x, u, v) ∈ K. Then limn→∞ cn(x, u, v) = c(x, u, v) and limn→∞ gn(x) = g(x). Define rn(x, u, v) :=
cn(x, u, v)+n and g̃n(x) := gn(x)+n. So, rn(x, u, v) ≥ 0 and g̃n(x) ≥ 0 for each n ≥ 1 and (x, u, v) ∈ K.
Now by Assumption 1, we have

−
ln

√
M2W(x)

λ(T̂ + 1)
≤ max

{
−n,−

ln
√
M2W(x)

λ(T̂ + 1)

}
≤ cn(x, u, v) ≤

ln
√

M2W(x)

λ(T̂ + 1)
(30)

and

−
ln

√
M2W(x)

λ(T̂ + 1)
≤ max

{
−n,−

ln
√
M2W(x)

λ(T̂ + 1)

}
≤ gn(x) ≤

ln
√

M2W(x)

λ(T̂ + 1)
. (31)

So, we have e2λ(T̂+1)rn(x,u,v) ≤ e2λ(T̂+1)nM2W(x) and e2λ(T̂+1)g̃n(x) ≤ e2λ(T̂+1)nM2W(x), ∀n ≥ 1 and
(x, u, v) ∈ K. Define a new model Rn := {X, U, V, (Un(x), Vn(x), x ∈ X), rn, g̃n, q}. Now for any
real-valued measurable functions ψ̃ and ϕ defined on K and [0, T̂ ]×X, respectively, define

H(s, x, ψ̃, ϕ) := sup
ζ1∈Π1

M

inf
ζ2∈Π2

M

Eζ1,ζ2

γ

[
exp

(
λ

∫ T̂

s
ψ̃(ξt, π

1
t , π

2
t )dt+ λϕ(ξT̂ )

)∣∣∣∣ξs = x

]
(32)

assuming that the integral exists. Now since rn ≥ 0, g̃n ≥ 0 and all Assumptions hold for the model Rn,
by Theorem 3, we have

− ∂H(s, x, rn, g̃n)

∂s

= sup
ϑ∈P(U(x))

inf
η∈P(V (x))

[
λrn(x, ϑ, ν)H(s, x, rn, g̃n) +

∫

X
H(s, y, rn, g̃n)q(dy|x, ϑ, η)

]

= inf
η∈P(V (x))

sup
ϑ∈P(U(x))

[
λrn(x, ϑ, ν)H(s, x, rn, g̃n) +

∫

X
H(s, y, rn, g̃n)q(dy|x, ϑ, η)

]
(33)
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for almost all s ∈ [0, T̂ ]. Now

H(s, x, rn, g̃n) = H(s, x, cn + n, gn + n) = H(s, x, cn, gn)e
λ(T̂−s+1)n.

So, by (33), we can write for a.e. s ∈ [0, T̂ ],

−∂H(s, x, cn, gn)

∂s
= sup

ϑ∈P(U(x))
inf

η∈P(V (x))

[
λcn(x, ϑ, η)H(s, x, cn, gn) +

∫

X
H(s, y, cn, gn)q(dy|x, ϑ, η)

]

= inf
η∈P(V (x))

sup
ϑ∈P(U(x))

[
λcn(x, ϑ, η)H(s, x, cn, gn) +

∫

X
H(s, y, cn, gn)q(dy|x, ϑ, η)

]
.

Hence

H(s, x, cn, gn)− eλgn(x)

=

∫ T̂

s
sup

ϑ∈P(U(x))
inf

η∈P(V (x))

[
λcn(x, ϑ, η)H(t, x, cn, gn) +

∫

X
H(t, y, cn, gn)q(dy|x, ϑ, η)

]
dt

=

∫ T̂

s
inf

η∈P(V (x))
sup

ϑ∈P(U(x))

[
λcn(x, ϑ, η)H(t, x, cn, gn) +

∫

X
H(t, y, cn, gn)q(dy|x, ϑ, η)

]
dt. (34)

Now by (34) and Lemma 1, we obtain

|H(t, x, cn, gn)| ≤ L1W(x) n ≥ 1. (35)

Now since cn(x, u, v) and gn(x) are non-increasing in n ≥ 1, hence its corresponding value function
H(t, x, cn, gn) is also non-increasing in n. Also by Lemma 1, we know that H(·, ·, cn, gn) has a lower
bound. So, limn→∞H(t, x, cn, gn) exists. Let limn→∞H(t, x, cn, gn) =: ψ(t, x), (t, x) ∈ [0, T̂ ]×X. Then
using analogous arguments as Theorem 4.1, and using the function H(t, x, cn, gn) in the place of the
function ψn(t, x) here, by (34), (35), Assumptions 1, and 2, we see that (a) is true.

The converse of Theorem 4 is given below.

Theorem 5. Under Assumptions 1, 2 and 3, suppose (ζ̂∗1, ζ̂∗2) ∈ Π1
SM × Π2

SM is a saddle-point
equilibria. Then (ζ̂∗1, ζ̂∗2) is a mini-max selector of eq. (6).

Proof. Using the definition of saddle-point equilibrium, we have

Hζ̂∗1,ζ̂∗2(0, x) = sup
ζ2∈Π2

Ad

inf
ζ1∈Π1

Ad

Hζ1,ζ2(0, x)

= inf
ζ1∈Π1

Ad

sup
ζ2∈Π2

Ad

Hζ1,ζ2(0, x) = sup
ζ2∈Π2

Ad

Hζ̂∗1,ζ2(0, x) = inf
ζ1∈Π1

Ad

Hζ1,ζ̂∗2(0, x). (36)

Now arguing as in Theorem 4, it follows that for ζ̂∗1 ∈ Π1
SM there exists a function ψ̃ ∈ C1

W,W1
([0, T̂ ]×X)

such that

ψ̃(s, x)− eλg(x)

=

∫ T̂

s
inf

η∈P(V (x))

[
λc(x, ζ̂∗1(·|x, t), η)ψ̃(t, x) +

∫

X
ψ̃(t, y)q(dy|x, ζ̂∗1(·|x, t), η)

]
dt

s ∈ [0, T̂ ], x ∈ X, (37)

satisfying

ψ̃(0, x) = inf
ζ2∈Π2

Ad

Hζ̂∗1,ζ2(0, x) (38)

and

ψ̃(t, x) = inf
ζ2∈Π2

m

Hζ̂∗1,ζ2(t, x). (39)

Then by (6), (36), (37), (38), (39), Theorem 2, Theorem 4, we say that ζ̂∗1 is outer maximizing selector
of (6). By analogous arguments, ζ̂∗2 is outer minimizing selector of (6).
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Since limn→∞ ψn(t, x) = ψ(t, x) and ∀t ∈ [0, T̂ ], ∀x ∈ X, in view of (29) and the dominated convergent
theorem (since |In(t, x)| ≤ R(x)), taking limit n → ∞ in (17), we say that ψ satisfies first two equations
(E1 and E2) of (6) and hence ψ(·, x) is differentiable almost everywhere on [0, T̂ ], see Athreya (2006),
Theorem 4.4.1. Again, by the analogous arguments as in (25), we obtain

∣∣∣∣
∂ψ(t, x)

∂t

∣∣∣∣ = |I(t, x)| ≤ R(x), ∀t ∈ [0, T̂ ], ∀x ∈ X.

Therefore, we see that ψ ∈ C1
W,W1

([0, T̂ ]×X). Furthermore, using analogous arguments as in Proposition
1 (b), ψ is the unique solution of (6) satisfying (7) and (8) and hence saddle-point equilibrium exists.

Next we state the main optimal results that provide the proof of the existence of saddle point
equilibrium and game’s value when payoff rates are extended real valued functions.

Theorem 4. We grant Assumptions 1, 2 and 3. Then, the following claims are true.

(a) There exists a unique function ψ ∈ C1
W,W1

([0, T̂ ]×X) that satisfies first two equations (E1 and
E2) of (6).

(b) There exists a pair of strategies (ζ∗1, ζ∗2) ∈ Π1
SM ×Π2

SM that satisfies the equations (6), (7) and
(8) and hence this pair of strategies becomes a saddle-point equilibrium.

Proof. We only need prove part (a) since part (b) follows from Proposition 1 (b). Now, for each n ≥ 1,
define cn and gn on K as:

cn(x, u, v) := max{−n, c(x, u, v)}, gn(x) := max{−n, g(x)}

for each (x, u, v) ∈ K. Then limn→∞ cn(x, u, v) = c(x, u, v) and limn→∞ gn(x) = g(x). Define rn(x, u, v) :=
cn(x, u, v)+n and g̃n(x) := gn(x)+n. So, rn(x, u, v) ≥ 0 and g̃n(x) ≥ 0 for each n ≥ 1 and (x, u, v) ∈ K.
Now by Assumption 1, we have

−
ln

√
M2W(x)

λ(T̂ + 1)
≤ max

{
−n,−

ln
√

M2W(x)

λ(T̂ + 1)

}
≤ cn(x, u, v) ≤

ln
√

M2W(x)

λ(T̂ + 1)
(30)

and

−
ln

√
M2W(x)

λ(T̂ + 1)
≤ max

{
−n,−

ln
√

M2W(x)

λ(T̂ + 1)

}
≤ gn(x) ≤

ln
√

M2W(x)

λ(T̂ + 1)
. (31)

So, we have e2λ(T̂+1)rn(x,u,v) ≤ e2λ(T̂+1)nM2W(x) and e2λ(T̂+1)g̃n(x) ≤ e2λ(T̂+1)nM2W(x), ∀n ≥ 1 and
(x, u, v) ∈ K. Define a new model Rn := {X, U, V, (Un(x), Vn(x), x ∈ X), rn, g̃n, q}. Now for any
real-valued measurable functions ψ̃ and ϕ defined on K and [0, T̂ ]×X, respectively, define

H(s, x, ψ̃, ϕ) := sup
ζ1∈Π1

M

inf
ζ2∈Π2

M

Eζ1,ζ2

γ

[
exp

(
λ

∫ T̂

s
ψ̃(ξt, π

1
t , π

2
t )dt+ λϕ(ξT̂ )

)∣∣∣∣ξs = x

]
(32)

assuming that the integral exists. Now since rn ≥ 0, g̃n ≥ 0 and all Assumptions hold for the model Rn,
by Theorem 3, we have

− ∂H(s, x, rn, g̃n)

∂s

= sup
ϑ∈P(U(x))

inf
η∈P(V (x))

[
λrn(x, ϑ, ν)H(s, x, rn, g̃n) +

∫

X
H(s, y, rn, g̃n)q(dy|x, ϑ, η)

]

= inf
η∈P(V (x))

sup
ϑ∈P(U(x))

[
λrn(x, ϑ, ν)H(s, x, rn, g̃n) +

∫

X
H(s, y, rn, g̃n)q(dy|x, ϑ, η)

]
(33)
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for almost all s ∈ [0, T̂ ]. Now

H(s, x, rn, g̃n) = H(s, x, cn + n, gn + n) = H(s, x, cn, gn)e
λ(T̂−s+1)n.

So, by (33), we can write for a.e. s ∈ [0, T̂ ],

−∂H(s, x, cn, gn)

∂s
= sup

ϑ∈P(U(x))
inf

η∈P(V (x))

[
λcn(x, ϑ, η)H(s, x, cn, gn) +

∫

X
H(s, y, cn, gn)q(dy|x, ϑ, η)

]

= inf
η∈P(V (x))

sup
ϑ∈P(U(x))

[
λcn(x, ϑ, η)H(s, x, cn, gn) +

∫

X
H(s, y, cn, gn)q(dy|x, ϑ, η)

]
.

Hence

H(s, x, cn, gn)− eλgn(x)

=

∫ T̂

s
sup

ϑ∈P(U(x))
inf

η∈P(V (x))

[
λcn(x, ϑ, η)H(t, x, cn, gn) +

∫

X
H(t, y, cn, gn)q(dy|x, ϑ, η)

]
dt

=

∫ T̂

s
inf

η∈P(V (x))
sup

ϑ∈P(U(x))

[
λcn(x, ϑ, η)H(t, x, cn, gn) +

∫

X
H(t, y, cn, gn)q(dy|x, ϑ, η)

]
dt. (34)

Now by (34) and Lemma 1, we obtain

|H(t, x, cn, gn)| ≤ L1W(x) n ≥ 1. (35)

Now since cn(x, u, v) and gn(x) are non-increasing in n ≥ 1, hence its corresponding value function
H(t, x, cn, gn) is also non-increasing in n. Also by Lemma 1, we know that H(·, ·, cn, gn) has a lower
bound. So, limn→∞H(t, x, cn, gn) exists. Let limn→∞H(t, x, cn, gn) =: ψ(t, x), (t, x) ∈ [0, T̂ ]×X. Then
using analogous arguments as Theorem 4.1, and using the function H(t, x, cn, gn) in the place of the
function ψn(t, x) here, by (34), (35), Assumptions 1, and 2, we see that (a) is true.

The converse of Theorem 4 is given below.

Theorem 5. Under Assumptions 1, 2 and 3, suppose (ζ̂∗1, ζ̂∗2) ∈ Π1
SM × Π2

SM is a saddle-point
equilibria. Then (ζ̂∗1, ζ̂∗2) is a mini-max selector of eq. (6).

Proof. Using the definition of saddle-point equilibrium, we have

Hζ̂∗1,ζ̂∗2(0, x) = sup
ζ2∈Π2

Ad

inf
ζ1∈Π1

Ad

Hζ1,ζ2(0, x)

= inf
ζ1∈Π1

Ad

sup
ζ2∈Π2

Ad

Hζ1,ζ2(0, x) = sup
ζ2∈Π2

Ad

Hζ̂∗1,ζ2(0, x) = inf
ζ1∈Π1

Ad

Hζ1,ζ̂∗2(0, x). (36)

Now arguing as in Theorem 4, it follows that for ζ̂∗1 ∈ Π1
SM there exists a function ψ̃ ∈ C1

W,W1
([0, T̂ ]×X)

such that

ψ̃(s, x)− eλg(x)

=

∫ T̂

s
inf

η∈P(V (x))

[
λc(x, ζ̂∗1(·|x, t), η)ψ̃(t, x) +

∫

X
ψ̃(t, y)q(dy|x, ζ̂∗1(·|x, t), η)

]
dt

s ∈ [0, T̂ ], x ∈ X, (37)

satisfying

ψ̃(0, x) = inf
ζ2∈Π2

Ad

Hζ̂∗1,ζ2(0, x) (38)

and

ψ̃(t, x) = inf
ζ2∈Π2

m

Hζ̂∗1,ζ2(t, x). (39)

Then by (6), (36), (37), (38), (39), Theorem 2, Theorem 4, we say that ζ̂∗1 is outer maximizing selector
of (6). By analogous arguments, ζ̂∗2 is outer minimizing selector of (6).
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5 EXAMPLE

This section is dedicated for an example to validate assumptions in this paper, where transition and
cost functions are not bounded.

Example 1. Consider a model of a zero-sum game as

G := {X, (U,U(x), x ∈ X), (V, V (x), x ∈ X), c(x, u, v), q(dy|x, u, v)}.

Suppose our state space is X = (−∞,∞) and transition rate is given by

q(D̂|x, u, v) = λ̂(x, a, b)

[ ∫

y∈D̂

1√
2πσ

e−
(y−x)2

2σ2 dy − δx(D̂)

]
, x ∈ X, D̂ ∈ B(X), (u, v) ∈ U(x)× V (x).

(40)

We take the following requirements to see if our model has a saddle-point equilibrium.

(I) U(x) and V (x) are compact subsets of the Borel spaces U and V , respectively, for each fixed
x ∈ X,.

(II) The payoff function c(x, u, v) and the rate function λ̂(x, u, v) are continuous on U(x)× V (x), for
each x ∈ S. Also, assume that e2λ(T̂+1)|c(x,u,v)| ≤ M2W(x), e2λ(T̂+1)|g(x)| ≤ M2W(x)
and 0 < sup(u,v)∈U(x)×V (x) λ̂(x, u, v) ≤ M0(x

2 + 1) for each (x, u, v) ∈ K.

Proposition 2. In view of conditions (I)-(II), Assumptions 1, 2, and 3 are satisfied by above controlled
system. Therefore, the existence of a saddle point equilibrium is proved by Theorem 4.

Proof. See Guo and Zhang (2019), Proposition 5.1.

6 CONCLUSIONS

A finite-time horizon dynamic zero-sum game with risk-sensitive cost criteria on a Borel state space
is studied. Here for each state x, the admissible action spaces (U(x) and V (x)) are compact metric
spaces and costs and transition rate functions are unbounded. Under certain assumptions, we have
solved the Shapley equation and have established a saddle point equilibrium.

Risk-sensitive non-zero-sum game with unbounded rates (costs and transition rates) over countable
state space was investigated in Wei (2019). It would be a challenging problem to study the same
problem on the Borel state space.
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