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ABSTRACT

This paper analyses a discrete-time (s, S) queueing inventory model with service time and back-order
in inventory. The arrival of customers is assumed to be the Bernoulli process. Service time follows a
geometric distribution. As soon as the inventory level reaches a pre-assigned level due to demands, an
order for replenishment is placed. Replenishment time also follows a geometric distribution. When the
inventory level reduces to zero due to the service of customers or non-replenishment of items, a maximum
of k customers are allowed in the system and the remaining customers are assumed to be completely lost
till the replenishment. Matrix-Analytic Method (MAM) is used to analyze the model. Stability conditions,
various performance measures of the system, waiting-time distribution and reorder-time distribution are
obtained. Numerical experiments are also incorporated.
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ABSTRACT

This paper analyses a discrete-time (s, S) queueing inventory model with service time and back-order
in inventory. The arrival of customers is assumed to be the Bernoulli process. Service time follows a
geometric distribution. As soon as the inventory level reaches a pre-assigned level due to demands, an
order for replenishment is placed. Replenishment time also follows a geometric distribution. When the
inventory level reduces to zero due to the service of customers or non-replenishment of items, a maximum
of k customers are allowed in the system and the remaining customers are assumed to be completely lost
till the replenishment. Matrix-Analytic Method (MAM) is used to analyze the model. Stability conditions,
various performance measures of the system, waiting-time distribution and reorder-time distribution are
obtained. Numerical experiments are also incorporated.
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1 INTRODUCTION

The first reported work on discrete-time queue was done by Meisling (Meisling1958). In that work, the
researcher analyzed a single-server queueing system in which interarrival time and service time are
geometrically distributed and as a limiting process, the results in a continuous system are derived. In
queueing inventory, stock out generates penalty costs due to the loss and disappointment of customers.
This will create perturbed demand and is considered in Schwartz (schwartz1966). Gross and Harris
(Gross1973) described the progress of an (s, S) inventory system with complete back-ordering and state-
dependent lead times. The arrival is assumed to be a Poisson process and the lead time depends on the
count of outstanding orders. Archibald (Archibald1981) discussed the continuous review (s, S) Policies
which minimize the average stationary cost in an inventory system with constant lead time, fixed order
cost, linear holding cost per unit time, linear penalty cost per unit short, discrete compound Poisson
demand, lost sales and back-ordering. Krishnamoorthy and Islam (Krishnamoorthy2004) analyzed an (s,
S) Inventory model where demands form a Poisson process. When the inventory level approaches zero
due to service, upcoming arrivals are transferred to a pool of finite capacity. Deepak et al. (Deepak2004)
considered a queueing system in which work gets postponed due to the finiteness of the buffer. When
the buffer of finite capacity is full, further demands are shifted to a pool of customers. A potential
customer discovers the full buffer, and will opt for the pool with some probability, or else it will be lost
forever.

Manuel (Manuel2007) analysed a continuous perishable (s, S) inventory model in which the arrival
is under a Markovian arrival process. The expiry of items in the stock and the lead time follow
independent exponential distributions. Demands that arrive during a period when the items are out of
stock enter either a pool of finite capacity or are lost forever. Sivakumar (Sivakumar2007) studied a
continuous perishable inventory model in which the demand is following a Markovian arrival process.
The inventoried items have lifetimes that are assumed to follow an exponential distribution. The
demands that occur during stock-out periods either enter a pool that has a finite capacity or leaves the
system. Any demand that arrives when the pool is full and the inventory level is zero, is also assumed
to be lost.

Sivakumar (Sivakumar2009) studied a continuous review perishable (s, S) inventory model in which
the arrival is in accordance with a Markovian arrival process. First In First Out discipline is used for
the selection of customers from the pool when the inventory level is above a pre-assigned positive value
N, which is at most the reorder level. The combined probability distribution of inventory level and the
number of demands, the system characteristics and expected total cost are obtained in the steady-state.
Sivakumar (Sivakumar2012) also considered a discrete-time inventory system in which demands follow
a Markovian arrival process. The replenishment of inventory is according to an (s, S) policy. The lead
time follows a phase-type distribution. The demands that take place in stock-out periods either enter
a pool or go away from the system with a pre-assigned probability. When the pool has no space and
the inventory level is dry, further demands that occur are considered to be lost. For a discussion of
discrete-time queueing models, one can refer to Alfa (Alfa2002,Alfa2001) and Meisling (Meisling1958).
The present paper generalizes a work reported in the Ph.D. thesis of Deepthi (Deepthi2013). The work
in this paper is analysed by using the Matrix-Analytic Method discussed in Neuts (Neuts1994).

The model in this paper has many applications in real-life situations. For instance, consider an
automobile showroom that accepts orders and delivers the vehicles whenever there are vehicles in stock.
Here the stock of vehicles can be considered inventory. If the items are exhausted due to service and
non-replenishment, orders of at most k are accepted and remaining demands are assumed to be lost.

The rest of the paper is organized as follows. Section 2 provides mathematical modeling and analysis.
The stability condition is derived in section 3. Steady-state probability vector and algorithmic analysis
are discussed in sections 4 and 5 respectively. Some relevant performance measures are included in
section 6. Section 7 analyses the waiting-time distribution of the potential customer. Reorder time
distribution is incorporated in section 8. Section 9 illustrates numerical experiments.

https://doi.org/10.17993/3cemp.2022.110250.50-62

2 Mathematical Modeling and Analysis

The following are the assumptions and notations used in this model.

Assumptions

(i) Inter-arrival times follow a geometric distribution with parameter p

(ii) Service time follows a geometric distribution with parameter q

(iii) Up to k customers are allowed in the system when the inventory level is zero

(iv) Lead time is geometrically distributed with parameter r

Notations

N(n) : Number of customers in queue at an epoch n

I(n) : Inventory level at the epoch n

Then {(N(n), I(n));n = 0, 1, 2, 3, ..} is a Discrete Time Markov Chain(DTMC) with state space
{(i, j); i ≥ 0, 0 < j ≤ S} ∪ {(i, 0) : 0 ≤ i ≤ k, }. Now, the transition probability matrix of the process
has the form

P =




0 1 2 3 . . . k − 1 k k + 1 k + 2 . . . .

0 C1 C0 0
1 B2 B1 B0

2 0 B2 B1 B0

3
...

...
...

. . . . . . . . .
k − 1 B2 B1 B0

k . B2 D1 D0

k + 1 D2 A1 A0
... K A2 A1 A0
... K A2 A1 A0
... K A2 A1 A0
...

...
. . . . . . . . .




where the blocks C0, C1, B0, B1, B2, D0, D1, D2,K,A0, A1, and A2 are given by

C0 =




0 1 . . . s s+ 1 . . . S

0 pr̄ pr
1 pr̄ pr
...

. . .
s pr̄ pr
s+ 1 p
...

. . .
S p




C1 =




0 1 . . . s s+ 1 . . . S

0 p̄r̄ p̄r
1 p̄r̄ p̄r
...

. . .
s p̄r̄ p̄r
s+ 1 p̄
...

. . .
S p̄



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1 INTRODUCTION

The first reported work on discrete-time queue was done by Meisling (Meisling1958). In that work, the
researcher analyzed a single-server queueing system in which interarrival time and service time are
geometrically distributed and as a limiting process, the results in a continuous system are derived. In
queueing inventory, stock out generates penalty costs due to the loss and disappointment of customers.
This will create perturbed demand and is considered in Schwartz (schwartz1966). Gross and Harris
(Gross1973) described the progress of an (s, S) inventory system with complete back-ordering and state-
dependent lead times. The arrival is assumed to be a Poisson process and the lead time depends on the
count of outstanding orders. Archibald (Archibald1981) discussed the continuous review (s, S) Policies
which minimize the average stationary cost in an inventory system with constant lead time, fixed order
cost, linear holding cost per unit time, linear penalty cost per unit short, discrete compound Poisson
demand, lost sales and back-ordering. Krishnamoorthy and Islam (Krishnamoorthy2004) analyzed an (s,
S) Inventory model where demands form a Poisson process. When the inventory level approaches zero
due to service, upcoming arrivals are transferred to a pool of finite capacity. Deepak et al. (Deepak2004)
considered a queueing system in which work gets postponed due to the finiteness of the buffer. When
the buffer of finite capacity is full, further demands are shifted to a pool of customers. A potential
customer discovers the full buffer, and will opt for the pool with some probability, or else it will be lost
forever.

Manuel (Manuel2007) analysed a continuous perishable (s, S) inventory model in which the arrival
is under a Markovian arrival process. The expiry of items in the stock and the lead time follow
independent exponential distributions. Demands that arrive during a period when the items are out of
stock enter either a pool of finite capacity or are lost forever. Sivakumar (Sivakumar2007) studied a
continuous perishable inventory model in which the demand is following a Markovian arrival process.
The inventoried items have lifetimes that are assumed to follow an exponential distribution. The
demands that occur during stock-out periods either enter a pool that has a finite capacity or leaves the
system. Any demand that arrives when the pool is full and the inventory level is zero, is also assumed
to be lost.

Sivakumar (Sivakumar2009) studied a continuous review perishable (s, S) inventory model in which
the arrival is in accordance with a Markovian arrival process. First In First Out discipline is used for
the selection of customers from the pool when the inventory level is above a pre-assigned positive value
N, which is at most the reorder level. The combined probability distribution of inventory level and the
number of demands, the system characteristics and expected total cost are obtained in the steady-state.
Sivakumar (Sivakumar2012) also considered a discrete-time inventory system in which demands follow
a Markovian arrival process. The replenishment of inventory is according to an (s, S) policy. The lead
time follows a phase-type distribution. The demands that take place in stock-out periods either enter
a pool or go away from the system with a pre-assigned probability. When the pool has no space and
the inventory level is dry, further demands that occur are considered to be lost. For a discussion of
discrete-time queueing models, one can refer to Alfa (Alfa2002,Alfa2001) and Meisling (Meisling1958).
The present paper generalizes a work reported in the Ph.D. thesis of Deepthi (Deepthi2013). The work
in this paper is analysed by using the Matrix-Analytic Method discussed in Neuts (Neuts1994).

The model in this paper has many applications in real-life situations. For instance, consider an
automobile showroom that accepts orders and delivers the vehicles whenever there are vehicles in stock.
Here the stock of vehicles can be considered inventory. If the items are exhausted due to service and
non-replenishment, orders of at most k are accepted and remaining demands are assumed to be lost.

The rest of the paper is organized as follows. Section 2 provides mathematical modeling and analysis.
The stability condition is derived in section 3. Steady-state probability vector and algorithmic analysis
are discussed in sections 4 and 5 respectively. Some relevant performance measures are included in
section 6. Section 7 analyses the waiting-time distribution of the potential customer. Reorder time
distribution is incorporated in section 8. Section 9 illustrates numerical experiments.
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2 Mathematical Modeling and Analysis

The following are the assumptions and notations used in this model.

Assumptions

(i) Inter-arrival times follow a geometric distribution with parameter p

(ii) Service time follows a geometric distribution with parameter q

(iii) Up to k customers are allowed in the system when the inventory level is zero

(iv) Lead time is geometrically distributed with parameter r

Notations

N(n) : Number of customers in queue at an epoch n

I(n) : Inventory level at the epoch n

Then {(N(n), I(n));n = 0, 1, 2, 3, ..} is a Discrete Time Markov Chain(DTMC) with state space
{(i, j); i ≥ 0, 0 < j ≤ S} ∪ {(i, 0) : 0 ≤ i ≤ k, }. Now, the transition probability matrix of the process
has the form

P =




0 1 2 3 . . . k − 1 k k + 1 k + 2 . . . .

0 C1 C0 0
1 B2 B1 B0

2 0 B2 B1 B0

3
...

...
...

. . . . . . . . .
k − 1 B2 B1 B0

k . B2 D1 D0

k + 1 D2 A1 A0
... K A2 A1 A0
... K A2 A1 A0
... K A2 A1 A0
...

...
. . . . . . . . .




where the blocks C0, C1, B0, B1, B2, D0, D1, D2,K,A0, A1, and A2 are given by

C0 =




0 1 . . . s s+ 1 . . . S

0 pr̄ pr
1 pr̄ pr
...

. . .
s pr̄ pr
s+ 1 p
...

. . .
S p




C1 =




0 1 . . . s s+ 1 . . . S

0 p̄r̄ p̄r
1 p̄r̄ p̄r
...

. . .
s p̄r̄ p̄r
s+ 1 p̄
...

. . .
S p̄



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B0 =




0 1 . . . s s+ 1 . . . S

0 pr̄ pr
1 pq̄r̄ pq̄r
...

. . .
s pq̄r̄ pq̄r
s+ 1 pq̄
...

. . .
S pq̄




B1 =




0 1 . . . s s+ 1 . . . S

0 p̄r̄ p̄r
1 pqr̄ p̄q̄r̄ p̄q̄r + pqr
...

. . .
s pqr̄ p̄q̄r̄ p̄q̄r + pqr
s+ 1 pq p̄q̄
...

. . .
S pq p̄q̄




B2 =




0 1 . . . s s+ 1 . . . S

0 0
1 p̄qr̄ p̄qr
...

. . .
s p̄qr̄ p̄qr
s+ 1 p̄q
...

. . .
S p̄q 0




D0 =




1 2 . . . s s+ 1 . . . S

0 0 0
1 pq̄r̄ pq̄r
...

. . .
s pq̄r̄ pq̄r
s+ 1 pq̄
...

. . .
S pq̄




D1 =




0 1 . . . s s+ 1 . . . S

0 r̄ r
1 pqr̄ p̄q̄r̄ p̄q̄r + pqr
...

. . .
s pqr̄ p̄q̄r̄ p̄q̄r + pqr
s+ 1 pq p̄q̄
...

. . .
S pq p̄q̄




https://doi.org/10.17993/3cemp.2022.110250.50-62

D2 =




0 1 . . . s s+ 1 . . . S

1 qr̄ qr
2 p̄qr̄ p̄qr
...

. . .
s+ 1 p̄qr̄ p̄qr
s+ 2 p̄q
...

. . .
S p̄q 0




K =




0 1 . . . s s+ 1 . . . S

1 qr̄ qr
2
...
s
s+ 1
...
S




A0 =




1 2 . . . s s+ 1 . . . S

1 pq̄r̄ pq̄r
2 pq̄r̄ pq̄r
...

. . .
s pq̄r̄ pq̄r
s+ 1 pq̄
...

. . .
S pq̄




A1 =




1 2 . . . s s+ 1 . . . S

1 p̄q̄r̄ p̄q̄r
2 pqr̄ p̄q̄r̄ p̄q̄r + pqr
...

. . . . . .
...

s pqr̄ p̄q̄r̄ p̄q̄r + pqr
s+ 1 pq p̄q̄
...

. . . . . .
S pq p̄q̄




A2 =




1 2 . . . s s+ 1 . . . S

1 0
2 p̄qr̄ p̄qr
...

. . .
...

s p̄qr̄ p̄qr
s+ 1 p̄q
...

. . .
S p̄q 0




3 STABILITY AND STEADY-STATE ANAYSIS

Theorem 1. The above Markov chain is stable if and only if p < q
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B0 =




0 1 . . . s s+ 1 . . . S

0 pr̄ pr
1 pq̄r̄ pq̄r
...

. . .
s pq̄r̄ pq̄r
s+ 1 pq̄
...

. . .
S pq̄




B1 =




0 1 . . . s s+ 1 . . . S

0 p̄r̄ p̄r
1 pqr̄ p̄q̄r̄ p̄q̄r + pqr
...

. . .
s pqr̄ p̄q̄r̄ p̄q̄r + pqr
s+ 1 pq p̄q̄
...

. . .
S pq p̄q̄




B2 =




0 1 . . . s s+ 1 . . . S

0 0
1 p̄qr̄ p̄qr
...

. . .
s p̄qr̄ p̄qr
s+ 1 p̄q
...

. . .
S p̄q 0




D0 =




1 2 . . . s s+ 1 . . . S

0 0 0
1 pq̄r̄ pq̄r
...

. . .
s pq̄r̄ pq̄r
s+ 1 pq̄
...

. . .
S pq̄




D1 =




0 1 . . . s s+ 1 . . . S

0 r̄ r
1 pqr̄ p̄q̄r̄ p̄q̄r + pqr
...

. . .
s pqr̄ p̄q̄r̄ p̄q̄r + pqr
s+ 1 pq p̄q̄
...

. . .
S pq p̄q̄



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D2 =




0 1 . . . s s+ 1 . . . S

1 qr̄ qr
2 p̄qr̄ p̄qr
...

. . .
s+ 1 p̄qr̄ p̄qr
s+ 2 p̄q
...

. . .
S p̄q 0




K =




0 1 . . . s s+ 1 . . . S

1 qr̄ qr
2
...
s
s+ 1
...
S




A0 =




1 2 . . . s s+ 1 . . . S

1 pq̄r̄ pq̄r
2 pq̄r̄ pq̄r
...

. . .
s pq̄r̄ pq̄r
s+ 1 pq̄
...

. . .
S pq̄




A1 =




1 2 . . . s s+ 1 . . . S

1 p̄q̄r̄ p̄q̄r
2 pqr̄ p̄q̄r̄ p̄q̄r + pqr
...

. . . . . .
...

s pqr̄ p̄q̄r̄ p̄q̄r + pqr
s+ 1 pq p̄q̄
...

. . . . . .
S pq p̄q̄




A2 =




1 2 . . . s s+ 1 . . . S

1 0
2 p̄qr̄ p̄qr
...

. . .
...

s p̄qr̄ p̄qr
s+ 1 p̄q
...

. . .
S p̄q 0




3 STABILITY AND STEADY-STATE ANAYSIS

Theorem 1. The above Markov chain is stable if and only if p < q
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Proof. Consider the matrix A = A0 +A1 +A2. Then

A =




1 . . . s s+ 1 . . . S

1 qr̄ q̄r̄ r
...

. . . . . .
s qr̄ q̄r̄ r
s+ 1 q q̄
...

. . . . . .
S q q̄




Let πbe the steady state probability vector of A.Then the given Markov chain is stable if and only
if π(A1 + 2A2)e > 1 ,where e is the column vector of ones of order S . On simplification, we get the
condition p < q.

STEADY STATE PROBABILITY VECTOR

Let x = (x0, x1, . . . , xk−1, xk, . . . ) be the steady state probability vector of P ,

where xi =


xi,j 0 ≤ i ≤ k, 0 ≤ j ≤ S
xi,j i > k, 1 ≤ j ≤ S

Under the stability condition, xi, for i ≥ k + 1, is given by

xk+1+r = xk+1R
r, r ≥ 0

where R is the least non-negative root of the equation

R2A2 +RA1 +A0 = R

with a value less than one for spectral radius. The vectors x0, x1, . . . , xk+1 are given by solving

x0C1 + x1B2 = x0

xJ−1B0 + xjB1 + xj+1B2 = xj ; (1 ≤ j ≤ k − 1)

xk−1B0 + xKD1 + xk+1[D2 +RK(I −R)−1] = xk

xkD0 + xk+1(A1 +RA2) = xk+1




(1)

subject to the normalizing condition


k
i=0

xi + xk+1(I −R)−1


e = 1 (2)

EVALUATION OF THE TRUNCATION MATRIX R

The rate matrix R is given by R = limn→∞Rn, where Rn+1 =
�
R2

nA2 +A0


(I − A1)

−1 and R0 = 0.
The iteration is usually stopped when | (Rn+1 −Rn) |ij< ϵ, ∀ i,j

COMPUTATION OF BOUNDARY PROBABILITIES

Now the system (1) can be solved using the block Gauss-Seidel iterative method. The vectors
x0, x1, . . . , xk+1s in the (n+ 1)th iteration are given by

x0(n+ 1) = x1(n)B2(I − C1)
−1

xi(n+ 1) = [xi+1(n)B2 + xi−1(n+ 1)B0](I −B1)
−1; (1 ≤ i ≤ k − 1)

xk(n+ 1) = (xk−1(n+ 1)B0 + xk+1(n)[D2 +RK(I −R)−1])[I −D1]
−1

xk+1(n+ 1) = xk(n+ 1)D0(I −A1 −RA2)
−1

Each iteration is subject to the normalizing condition (2).
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4 SYSTEM PERFORMANCE MEASURES

In order to consider some performance measures of the system under steady state, we take xi,0 = 0 for
i > k

(i) Expected level of inventory, ELI, is given by

ELI =

S∑
j=1

∞∑
i=0

jxi,j

(ii) Expected number of customers, EC, is obtained by

EC =
S∑

j=1

∞∑
i=0

ixi,j

(iii) Expected departure after completing the service, EDS is given by

EDS = q
∞∑
i=1

∞∑
j=1

xi,j

(iv) The Expected reorder rate, ERR, is given by

ERR = q

∞∑
i=1

xi,s+1

(v) Expected replenishment rate

ERR = r

s∑
j=0

∞∑
i=0

xi,j

(vi) Probability that the inventory level zero, PI0, is given by

PI0 =

∞∑
i=0

xi,0

(vii) Expected loss rate of customers

ELR = pxk0 + qr̄

∞∑
i=k+1

(i− k)xi+1,1

(viii) Expected number of demands waiting in the system during stock out period, EW0 is given by

EW0 =
k∑

i=1

ixi,0

(ix) Expected reordering quantity, ERQ is given by

ERQ =
s∑

j=0

(S − j)yj ,where yj is the probability that inventory level is j when

replenishment takes place
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Proof. Consider the matrix A = A0 +A1 +A2. Then

A =




1 . . . s s+ 1 . . . S

1 qr̄ q̄r̄ r
...

. . . . . .
s qr̄ q̄r̄ r
s+ 1 q q̄
...

. . . . . .
S q q̄




Let πbe the steady state probability vector of A.Then the given Markov chain is stable if and only
if π(A1 + 2A2)e > 1 ,where e is the column vector of ones of order S . On simplification, we get the
condition p < q.

STEADY STATE PROBABILITY VECTOR

Let x = (x0, x1, . . . , xk−1, xk, . . . ) be the steady state probability vector of P ,

where xi =


xi,j 0 ≤ i ≤ k, 0 ≤ j ≤ S
xi,j i > k, 1 ≤ j ≤ S

Under the stability condition, xi, for i ≥ k + 1, is given by

xk+1+r = xk+1R
r, r ≥ 0

where R is the least non-negative root of the equation

R2A2 +RA1 +A0 = R

with a value less than one for spectral radius. The vectors x0, x1, . . . , xk+1 are given by solving

x0C1 + x1B2 = x0

xJ−1B0 + xjB1 + xj+1B2 = xj ; (1 ≤ j ≤ k − 1)

xk−1B0 + xKD1 + xk+1[D2 +RK(I −R)−1] = xk

xkD0 + xk+1(A1 +RA2) = xk+1




(1)

subject to the normalizing condition


k
i=0

xi + xk+1(I −R)−1


e = 1 (2)

EVALUATION OF THE TRUNCATION MATRIX R

The rate matrix R is given by R = limn→∞Rn, where Rn+1 =
�
R2

nA2 +A0


(I − A1)

−1 and R0 = 0.
The iteration is usually stopped when | (Rn+1 −Rn) |ij< ϵ, ∀ i,j

COMPUTATION OF BOUNDARY PROBABILITIES

Now the system (1) can be solved using the block Gauss-Seidel iterative method. The vectors
x0, x1, . . . , xk+1s in the (n+ 1)th iteration are given by

x0(n+ 1) = x1(n)B2(I − C1)
−1

xi(n+ 1) = [xi+1(n)B2 + xi−1(n+ 1)B0](I −B1)
−1; (1 ≤ i ≤ k − 1)

xk(n+ 1) = (xk−1(n+ 1)B0 + xk+1(n)[D2 +RK(I −R)−1])[I −D1]
−1

xk+1(n+ 1) = xk(n+ 1)D0(I −A1 −RA2)
−1

Each iteration is subject to the normalizing condition (2).
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4 SYSTEM PERFORMANCE MEASURES

In order to consider some performance measures of the system under steady state, we take xi,0 = 0 for
i > k

(i) Expected level of inventory, ELI, is given by

ELI =

S∑
j=1

∞∑
i=0

jxi,j

(ii) Expected number of customers, EC, is obtained by

EC =
S∑

j=1

∞∑
i=0

ixi,j

(iii) Expected departure after completing the service, EDS is given by

EDS = q
∞∑
i=1

∞∑
j=1

xi,j

(iv) The Expected reorder rate, ERR, is given by

ERR = q

∞∑
i=1

xi,s+1

(v) Expected replenishment rate

ERR = r

s∑
j=0

∞∑
i=0

xi,j

(vi) Probability that the inventory level zero, PI0, is given by

PI0 =

∞∑
i=0

xi,0

(vii) Expected loss rate of customers

ELR = pxk0 + qr̄

∞∑
i=k+1

(i− k)xi+1,1

(viii) Expected number of demands waiting in the system during stock out period, EW0 is given by

EW0 =
k∑

i=1

ixi,0

(ix) Expected reordering quantity, ERQ is given by

ERQ =
s∑

j=0

(S − j)yj ,where yj is the probability that inventory level is j when

replenishment takes place
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4.1 WAITING TIME DISTRIBUTION

Here we assume the queue discipline as First In First Out (FIFO). Let Vn be the number of customers
in the queue ahead of the arriving customer. Then ((Vn, I(n))n = 1, 2, . . . ) is a discrete-time Markov
process with state space
{(i, j), 0 ≤ i < ∞, 0 ≤ j ≤ S}, under the assumption that k is large. The transition probability matrix
is given by

P (Wq) =




1 0
t T1 0

T2 T1

. . . . . .
. . . . . .




, T1 =




r̄ r
q̄r̄ q̄r

. . .
...

q̄r̄ q̄r
q̄

. . .
q̄



(S+1)×(S+1)

,

T2 =




0 0
q̄r̄ q̄r

. . .
...

q̄r̄ q̄r
q̄

. . .
q̄ 0



(S+1)×(S+1)

t =




0
q
...
q



(S+1)×1

Suppose there are i customers in the system in front of an arriving customer and j number of items
in the inventory is available to the arriving customer. Let T be the waiting time in queue. Then the
upper limit for T with a certain probability is calculated as follows.

Consider zn = eij [P (Wq)]
n, where eij is infinite row vector whose (1 + i+ j + Si)th element is one

remaining entries are zeros. Then P (T ≤ n) = zn(1) ,the first entry of zn

4.2 REORDER TIME DISTRIBUTION

In this section, we calculate the average time taken to fall inventory from S to s. If the current inventory
level is s+ i, then re-order will takes place only when the service of i customers is completed. Note that
the distribution of time taken to reach inventory level to s from S is a discrete phase-type distribution
having (S − s)(S − s+ 3)/2 phases and the transition probability matrix given by

P ∗ =


1 0
t T



T=




s+ 1 s+ 2 . . . S −N − 1 S − 1 S

s+ 1 H1
1

s+ 2 H2
2 H2

1
...

. . . . . .
S −N − 1
S − 1 HS−s−1

2 HS−s−1
1

S HS−s
2 HS−s

1




where H i
1 =




0 1 . . . i− 1 i

0 p̄ p
1 p̄q̄ pq̄
...

. . . . . .

i− 1 pq̄ pq̄
i q




(i+1)×(i+1)
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H i
2 =




0 1 . . . i− 1

0 0 0
1 p̄q pq
...

. . . . . .

i− 1 p̄q pq
i q




(i+1)×i

and t=




0
q1
...
0



[(S−s)(S−s+3)/2]×1

Therefore expected time to fall the inventory level from S to s due to service is α(I − T )−11, where 1 is
the column vector of 1’s of order [(S − s)(S − s+ 3)/2]. If α is the [(S − s)(S − s+ 3)/2] row vector
whose [((S − s) ∗ (S − s+ 1) + 2) /2]th entry is 1 and remaining entries are zero, then expected time of
reorder is given by

ETR = α(I − T )−11

5 NUMERICAL EXPERIMENTS

5.1 COST FUNCTION

Define the expected total cost of the system per unit time as

ETC = C0ERO + C1(ERQ)(ERR) + C2(ELI) + C3(EW0) + C4(ELC)

where,

C0 : The setup cost/order
C1 : Procurement cost/unit
C2 : Holding cost of inventory/unit/unit time
C3 : Customers holding cost when inventory level is zero/customer/unit time
C4 : Cost due to loss of customers/unit/unit time

5.2 GRAPHICAL ILLUSTRATIONS

In this paper, we obtained various performance measures. The change in the parameters such as arrival
rate, service rate, replenishment rate, number of back-order, etc. may affect these performance measures.

Figures 1, 2, and 3 illustrate the variation of ETC with p, q and r by keeping all other parameters
constant as indicated in the figure. The optimum value of ETC is obtained at p = 0.5665 in figure 1,
q = 0.885 in figure 2 and r = 0.1175 in figure 3, corresponding optimum values of the expected total
cost are 13.5276, 13.4706 and 14.6625 and which are indicated in the figures 1, 2 and 3 respectively.

In figure 4, we analyzed the variation of ETW using the expression for expected waiting time(ETW )
that we derived in the above section. By varying q and r, we analysed the variations of ETW , assuming
that arriving customers find 10 customers ahead of him and the level of inventory 2. We can see that
ETW decreases with the increase of q and r.
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4.1 WAITING TIME DISTRIBUTION

Here we assume the queue discipline as First In First Out (FIFO). Let Vn be the number of customers
in the queue ahead of the arriving customer. Then ((Vn, I(n))n = 1, 2, . . . ) is a discrete-time Markov
process with state space
{(i, j), 0 ≤ i < ∞, 0 ≤ j ≤ S}, under the assumption that k is large. The transition probability matrix
is given by

P (Wq) =




1 0
t T1 0

T2 T1

. . . . . .
. . . . . .




, T1 =




r̄ r
q̄r̄ q̄r

. . .
...

q̄r̄ q̄r
q̄

. . .
q̄



(S+1)×(S+1)

,

T2 =




0 0
q̄r̄ q̄r

. . .
...

q̄r̄ q̄r
q̄

. . .
q̄ 0



(S+1)×(S+1)

t =




0
q
...
q



(S+1)×1

Suppose there are i customers in the system in front of an arriving customer and j number of items
in the inventory is available to the arriving customer. Let T be the waiting time in queue. Then the
upper limit for T with a certain probability is calculated as follows.

Consider zn = eij [P (Wq)]
n, where eij is infinite row vector whose (1 + i+ j + Si)th element is one

remaining entries are zeros. Then P (T ≤ n) = zn(1) ,the first entry of zn

4.2 REORDER TIME DISTRIBUTION

In this section, we calculate the average time taken to fall inventory from S to s. If the current inventory
level is s+ i, then re-order will takes place only when the service of i customers is completed. Note that
the distribution of time taken to reach inventory level to s from S is a discrete phase-type distribution
having (S − s)(S − s+ 3)/2 phases and the transition probability matrix given by

P ∗ =


1 0
t T



T=




s+ 1 s+ 2 . . . S −N − 1 S − 1 S

s+ 1 H1
1

s+ 2 H2
2 H2

1
...

. . . . . .
S −N − 1
S − 1 HS−s−1

2 HS−s−1
1

S HS−s
2 HS−s

1




where H i
1 =




0 1 . . . i− 1 i

0 p̄ p
1 p̄q̄ pq̄
...

. . . . . .

i− 1 pq̄ pq̄
i q




(i+1)×(i+1)
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H i
2 =




0 1 . . . i− 1

0 0 0
1 p̄q pq
...

. . . . . .

i− 1 p̄q pq
i q




(i+1)×i

and t=




0
q1
...
0



[(S−s)(S−s+3)/2]×1

Therefore expected time to fall the inventory level from S to s due to service is α(I − T )−11, where 1 is
the column vector of 1’s of order [(S − s)(S − s+ 3)/2]. If α is the [(S − s)(S − s+ 3)/2] row vector
whose [((S − s) ∗ (S − s+ 1) + 2) /2]th entry is 1 and remaining entries are zero, then expected time of
reorder is given by

ETR = α(I − T )−11

5 NUMERICAL EXPERIMENTS

5.1 COST FUNCTION

Define the expected total cost of the system per unit time as

ETC = C0ERO + C1(ERQ)(ERR) + C2(ELI) + C3(EW0) + C4(ELC)

where,

C0 : The setup cost/order
C1 : Procurement cost/unit
C2 : Holding cost of inventory/unit/unit time
C3 : Customers holding cost when inventory level is zero/customer/unit time
C4 : Cost due to loss of customers/unit/unit time

5.2 GRAPHICAL ILLUSTRATIONS

In this paper, we obtained various performance measures. The change in the parameters such as arrival
rate, service rate, replenishment rate, number of back-order, etc. may affect these performance measures.

Figures 1, 2, and 3 illustrate the variation of ETC with p, q and r by keeping all other parameters
constant as indicated in the figure. The optimum value of ETC is obtained at p = 0.5665 in figure 1,
q = 0.885 in figure 2 and r = 0.1175 in figure 3, corresponding optimum values of the expected total
cost are 13.5276, 13.4706 and 14.6625 and which are indicated in the figures 1, 2 and 3 respectively.

In figure 4, we analyzed the variation of ETW using the expression for expected waiting time(ETW )
that we derived in the above section. By varying q and r, we analysed the variations of ETW , assuming
that arriving customers find 10 customers ahead of him and the level of inventory 2. We can see that
ETW decreases with the increase of q and r.
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S = 20; s = 12; k = 6; ci = 1 for 0 ≤ i ≤ 4; q = 0.6; r = 0.1

p

0.48 0.5 0.52 0.54 0.56 0.58 0.6

E
T

C

13.525

13.53

13.535

13.54

13.545

13.55

13.555

13.56

13.565

13.57

p: 0.5665

ETC: 13.5276

Figure 1 – Variation of expected total cost with p

S = 20; s = 12; k = 6; ci = 1, for 0 ≤ i ≤ 4; p = 0.4; r = 0.r

q

0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9 0.91 0.92 0.93

E
T

C

13.47

13.475

13.48

13.485

13.49

13.495

13.5

q: 0.885

ETC: 13.4706

Figure 2 – Variation of expected total cost with q
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S = 20; s = 12; c0 = c1 = c2 = 1c3 = 5; c4 = 5; q = 0.7; p = 0.6;

r
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E
T
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r: 0.1175

ETC: 14.6625

Figure 3 – Variation of expected total cost with r
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CONCLUSIONS

In this paper, the attempt was to analyze a discrete-time inventory model with service time and
back-order in inventory. Stability condition, waiting time distribution and reorder time distribution are
analyzed. Numerical experiments are incorporated into the model to highlight the effect of variation
in system parameters. The work can be further extended by considering the Discrete Markov Arrival
Process(DMAP) and discrete phase type service distribution.
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