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ABSTRACT

This article examines a two-commodity continuous review perishable inventory system. The demands
are arrived at for each product by independent Markovian arrival processes (MAP). Lifetimes follow an
exponential distribution. The commodities are assumed to be substitutable. If both commodities have
reached zero, demand is backlogged up to predetermined levels. This article’s novelty has been a local
purchase, which is made to clear the backlog instantaneously when demand reaches a predetermined level.
In the steady-state, the joint probability distribution of inventory levels of both commodities is obtained.
Several metrics of system performance in steady-state are derived and also provided as numerical
examples to explain the optimum values of the system’s parameters.
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1 INTRODUCTION

Over the last few decades, researchers have been fascinated with the study of a two-commodity inventory
system. It has more importance because these systems are more sophisticated than single commodity
inventory systems due to the large number of items held and their coordinated behaviors. Also, many
organisations have increasingly used multi-commodity inventory systems. However, the correlation of
the reorder points for each item is the major challenge in multi-product inventory systems. Unlike
systems that deal with a single commodity, the reordering methods in these systems are more com-
plicated. So, replenishment orders for groups of products must be well coordinated. Initially, research
focused on inventory models with independently defined reorder points. The individual ordering policy
includes calculating the best order quantity and reordering duration for each item. This ordering policy
implementation provides the system with significant flexibility in picking the appropriate inventory
models for each item and separately modifying the policy. However, joint ordering policies are preferred
over individual ordering policies when the products share the same storage space and transportation
facilities. Joint replenishment has several advantages because the joint ordering policy allows for the
simultaneous replenishment of several commodities, quantity discounts, and significant savings in
ordering and purchasing expenses. The joint replenishment was proposed by Balintfy and developed by
Silver. More details about joint replenishment can be seen in Anbazhagan et al. (2012, 2015), Senthil
Kumar, and Sivakumar. Various models with two-commodity readers can read in Anbazhagan and
Arivarignan, Benny et al., Krishnamoorthy et al., and Ozkar et al.

In the earlier literature on inventory systems, it has generally been recognized that inventory models
built under the presumption of a product’s lifetime being indefinite until its storage, i.e., an item once
placed in a storeroom stays unmodified and entirely functional for supplying future demand. However,
this is not the case. When constructing inventory models, one aspect for consideration is an item’s
perishability, as commodities do not necessarily retain their properties when held for future use. In
general, perishability is the outcome of stock depletion, which consists of obsolescence, breakage, decay,
losing usefulness, and many other factors. Some examples of perishable objects are meals, evaporative
fluids, chemicals, drugs, and radioactive substances. For more details about perishable product readers
can refer Karthikeyan and Sudesh, Nahmias, Sivakumar et al., Smrutirekha Debataa et al., Umay and
Bahar, Yadavalli et al. (2010, 2015), Zhang et al.

Several research articles examine inventory systems in which required products are directly provided
from stock if the item is available. Demand that appears during stock-out times results in either lost
sales or a backlog (demand satisfied immediately after the arrival of ordered items). Initially, it is
believed that there is a total backlog of unfilled demand. In actuality, many customers are willing to
wait until the end of the shortage period to pick up their orders, while others are not. As a result, it is
presumed that any predefined quantity of demand (partial backlog) that appeared during the stock-out
time is satisfied. For more details about backlog concept readers an refer Adak Sudip and Mahapatra,
Cárdenas-Barrón Leopoldo et al., Khan et al., Kurt et al., San José et al., Stanley et al. and Tai et al.
Generally, customer satisfaction generates a lot of profit for the system. So the shopkeeper does the
maximum amount of work to satisfy the customers. In a practical situation, the local purchase is made
by the shopkeeper when the shop runs out of stock and that item’s replenishment has been delayed.
We can see this act in clothing stores, supermarkets, and all the retailers’ shops.

In this article we assume that demands during the stock-out periods are backlogged. We further
assume that when the number of backlogged demands reaches a prefixed level a local purchase is
made to clear the backlog instantaneously so that the inventory level of the corresponding commodity
becomes zero. In the following sections, We have obtained the joint probability distribution for the
inventory levels of both commodities in the steady state case in section 3. Various system performance
measures in the steady state are derived in section 4 and the cost analysis and the results are illustrated
numerically in section 5 and 6.
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1 INTRODUCTION

Over the last few decades, researchers have been fascinated with the study of a two-commodity inventory
system. It has more importance because these systems are more sophisticated than single commodity
inventory systems due to the large number of items held and their coordinated behaviors. Also, many
organisations have increasingly used multi-commodity inventory systems. However, the correlation of
the reorder points for each item is the major challenge in multi-product inventory systems. Unlike
systems that deal with a single commodity, the reordering methods in these systems are more com-
plicated. So, replenishment orders for groups of products must be well coordinated. Initially, research
focused on inventory models with independently defined reorder points. The individual ordering policy
includes calculating the best order quantity and reordering duration for each item. This ordering policy
implementation provides the system with significant flexibility in picking the appropriate inventory
models for each item and separately modifying the policy. However, joint ordering policies are preferred
over individual ordering policies when the products share the same storage space and transportation
facilities. Joint replenishment has several advantages because the joint ordering policy allows for the
simultaneous replenishment of several commodities, quantity discounts, and significant savings in
ordering and purchasing expenses. The joint replenishment was proposed by Balintfy and developed by
Silver. More details about joint replenishment can be seen in Anbazhagan et al. (2012, 2015), Senthil
Kumar, and Sivakumar. Various models with two-commodity readers can read in Anbazhagan and
Arivarignan, Benny et al., Krishnamoorthy et al., and Ozkar et al.

In the earlier literature on inventory systems, it has generally been recognized that inventory models
built under the presumption of a product’s lifetime being indefinite until its storage, i.e., an item once
placed in a storeroom stays unmodified and entirely functional for supplying future demand. However,
this is not the case. When constructing inventory models, one aspect for consideration is an item’s
perishability, as commodities do not necessarily retain their properties when held for future use. In
general, perishability is the outcome of stock depletion, which consists of obsolescence, breakage, decay,
losing usefulness, and many other factors. Some examples of perishable objects are meals, evaporative
fluids, chemicals, drugs, and radioactive substances. For more details about perishable product readers
can refer Karthikeyan and Sudesh, Nahmias, Sivakumar et al., Smrutirekha Debataa et al., Umay and
Bahar, Yadavalli et al. (2010, 2015), Zhang et al.

Several research articles examine inventory systems in which required products are directly provided
from stock if the item is available. Demand that appears during stock-out times results in either lost
sales or a backlog (demand satisfied immediately after the arrival of ordered items). Initially, it is
believed that there is a total backlog of unfilled demand. In actuality, many customers are willing to
wait until the end of the shortage period to pick up their orders, while others are not. As a result, it is
presumed that any predefined quantity of demand (partial backlog) that appeared during the stock-out
time is satisfied. For more details about backlog concept readers an refer Adak Sudip and Mahapatra,
Cárdenas-Barrón Leopoldo et al., Khan et al., Kurt et al., San José et al., Stanley et al. and Tai et al.
Generally, customer satisfaction generates a lot of profit for the system. So the shopkeeper does the
maximum amount of work to satisfy the customers. In a practical situation, the local purchase is made
by the shopkeeper when the shop runs out of stock and that item’s replenishment has been delayed.
We can see this act in clothing stores, supermarkets, and all the retailers’ shops.

In this article we assume that demands during the stock-out periods are backlogged. We further
assume that when the number of backlogged demands reaches a prefixed level a local purchase is
made to clear the backlog instantaneously so that the inventory level of the corresponding commodity
becomes zero. In the following sections, We have obtained the joint probability distribution for the
inventory levels of both commodities in the steady state case in section 3. Various system performance
measures in the steady state are derived in section 4 and the cost analysis and the results are illustrated
numerically in section 5 and 6.
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2 THE MODEL

We consider a two-commodity inventory system with the maximum capacity Si units for i−th commodity
(i = 1, 2). The demands for i−th commodity is of unit size. The demands for commodity-1 arrive
according to a Markovian arrival process (MAP) with representation (D0, D1) where D’s are of order
m1 ×m1. The underlying Markov chain J1(t) of the MAP has the generator D(= D0 +D1) and a
stationary row vector λ1 of length m1. Independently of this process, demands for commodity-2 arrive
according to a MAP with representation (F0, F1) where F ’s are of order m2 ×m2. The underlying
Markov chain J2(t) of this MAP has the generator F (= F0 + F1) and a stationary row vector λ2 of
length m2. The items are perishable in nature. The life time of each commodity is assumed to be
distributed as exponential with parameter γi, (i = 1, 2). The two-commodities serve as substitute for
each other, that is, a demand for a commodity that is sold out, is satisfied with the other commodity
when still in stock. If both the commodities are out of stock, any arriving demands are backlogged. The
backlog is allowed up to the level Ni(< ∞) for the i−th commodity (i = 1, 2). Whenever the backlog
level reaches Ni, (i = 1, 2) an order for Ni items is placed which is replenished instantaneously. The
reorder level for the i-th commodity is fixed at si(1 ≤ si ≤ Si) with an ordering quantity for the i-th
commodity is Qi(= Si−si > si+Ni+1) items when both inventory levels are less than or equal to their
respective reorder levels. The requirement Si − si > si +Ni + 1 ensures that after the replenishment
the inventory levels of both commodities will be always above the respective reorder levels; otherwise
it may not be possible to place reorder (according to this policy) which leads to perpetual shortage.
More explicitly if Li(t) represents inventory level of i-th commodity at time t, then a reorder for both
commodities is made when L1(t) ≤ s1 and L2(t) ≤ s2. The lead time is assumed to be distributed as
negative exponential with parameter β(> 0).

Notations

[A]ij : The element/submatrix at (i, j)-th position of A.
0 : Zero matrix.
I : An identity matrix.
Ik : An identity matrix of order k.
A⊗B : Kronecker product of matrices A and B.
A⊕B : Kronecker sum of matrices A and B.
e : A column vector of 1′s of appropriate dimension.

3 ANALYSIS

From the assumptions made on the input and output processes it can be shown that the quadruple
(L1, L2, J1, J2) = {(L1(t), L2(t), J1(t), J2(t)), t ≥ 0} is a Markov process with state space given by

E = {(i, k, j1, j2)|i = 1, 2, . . . , S1, k = 0, 1, . . . , S2, j1 = 1, 2, . . . ,m1, j2 = 1, 2, . . . ,m2}
∪{(i, k, j1, j2)|i = 0, k = −(N2 − 1),−(N2 − 2), . . . , S2, j1 = 1, 2, . . . ,m1, j2 = 1, 2, . . . ,m2}
∪{(i, k, j1, j2)|i = −(N1 − 1),−(N1 − 2), . . . ,−1, k = −(N2 − 1),−(N2 − 2), . . . , 0,

j1 = 1, 2, . . . ,m1, j2 = 1, 2, . . . ,m2}.

Define the following ordered sets :

i = ( (i, 0), (i, 1), . . . , (i, S2) ) ,

< i > = ( (i,−N2 + 1), (i,−N2 + 2), . . . , (i, S2) ) ,

[i] = ( (i,−N2 + 1), (i,−N2 + 2), . . . , (i, 0) ) ,

(i, j) = ( (i, j, 1), (i, j, 2), . . . , (i, j,m1) ) ,

(i, j, k) = ( (i, j, k, 1), (i, j, k, 2), . . . , (i, j, k,m2) ) ,

https://doi.org/10.17993/3cemp.2022.110250.33-48

Then the state space is ordered as ([−N1 + 1], [−N1 + 2], . . . , [−1], < 0 >,1,
2, . . . ,S1) . The infinitesimal generator of P of the Markov process (L1, L2, J1, J2) has the following
block partitioned form :

[P ]ij =




Bi, j = i− 1, i = 0, 1, . . . , S1,
B, j = i− 1, i = −(N1 − 2),−(N1 − 3), . . . ,−1,
B, j = i+ (N1 − 1), i = −(N1 − 1),
C, j = i+Q1, i = 1, 2, . . . , s1,
C, j = i+Q1, i = 0,
C, j = i+Q1, i = −(N1 − 1),−(N1 − 2), . . . ,−1,
Ai, j = i, i = 0, 1, . . . , S,
A, j = i, i = −(N1 − 1),−(N1 − 2), . . . ,−1,
0, otherwise,

where

[C]kl =


βIm1 ⊗ Im2 , l = k +Q2, k = 0, 1, . . . , s2,
0, otherwise.

[ C]kl =


βIm1

⊗ Im2
l = k +Q2, k = −(N2 − 1),−(N2 − 2), . . . , s2,

0, otherwise.

[ C]kl =


βIm1

⊗ Im2
, l = k +Q2, k = −(N2 − 1),−(N2 − 2), . . . , 0,

0, otherwise.

For i = 2, 3, . . . , S1,

[Bi]kl =




D1 ⊗ Im2
+ iγ1Im1

⊗ Im2
, l = k, k = 1, 2, . . . , S2,

D1 ⊕ F1 + iγ1Im1
⊗ Im2

, l = k, k = 0,
0, otherwise.

For i = 1,

[Bi]kl =




D1 ⊗ Im2
+ iγ1Im1

⊗ Im2
, l = k, k = 1, 2, . . . , S2,

D1 ⊕ F1 + iγ1Im1 ⊗ Im2 , l = k, k = 0,
0, otherwise.

For i = 0,

[Bi]kl =


D1 ⊗ Im2 , l = k, k = −(N2 − 1), (N2 − 2), . . . , 0,
0, otherwise.


B̂

kl

=


D1 ⊗ Im2

, l = k, k = −(N2 − 1), (N2 − 2), . . . , 0,
0, otherwise.


B̃

kl

=


D1 ⊗ Im2

, l = k, k = −(N2 − 1), (N2 − 2), . . . , 0,
0, otherwise.

For i = 1, 2, . . . s1,

[Ai]kl =





Im1
⊗ F1 + kγ2Im1

⊗ Im2
, l = k − 1, k = 1, 2, . . . , S2,

D0 ⊕ F0 − (iγ1 + β)Im1
⊗ Im2

, l = k, k = 0,
D0 ⊕ F0 − (iγ1 + β + kγ2)Im1 ⊗ Im2 , l = k, k = 1, 2, . . . , s2
D0 ⊕ F0 − (iγ1 + kγ2)Im1 ⊗ Im2 , l = k, k = s2 + 1, s2 + 2, . . . , S2

0, otherwise.

https://doi.org/10.17993/3cemp.2022.110250.33-48
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2 THE MODEL

We consider a two-commodity inventory system with the maximum capacity Si units for i−th commodity
(i = 1, 2). The demands for i−th commodity is of unit size. The demands for commodity-1 arrive
according to a Markovian arrival process (MAP) with representation (D0, D1) where D’s are of order
m1 ×m1. The underlying Markov chain J1(t) of the MAP has the generator D(= D0 +D1) and a
stationary row vector λ1 of length m1. Independently of this process, demands for commodity-2 arrive
according to a MAP with representation (F0, F1) where F ’s are of order m2 ×m2. The underlying
Markov chain J2(t) of this MAP has the generator F (= F0 + F1) and a stationary row vector λ2 of
length m2. The items are perishable in nature. The life time of each commodity is assumed to be
distributed as exponential with parameter γi, (i = 1, 2). The two-commodities serve as substitute for
each other, that is, a demand for a commodity that is sold out, is satisfied with the other commodity
when still in stock. If both the commodities are out of stock, any arriving demands are backlogged. The
backlog is allowed up to the level Ni(< ∞) for the i−th commodity (i = 1, 2). Whenever the backlog
level reaches Ni, (i = 1, 2) an order for Ni items is placed which is replenished instantaneously. The
reorder level for the i-th commodity is fixed at si(1 ≤ si ≤ Si) with an ordering quantity for the i-th
commodity is Qi(= Si−si > si+Ni+1) items when both inventory levels are less than or equal to their
respective reorder levels. The requirement Si − si > si +Ni + 1 ensures that after the replenishment
the inventory levels of both commodities will be always above the respective reorder levels; otherwise
it may not be possible to place reorder (according to this policy) which leads to perpetual shortage.
More explicitly if Li(t) represents inventory level of i-th commodity at time t, then a reorder for both
commodities is made when L1(t) ≤ s1 and L2(t) ≤ s2. The lead time is assumed to be distributed as
negative exponential with parameter β(> 0).

Notations

[A]ij : The element/submatrix at (i, j)-th position of A.
0 : Zero matrix.
I : An identity matrix.
Ik : An identity matrix of order k.
A⊗B : Kronecker product of matrices A and B.
A⊕B : Kronecker sum of matrices A and B.
e : A column vector of 1′s of appropriate dimension.

3 ANALYSIS

From the assumptions made on the input and output processes it can be shown that the quadruple
(L1, L2, J1, J2) = {(L1(t), L2(t), J1(t), J2(t)), t ≥ 0} is a Markov process with state space given by

E = {(i, k, j1, j2)|i = 1, 2, . . . , S1, k = 0, 1, . . . , S2, j1 = 1, 2, . . . ,m1, j2 = 1, 2, . . . ,m2}
∪{(i, k, j1, j2)|i = 0, k = −(N2 − 1),−(N2 − 2), . . . , S2, j1 = 1, 2, . . . ,m1, j2 = 1, 2, . . . ,m2}
∪{(i, k, j1, j2)|i = −(N1 − 1),−(N1 − 2), . . . ,−1, k = −(N2 − 1),−(N2 − 2), . . . , 0,

j1 = 1, 2, . . . ,m1, j2 = 1, 2, . . . ,m2}.

Define the following ordered sets :

i = ( (i, 0), (i, 1), . . . , (i, S2) ) ,

< i > = ( (i,−N2 + 1), (i,−N2 + 2), . . . , (i, S2) ) ,

[i] = ( (i,−N2 + 1), (i,−N2 + 2), . . . , (i, 0) ) ,

(i, j) = ( (i, j, 1), (i, j, 2), . . . , (i, j,m1) ) ,

(i, j, k) = ( (i, j, k, 1), (i, j, k, 2), . . . , (i, j, k,m2) ) ,
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Then the state space is ordered as ([−N1 + 1], [−N1 + 2], . . . , [−1], < 0 >,1,
2, . . . ,S1) . The infinitesimal generator of P of the Markov process (L1, L2, J1, J2) has the following
block partitioned form :

[P ]ij =




Bi, j = i− 1, i = 0, 1, . . . , S1,
B, j = i− 1, i = −(N1 − 2),−(N1 − 3), . . . ,−1,
B, j = i+ (N1 − 1), i = −(N1 − 1),
C, j = i+Q1, i = 1, 2, . . . , s1,
C, j = i+Q1, i = 0,
C, j = i+Q1, i = −(N1 − 1),−(N1 − 2), . . . ,−1,
Ai, j = i, i = 0, 1, . . . , S,
A, j = i, i = −(N1 − 1),−(N1 − 2), . . . ,−1,
0, otherwise,

where

[C]kl =


βIm1 ⊗ Im2 , l = k +Q2, k = 0, 1, . . . , s2,
0, otherwise.

[ C]kl =


βIm1

⊗ Im2
l = k +Q2, k = −(N2 − 1),−(N2 − 2), . . . , s2,

0, otherwise.

[ C]kl =


βIm1

⊗ Im2
, l = k +Q2, k = −(N2 − 1),−(N2 − 2), . . . , 0,

0, otherwise.

For i = 2, 3, . . . , S1,

[Bi]kl =




D1 ⊗ Im2
+ iγ1Im1

⊗ Im2
, l = k, k = 1, 2, . . . , S2,

D1 ⊕ F1 + iγ1Im1
⊗ Im2

, l = k, k = 0,
0, otherwise.

For i = 1,

[Bi]kl =




D1 ⊗ Im2
+ iγ1Im1

⊗ Im2
, l = k, k = 1, 2, . . . , S2,

D1 ⊕ F1 + iγ1Im1 ⊗ Im2 , l = k, k = 0,
0, otherwise.

For i = 0,

[Bi]kl =


D1 ⊗ Im2 , l = k, k = −(N2 − 1), (N2 − 2), . . . , 0,
0, otherwise.


B̂

kl

=


D1 ⊗ Im2

, l = k, k = −(N2 − 1), (N2 − 2), . . . , 0,
0, otherwise.


B̃

kl

=


D1 ⊗ Im2

, l = k, k = −(N2 − 1), (N2 − 2), . . . , 0,
0, otherwise.

For i = 1, 2, . . . s1,

[Ai]kl =





Im1
⊗ F1 + kγ2Im1

⊗ Im2
, l = k − 1, k = 1, 2, . . . , S2,

D0 ⊕ F0 − (iγ1 + β)Im1
⊗ Im2

, l = k, k = 0,
D0 ⊕ F0 − (iγ1 + β + kγ2)Im1 ⊗ Im2 , l = k, k = 1, 2, . . . , s2
D0 ⊕ F0 − (iγ1 + kγ2)Im1 ⊗ Im2 , l = k, k = s2 + 1, s2 + 2, . . . , S2

0, otherwise.
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For i = s1 + 1, s1 + 2, . . . S1,

[Ai]kl =





Im1
⊗ F1 + kγ2Im1

⊗ Im2
, l = k − 1, k = 1, 2, . . . , S2,

D0 ⊕ F0 − iγ1Im1
⊗ Im2

, l = k, k = 0,
D0 ⊕ F0 − (iγ1 + kγ2)Im1

⊗ Im2
, l = k, k = 1, 2, . . . , S2

0, otherwise.

For i = 0,

[Ai]kl =





D1 ⊕ F1 + kγ2Im1
⊗ Im2

, l = k − 1, k = 1, 2, . . . , S2,
Im1

⊗ F1, l = k − 1, k = −(N2 − 2),−(N2 − 3), . . . ,−1, 0,
(or)
l = k +N2 − 1, k = −(N2 − 1),

D0 ⊕ F0 − βIm1 ⊗ Im2 , l = k, k = −(N2 − 1),−(N2 − 2), . . . , 0,
D0 ⊕ F0 − (β + kγ2)Im1 ⊗ Im2 , l = k, k = 1, 2, . . . , s2,
D0 ⊕ F0 − kγ2Im1

⊗ Im2
, l = k, k = s2 + 1, s2 + 2, . . . , S2,

0, otherwise.

 A

kl

=




Im1 ⊗ F1, l = k − 1, k = −(N2 − 2),−(N2 − 3), . . . ,−1, 0,
(or)
l = k +N2 − 1, k = −(N2 − 1),

D0 ⊕ F0 − βIm1
⊗ Im2

, l = k, k = −(N2 − 1),−(N2 − 2), . . . , 0,
0, otherwise.

It may be noted that the matrices Ai, i = 1, 2, . . . , S1, Bi, i = 2, 3, . . . , S1 and C are of size (S2 +
1)m1m2× (S2 +1)m1m2, B1 is of size (S2 +1)m1m2× (S1 +N2)m1m2, B0 is of size (S2 +N2)m1m2×
N2m1m2, B is of size N2m1m2 × N2m1m2, B is of size N2m1m2 × (S2 + N2)m1m2, C is of size
(S2 +N2)m1m2 × (S2 +1)m1m2, C is of size N2m1m2 × (S2 +1)m1m2, A0 is of size (S2 +N2)m1m2 ×
(S2 +N2)m1m2 and A is of size N2m1m2 ×N2m1m2.

3.1 STEADY STATE ANALYSIS

It can be seen from the structure of P that the homogeneous Markov process
{(L1(t), L2(t), J1(t), J2(t)), t ≥ 0} on the finite state space E is irreducible. Hence the limiting distribu-
tion ϕ(i,k,j1,j2) =

lim
t→∞

Pr [L1(t) = i, L2(t) = k, J1(t) = j1, J2(t) = j2|L1(0), L2(0), J1(0), J2(0)]

exists. Let

ϕ(i,k,j1) = (ϕ(i,k,j1,1), ϕ(i,k,j1,2), . . . , ϕ(i,k,j1,m2)), j1 = 1, 2, . . . ,m1,

ϕ(i,k) =
�
ϕ(i,k,1), ϕ(i,k,2), . . . , ϕ(i,k,m1)


, k = −N2 + 1,−N2 + 2, . . . , S2,

ϕ(i) =




(ϕ(i,0), ϕ(i,1), . . . , ϕ(i,S2)), if i = 1, 2, . . . , S1,

(ϕ(i,−N2+1), ϕ(i,−N2+2), . . . , ϕ(i,S2)), if i = 0,

(ϕ(i,−N2+1), ϕ(i,−N2+2), . . . , ϕ(i,0)), if i = −N1 + 1,−N1 + 2, . . . ,−1.

and
Φ = (ϕ(−N1+1),ϕ(−N1+2), . . . ,ϕ(S1−1),ϕ(S1)).

Then the vector of limiting probabilities Φ satisfies

ΦP = 0 and Φe = 1. (1)

The first equation of the above yields the following set of equations:

https://doi.org/10.17993/3cemp.2022.110250.33-48

ϕ(i+1) B + ϕ(i) A = 0, i = −N1 + 1,−N1 + 2, . . . ,−2,

ϕ(i+1)Bi+1 + ϕ(i) A = 0, i = −1,

ϕ(i+1)Bi+1 + ϕ(i)Ai + ϕ(i−N1+1) B = 0, i = 0,

ϕ(i+1)Bi+1 + ϕ(i)Ai = 0, i = 1, 2, . . . , Q1 −N1,

ϕ(i+1)Bi+1 + ϕ(i)Ai + ϕ(i−Q1) C = 0, i = Q1 −N1 + 1, Q1 −N1 + 2, . . . , Q1 − 1,

ϕ(i+1)Bi+1 + ϕ(i)Ai + ϕ(i−Q1) C = 0, i = Q1, (2)
ϕ(i+1)Bi+1 + ϕ(i)Ai + ϕ(i−Q1)C = 0, i = Q1 + 1, Q1 + 2 . . . , S1 − 1,

ϕ(i)Ai + ϕ(i−Q1)C = 0, i = S1.

The equations (except (2)) can be recursively solved to get

ϕ(i) = ϕ(Q1)θi, i = −N1 + 1,−N1 + 2, . . . , S1,

where

θi =




−θi+1
B A−1, i = −(N1 − 1),−(N1 − 2), . . . ,−2,

−θi+1B0
A−1, i = −1,

−

θi+1Bi+1 + θi−N1+1

B

A−1

i , i = 0,

−θi+1Bi+1A
−1
i , i = 1, 2, . . . , Q1 −N1,

−

θi+1Bi+1 + θi−Q1

C

A−1

i , i = Q1 −N1 + 1, Q1 −N1 + 2, . . . , Q1 − 1,

I, i = Q1,

− (θi+1Bi+1 + θi−Q1C)A−1
i , i = Q1 + 1, Q1 + 2, . . . , S1 − 1,

−θi−Q1CA−1
i , i = S1.

Substituting the values of θi in equation (2) and in the normalizing condition we get the value of
ϕ(Q1).

4 SYSTEM PERFORMANCE MEASURES

In this section we derive some stationary performance measures of the system. Using these measures,
we can construct the total expected cost per unit time.

4.1 MEAN INVENTORY LEVEL

Let ηIi denote the mean inventory level of i−th commodity in the steady state (i = 1, 2). Since ϕ(i,j) is
the steady state probability vector for inventory level of first commodity is i and the second commodity
is j, we have

ηI1 =

S1
i=1

S2
k=0

iϕ(i,k)e.

and

ηI2 =

S1
i=0

S2
k=1

kϕ(i,k)e.

4.2 MEAN REORDER RATE

A reorder for both commodities is made when the joint inventory level, drops to either (s1, s2) or
(s1, j), j < s2 or (i, s2), i < s1. Let ζR denote the mean joint reorder rate for both commodities in the
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For i = s1 + 1, s1 + 2, . . . S1,

[Ai]kl =





Im1
⊗ F1 + kγ2Im1

⊗ Im2
, l = k − 1, k = 1, 2, . . . , S2,

D0 ⊕ F0 − iγ1Im1
⊗ Im2

, l = k, k = 0,
D0 ⊕ F0 − (iγ1 + kγ2)Im1

⊗ Im2
, l = k, k = 1, 2, . . . , S2

0, otherwise.

For i = 0,

[Ai]kl =





D1 ⊕ F1 + kγ2Im1
⊗ Im2

, l = k − 1, k = 1, 2, . . . , S2,
Im1

⊗ F1, l = k − 1, k = −(N2 − 2),−(N2 − 3), . . . ,−1, 0,
(or)
l = k +N2 − 1, k = −(N2 − 1),

D0 ⊕ F0 − βIm1 ⊗ Im2 , l = k, k = −(N2 − 1),−(N2 − 2), . . . , 0,
D0 ⊕ F0 − (β + kγ2)Im1 ⊗ Im2 , l = k, k = 1, 2, . . . , s2,
D0 ⊕ F0 − kγ2Im1

⊗ Im2
, l = k, k = s2 + 1, s2 + 2, . . . , S2,

0, otherwise.

 A

kl

=




Im1 ⊗ F1, l = k − 1, k = −(N2 − 2),−(N2 − 3), . . . ,−1, 0,
(or)
l = k +N2 − 1, k = −(N2 − 1),

D0 ⊕ F0 − βIm1
⊗ Im2

, l = k, k = −(N2 − 1),−(N2 − 2), . . . , 0,
0, otherwise.

It may be noted that the matrices Ai, i = 1, 2, . . . , S1, Bi, i = 2, 3, . . . , S1 and C are of size (S2 +
1)m1m2× (S2 +1)m1m2, B1 is of size (S2 +1)m1m2× (S1 +N2)m1m2, B0 is of size (S2 +N2)m1m2×
N2m1m2, B is of size N2m1m2 × N2m1m2, B is of size N2m1m2 × (S2 + N2)m1m2, C is of size
(S2 +N2)m1m2 × (S2 +1)m1m2, C is of size N2m1m2 × (S2 +1)m1m2, A0 is of size (S2 +N2)m1m2 ×
(S2 +N2)m1m2 and A is of size N2m1m2 ×N2m1m2.

3.1 STEADY STATE ANALYSIS

It can be seen from the structure of P that the homogeneous Markov process
{(L1(t), L2(t), J1(t), J2(t)), t ≥ 0} on the finite state space E is irreducible. Hence the limiting distribu-
tion ϕ(i,k,j1,j2) =

lim
t→∞

Pr [L1(t) = i, L2(t) = k, J1(t) = j1, J2(t) = j2|L1(0), L2(0), J1(0), J2(0)]

exists. Let

ϕ(i,k,j1) = (ϕ(i,k,j1,1), ϕ(i,k,j1,2), . . . , ϕ(i,k,j1,m2)), j1 = 1, 2, . . . ,m1,

ϕ(i,k) =
�
ϕ(i,k,1), ϕ(i,k,2), . . . , ϕ(i,k,m1)


, k = −N2 + 1,−N2 + 2, . . . , S2,

ϕ(i) =




(ϕ(i,0), ϕ(i,1), . . . , ϕ(i,S2)), if i = 1, 2, . . . , S1,

(ϕ(i,−N2+1), ϕ(i,−N2+2), . . . , ϕ(i,S2)), if i = 0,

(ϕ(i,−N2+1), ϕ(i,−N2+2), . . . , ϕ(i,0)), if i = −N1 + 1,−N1 + 2, . . . ,−1.

and
Φ = (ϕ(−N1+1),ϕ(−N1+2), . . . ,ϕ(S1−1),ϕ(S1)).

Then the vector of limiting probabilities Φ satisfies

ΦP = 0 and Φe = 1. (1)

The first equation of the above yields the following set of equations:
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ϕ(i+1) B + ϕ(i) A = 0, i = −N1 + 1,−N1 + 2, . . . ,−2,

ϕ(i+1)Bi+1 + ϕ(i) A = 0, i = −1,

ϕ(i+1)Bi+1 + ϕ(i)Ai + ϕ(i−N1+1) B = 0, i = 0,

ϕ(i+1)Bi+1 + ϕ(i)Ai = 0, i = 1, 2, . . . , Q1 −N1,

ϕ(i+1)Bi+1 + ϕ(i)Ai + ϕ(i−Q1) C = 0, i = Q1 −N1 + 1, Q1 −N1 + 2, . . . , Q1 − 1,

ϕ(i+1)Bi+1 + ϕ(i)Ai + ϕ(i−Q1) C = 0, i = Q1, (2)
ϕ(i+1)Bi+1 + ϕ(i)Ai + ϕ(i−Q1)C = 0, i = Q1 + 1, Q1 + 2 . . . , S1 − 1,

ϕ(i)Ai + ϕ(i−Q1)C = 0, i = S1.

The equations (except (2)) can be recursively solved to get

ϕ(i) = ϕ(Q1)θi, i = −N1 + 1,−N1 + 2, . . . , S1,

where

θi =




−θi+1
B A−1, i = −(N1 − 1),−(N1 − 2), . . . ,−2,

−θi+1B0
A−1, i = −1,

−

θi+1Bi+1 + θi−N1+1

B

A−1

i , i = 0,

−θi+1Bi+1A
−1
i , i = 1, 2, . . . , Q1 −N1,

−

θi+1Bi+1 + θi−Q1

C

A−1

i , i = Q1 −N1 + 1, Q1 −N1 + 2, . . . , Q1 − 1,

I, i = Q1,

− (θi+1Bi+1 + θi−Q1C)A−1
i , i = Q1 + 1, Q1 + 2, . . . , S1 − 1,

−θi−Q1CA−1
i , i = S1.

Substituting the values of θi in equation (2) and in the normalizing condition we get the value of
ϕ(Q1).

4 SYSTEM PERFORMANCE MEASURES

In this section we derive some stationary performance measures of the system. Using these measures,
we can construct the total expected cost per unit time.

4.1 MEAN INVENTORY LEVEL

Let ηIi denote the mean inventory level of i−th commodity in the steady state (i = 1, 2). Since ϕ(i,j) is
the steady state probability vector for inventory level of first commodity is i and the second commodity
is j, we have

ηI1 =

S1
i=1

S2
k=0

iϕ(i,k)e.

and

ηI2 =

S1
i=0

S2
k=1

kϕ(i,k)e.

4.2 MEAN REORDER RATE

A reorder for both commodities is made when the joint inventory level, drops to either (s1, s2) or
(s1, j), j < s2 or (i, s2), i < s1. Let ζR denote the mean joint reorder rate for both commodities in the
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steady state and it is given by

ηR =
1

λ1

s2∑
k=0

ϕ(s1+1,k) (D1 ⊗ Im2) e+
1

λ2

s1∑
i=0

ϕ(i,s2+1) (Im1 ⊗ F1) e

+
1

λ1
ϕ(0,s2+1) (Im1 ⊗ F1) e+

1

λ2
ϕ(s1+1,0) (D1 ⊗ Im2) e

+(s1 + 1)γ1

s2∑
k=0

ϕ(s1+1,k)e+ (s2 + 1)γ2

s1∑
i=0

ϕ(i,s2+1)e.

Let ηRi denote the mean individual reorder rate for commodity-i in the steady state (i = 1, 2). When
the inventory level of commodity-1 is −(N1 − 1), a demand for commodity-1 will trigger the individual
reorder for commodity-1. Hence we get

ηR1 =
1

λ1

0∑
k=−N2+1

ϕ(−N1+1,k) (D1 ⊗ Im2) e.

Similar arguments lead to

ηR2 =
1

λ2

0∑
i=−N1+1

ϕ(i,−N2+1) (Im1 ⊗ F1) e.

4.3 AVERAGE BACKLOG

Let ηBi denote the mean backlog of commodity-i in the steady state (i = 1, 2). Then we have

ηB1 =

−1∑
i=−N1+1

0∑
k=−N2+1

|i|ϕ(i,k)e.

and

ηB2 =
0∑

i=−N1+1

−1∑
k=−N2+1

|k|ϕ(i,k)e.

4.4 MEAN PERISHABLE RATE

Let the mean perishable rate of commodity-i in the steady state de denoted by ζFi , (i = 1, 2). Then we
have

ηF1 =

S1∑
i=1

S2∑
k=0

iγ1ϕ(i,k)e.

and

ηF2 =

S1∑
i=0

S2∑
k=1

kγ2ϕ(i,k)e.

5 COST ANALYSIS

The expected total cost per unit time (expected total cost rate) in the steady state for this model is
defined to be

TC(S1, S2, s1, s2, N1, N2) = ch1ηI1 + ch2ηI2 + crηR + cr1ηR1 + cr2ηR2

+cb1ηB1 + cb2ηB2 + cp1ηF1 + cp2ηF2 ,

where

https://doi.org/10.17993/3cemp.2022.110250.33-48

cr : Setup cost per order.
cri : Setup cost for the i-th commodity under local purchase (i=1,2).
chi

: Holding cost for the i-th commodity per unit time, i = 1, 2.
cpi : Perishable cost per unit item per unit time of i-th commodity (i=1,2).
cbi : Cost per unit backlog for the i-th commodity per unit time, i = 1, 2.

By substituting the values for η’s we can compute the value of TC(S1, S2, s1, s2, N1, N2).

Since the evaluation of the ϕ’s involve recursive computations, it is quite difficult to show the
convexity of the total expected cost rate. However we present the following example to demonstrate the
computability of the results derived in our work, and to illustrate the existence of local optima when
the total cost function is treated as a function of only two variables.

6 NUMERICAL ILLUSTRATION

We consider the following numerical example : The demand for first commodity is given by (D0, D1)
where

D0 =

(
−50 0
0 −5

)
, D1 =

(
39 11
3.9 1.1

)
.

The demand for second commodity is given by (F0, F1) where

F0 =

(
−20 0
0 −2

)
, F1 =

(
19 1
1.9 0.1

)
.

In the following tables, the optimal cost for each row is shown in underlined and the optimal cost for
each column is shown in bold.
Let γ1 = 1, γ2 = 1, β = 25, s1 = 2, s2 = 2, N1 = 3, N2 = 3, ch1 = 0.01, ch2 = 0.01, cr = 75, cr1 = 2, cr2 =
2, cb1 = 1, cb2 = 1, cp1 = 2, cp2 = 1.

Let TC(S1, S2) = TC(S1, S2, 2, 2, 3, 3).

From table 1, the numerical values shows that TC(S1, S2) is a convex function in (S1, S2) and the

Table 1 – Total Expected Cost Rate of S1 and S2

S2 10 11 12 13 14
S1

13 9.872429 9.630808 9.596855 9.743616 9.775500
14 9.709404 9.520833 9.501561 9.633814 9.684700
15 9.594168 9.451205 9.446881 9.569767 9.634135
16 9.517610 9.413976 9.424364 9.541746 9.616449
17 9.472896 9.403231 9.427757 9.542487 9.625701
18 9.454763 9.414471 9.452342 9.566473 9.657093
19 9.459070 9.444205 9.494506 9.609474 9.706772

(possibly local) optimum occurs at (S1, S2) = (17, 11).
Let γ1 = 0.01, γ2 = 0.8, β = 18, S2 = 20, s2 = 3, N1 = 3, N2 = 3, ch1 = 0.01, ch2 = 0.01, cr = 0.55, cr1 =
0.45, cr2 = 0.5, cb1 = 0.1, cb2 = 0.1, cp1 = 0.1, cp2 = 0.4.

Let TC(S1, s1) = TC(S1, 20, s1, 3, 3, 3).

From table 2, the numerical values shows that TC(S1, s1) is a convex function in (S1, s1) and the
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steady state and it is given by

ηR =
1

λ1

s2∑
k=0

ϕ(s1+1,k) (D1 ⊗ Im2) e+
1

λ2

s1∑
i=0

ϕ(i,s2+1) (Im1 ⊗ F1) e

+
1

λ1
ϕ(0,s2+1) (Im1 ⊗ F1) e+

1

λ2
ϕ(s1+1,0) (D1 ⊗ Im2) e

+(s1 + 1)γ1

s2∑
k=0

ϕ(s1+1,k)e+ (s2 + 1)γ2

s1∑
i=0

ϕ(i,s2+1)e.

Let ηRi denote the mean individual reorder rate for commodity-i in the steady state (i = 1, 2). When
the inventory level of commodity-1 is −(N1 − 1), a demand for commodity-1 will trigger the individual
reorder for commodity-1. Hence we get

ηR1 =
1

λ1

0∑
k=−N2+1

ϕ(−N1+1,k) (D1 ⊗ Im2) e.

Similar arguments lead to

ηR2 =
1

λ2

0∑
i=−N1+1

ϕ(i,−N2+1) (Im1 ⊗ F1) e.

4.3 AVERAGE BACKLOG

Let ηBi denote the mean backlog of commodity-i in the steady state (i = 1, 2). Then we have

ηB1 =

−1∑
i=−N1+1

0∑
k=−N2+1

|i|ϕ(i,k)e.

and

ηB2 =
0∑

i=−N1+1

−1∑
k=−N2+1

|k|ϕ(i,k)e.

4.4 MEAN PERISHABLE RATE

Let the mean perishable rate of commodity-i in the steady state de denoted by ζFi , (i = 1, 2). Then we
have

ηF1 =

S1∑
i=1

S2∑
k=0

iγ1ϕ(i,k)e.

and

ηF2 =

S1∑
i=0

S2∑
k=1

kγ2ϕ(i,k)e.

5 COST ANALYSIS

The expected total cost per unit time (expected total cost rate) in the steady state for this model is
defined to be

TC(S1, S2, s1, s2, N1, N2) = ch1ηI1 + ch2ηI2 + crηR + cr1ηR1 + cr2ηR2

+cb1ηB1 + cb2ηB2 + cp1ηF1 + cp2ηF2 ,

where

https://doi.org/10.17993/3cemp.2022.110250.33-48

cr : Setup cost per order.
cri : Setup cost for the i-th commodity under local purchase (i=1,2).
chi

: Holding cost for the i-th commodity per unit time, i = 1, 2.
cpi : Perishable cost per unit item per unit time of i-th commodity (i=1,2).
cbi : Cost per unit backlog for the i-th commodity per unit time, i = 1, 2.

By substituting the values for η’s we can compute the value of TC(S1, S2, s1, s2, N1, N2).

Since the evaluation of the ϕ’s involve recursive computations, it is quite difficult to show the
convexity of the total expected cost rate. However we present the following example to demonstrate the
computability of the results derived in our work, and to illustrate the existence of local optima when
the total cost function is treated as a function of only two variables.

6 NUMERICAL ILLUSTRATION

We consider the following numerical example : The demand for first commodity is given by (D0, D1)
where

D0 =

(
−50 0
0 −5

)
, D1 =

(
39 11
3.9 1.1

)
.

The demand for second commodity is given by (F0, F1) where

F0 =

(
−20 0
0 −2

)
, F1 =

(
19 1
1.9 0.1

)
.

In the following tables, the optimal cost for each row is shown in underlined and the optimal cost for
each column is shown in bold.
Let γ1 = 1, γ2 = 1, β = 25, s1 = 2, s2 = 2, N1 = 3, N2 = 3, ch1 = 0.01, ch2 = 0.01, cr = 75, cr1 = 2, cr2 =
2, cb1 = 1, cb2 = 1, cp1 = 2, cp2 = 1.

Let TC(S1, S2) = TC(S1, S2, 2, 2, 3, 3).

From table 1, the numerical values shows that TC(S1, S2) is a convex function in (S1, S2) and the

Table 1 – Total Expected Cost Rate of S1 and S2

S2 10 11 12 13 14
S1

13 9.872429 9.630808 9.596855 9.743616 9.775500
14 9.709404 9.520833 9.501561 9.633814 9.684700
15 9.594168 9.451205 9.446881 9.569767 9.634135
16 9.517610 9.413976 9.424364 9.541746 9.616449
17 9.472896 9.403231 9.427757 9.542487 9.625701
18 9.454763 9.414471 9.452342 9.566473 9.657093
19 9.459070 9.444205 9.494506 9.609474 9.706772

(possibly local) optimum occurs at (S1, S2) = (17, 11).
Let γ1 = 0.01, γ2 = 0.8, β = 18, S2 = 20, s2 = 3, N1 = 3, N2 = 3, ch1 = 0.01, ch2 = 0.01, cr = 0.55, cr1 =
0.45, cr2 = 0.5, cb1 = 0.1, cb2 = 0.1, cp1 = 0.1, cp2 = 0.4.

Let TC(S1, s1) = TC(S1, 20, s1, 3, 3, 3).

From table 2, the numerical values shows that TC(S1, s1) is a convex function in (S1, s1) and the
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Table 2 – Total Expected Cost Rate of S1 and s1

s1 4 5 6 7 8
S1

49 5.076500 5.075467 5.080127 5.088899 5.100611
50 5.076459 5.075080 5.079444 5.087956 5.099435
51 5.076589 5.074872 5.078945 5.087203 5.098452
52 5.076888 5.074837 5.078626 5.086635 5.097661
53 5.077351 5.074974 5.078484 5.086248 5.097055
54 5.077976 5.075278 5.078514 5.086039 5.096631
55 5.078760 5.075747 5.078714 5.086004 5.096385
56 5.079700 5.076377 5.079080 5.086140 5.096314
57 5.080793 5.077165 5.079609 5.086443 5.096414

(possibly local) optimum occurs at (S1, s1) = (52, 5).

let γ1 = 0.01, γ2 = 0.9, β = 10, S2 = 20, s2 = 2, S1 = 20, s1 = 2, ch1 = 0.01, ch2 = 0.01, cr = 21, cr1 =
15, cr2 = 18, cb1 = 5, cb2 = 5, cp1 = 0.8, cp2 = 0.75.

Let TC(N1, N2) = TC(20, 20, 2, 2, N1, N2).

From table 3, the numerical values shows that TC(N1, N2) is a convex function in (N1, N2) and the

Table 3 – Total Expected Cost Rate of N1 and N2

N2 3 4 5 6 7
N1

4 10.565306 10.543407 10.533310 10.531192 10.535652
5 10.509154 10.491453 10.486547 10.490709 10.502146
6 10.476386 10.465856 10.468392 10.481047 10.501967
7 10.456879 10.454703 10.465625 10.487919 10.520371
8 10.453162 10.449303 10.468540 10.500486 10.545501
9 10.461411 10.459465 10.492293 10.541267 10.609235

(possibly local) optimum occurs at (N1, N2) = (8, 4).

Let γ1 = 0.1, γ2 = 0.8, β = 18, S1 = 20, s1 = 3, s2 = 2, N1 = 3; ch1 = 0.1, ch2 = 0.1, cr = 0.11, cr1 =
0.1, cr2 = 0.1, cb1 = 0.1, cb2 = 0.1, cp1 = 0.1, cp2 = 0.1.

Let TC(S2, N2) = TC(20, S2, 3, 2, 3, N2).

From table 4, the numerical values shows that TC(S2, N2) is a convex function in (S2, N2) and the

Table 4 – Total Expected Cost Rate of S2 and N2

N2 5 6 7 8 9
S2

39 8.654678 8.653849 8.654060 8.654295 8.654545
40 8.517849 8.517004 8.517197 8.517414 8.517645
41 8.689863 8.680004 8.680181 8.680380 8.680593
42 8.843738 8.842865 8.843027 8.843210 8.843407
43 9.005788 9.005604 9.005752 9.005920 9.006102

https://doi.org/10.17993/3cemp.2022.110250.33-48

(possibly local) optimum occurs at (S2, N2) = (40, 6).

Let γ1 = 0.1, γ2 = 0.8, β = 18, S1 = 20, s1 = 3, N2 = 3, N1 = 3; ch1 = 0.1, ch2 = 0.1, cr = 0.11, cr1 =
0.1, cr2 = 0.1, cb1 = 0.1, cb2 = 0.1, cp1 = 0.1, cp2 = 0.1.

Let TC(S2, s2) = TC(20, S2, 3, s2, 3, 3).

From table 5, the numerical values shows that TC(S2, s2) is a convex function in (S2, s2) and the

Table 5 – Total Expected Cost Rate of S2 and s2

s2 2 3 4 5 6
S2

39 8.656617 8.655266 8.656616 8.657680 8.658492
40 8.519803 8.518349 8.519626 8.520642 8.521425
41 8.699830 8.681279 8.682486 8.683454 8.684207
42 8.846717 8.844073 8.845214 8.846135 8.846858
43 9.007478 9.006747 9.007824 9.008700 9.009393

(possibly local) optimum occurs at (S2, s2) = (40, 3).
Let γ1 = 0.01, γ2 = 0.8, β = 18, S2 = 20, s1 = 2, s2 = 3, N2 = 3; ch1 = 0.01, ch2 = 0.01, cr = 0.55, cr1 =
0.45, cr2 = 0.5, cb1 = 0.1, cb2 = 0.1, cp1 = 0.1, cp2 = 0.4.

Let TC(S1, N1) = TC(S1, 20, 2, 3, N1, 3).

From table 6, the numerical values shows that TC(S1, N1) is a convex function in (S1, N1) and the

Table 6 – Total Expected Cost Rate of S1 and N1

N1 5 6 7 8 9
S1

49 5.034028 5.023524 5.021157 5.023724 5.029325
50 5.033895 5.023100 5.020510 5.022892 5.028327
51 5.033935 5.022856 5.020048 5.022249 5.027524
52 5.034146 5.022789 5.019767 5.021791 5.026910
53 5.034523 5.022894 5.019662 5.021515 5.026482
54 5.035065 5.023168 5.019732 5.021415 5.026235
55 5.035768 5.023608 5.019971 5.021490 5.026165
56 5.036629 5.024210 5.020377 5.021734 5.026268

(possibly local) optimum occurs at (S1, N1) = (53, 7).
The Figure 1 grants the impact of the perishable rate γ1, on the total expected cost rate TC via four
curves which relate to β = 18.5,18.6,18.7,18.8. Since figure 1, we perceive that the total cost value
decreases when the perishable rate γ1 and the replenishment rate β increases.

The Figure 2 grants the impact of the perishable rate γ2, on the total expected cost rate TC via
three curves which relate to β = 19,20 and 21. Since figure 2, we perceive that the total cost value
decreases when the perishable rate γ2 and the replenishment rate β increases.
In tables 7 and 8, we show that the impact of the cost values on the optimal values (S∗

1 , s
∗
1) and the

corresponding total expected cost rate. Towards this end, we first fix the parameters and cost value as
S2 = 20, s2 = 3, N1 = 3, N2 = 3, β = 18, γ1 = 0.01, γ2 = 0.8, cr1 = 0.45, cr2 = 0.5.
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Table 2 – Total Expected Cost Rate of S1 and s1

s1 4 5 6 7 8
S1

49 5.076500 5.075467 5.080127 5.088899 5.100611
50 5.076459 5.075080 5.079444 5.087956 5.099435
51 5.076589 5.074872 5.078945 5.087203 5.098452
52 5.076888 5.074837 5.078626 5.086635 5.097661
53 5.077351 5.074974 5.078484 5.086248 5.097055
54 5.077976 5.075278 5.078514 5.086039 5.096631
55 5.078760 5.075747 5.078714 5.086004 5.096385
56 5.079700 5.076377 5.079080 5.086140 5.096314
57 5.080793 5.077165 5.079609 5.086443 5.096414

(possibly local) optimum occurs at (S1, s1) = (52, 5).

let γ1 = 0.01, γ2 = 0.9, β = 10, S2 = 20, s2 = 2, S1 = 20, s1 = 2, ch1 = 0.01, ch2 = 0.01, cr = 21, cr1 =
15, cr2 = 18, cb1 = 5, cb2 = 5, cp1 = 0.8, cp2 = 0.75.

Let TC(N1, N2) = TC(20, 20, 2, 2, N1, N2).

From table 3, the numerical values shows that TC(N1, N2) is a convex function in (N1, N2) and the

Table 3 – Total Expected Cost Rate of N1 and N2

N2 3 4 5 6 7
N1

4 10.565306 10.543407 10.533310 10.531192 10.535652
5 10.509154 10.491453 10.486547 10.490709 10.502146
6 10.476386 10.465856 10.468392 10.481047 10.501967
7 10.456879 10.454703 10.465625 10.487919 10.520371
8 10.453162 10.449303 10.468540 10.500486 10.545501
9 10.461411 10.459465 10.492293 10.541267 10.609235

(possibly local) optimum occurs at (N1, N2) = (8, 4).

Let γ1 = 0.1, γ2 = 0.8, β = 18, S1 = 20, s1 = 3, s2 = 2, N1 = 3; ch1 = 0.1, ch2 = 0.1, cr = 0.11, cr1 =
0.1, cr2 = 0.1, cb1 = 0.1, cb2 = 0.1, cp1 = 0.1, cp2 = 0.1.

Let TC(S2, N2) = TC(20, S2, 3, 2, 3, N2).

From table 4, the numerical values shows that TC(S2, N2) is a convex function in (S2, N2) and the

Table 4 – Total Expected Cost Rate of S2 and N2

N2 5 6 7 8 9
S2

39 8.654678 8.653849 8.654060 8.654295 8.654545
40 8.517849 8.517004 8.517197 8.517414 8.517645
41 8.689863 8.680004 8.680181 8.680380 8.680593
42 8.843738 8.842865 8.843027 8.843210 8.843407
43 9.005788 9.005604 9.005752 9.005920 9.006102
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(possibly local) optimum occurs at (S2, N2) = (40, 6).

Let γ1 = 0.1, γ2 = 0.8, β = 18, S1 = 20, s1 = 3, N2 = 3, N1 = 3; ch1 = 0.1, ch2 = 0.1, cr = 0.11, cr1 =
0.1, cr2 = 0.1, cb1 = 0.1, cb2 = 0.1, cp1 = 0.1, cp2 = 0.1.

Let TC(S2, s2) = TC(20, S2, 3, s2, 3, 3).

From table 5, the numerical values shows that TC(S2, s2) is a convex function in (S2, s2) and the

Table 5 – Total Expected Cost Rate of S2 and s2

s2 2 3 4 5 6
S2

39 8.656617 8.655266 8.656616 8.657680 8.658492
40 8.519803 8.518349 8.519626 8.520642 8.521425
41 8.699830 8.681279 8.682486 8.683454 8.684207
42 8.846717 8.844073 8.845214 8.846135 8.846858
43 9.007478 9.006747 9.007824 9.008700 9.009393

(possibly local) optimum occurs at (S2, s2) = (40, 3).
Let γ1 = 0.01, γ2 = 0.8, β = 18, S2 = 20, s1 = 2, s2 = 3, N2 = 3; ch1 = 0.01, ch2 = 0.01, cr = 0.55, cr1 =
0.45, cr2 = 0.5, cb1 = 0.1, cb2 = 0.1, cp1 = 0.1, cp2 = 0.4.

Let TC(S1, N1) = TC(S1, 20, 2, 3, N1, 3).

From table 6, the numerical values shows that TC(S1, N1) is a convex function in (S1, N1) and the

Table 6 – Total Expected Cost Rate of S1 and N1

N1 5 6 7 8 9
S1

49 5.034028 5.023524 5.021157 5.023724 5.029325
50 5.033895 5.023100 5.020510 5.022892 5.028327
51 5.033935 5.022856 5.020048 5.022249 5.027524
52 5.034146 5.022789 5.019767 5.021791 5.026910
53 5.034523 5.022894 5.019662 5.021515 5.026482
54 5.035065 5.023168 5.019732 5.021415 5.026235
55 5.035768 5.023608 5.019971 5.021490 5.026165
56 5.036629 5.024210 5.020377 5.021734 5.026268

(possibly local) optimum occurs at (S1, N1) = (53, 7).
The Figure 1 grants the impact of the perishable rate γ1, on the total expected cost rate TC via four
curves which relate to β = 18.5,18.6,18.7,18.8. Since figure 1, we perceive that the total cost value
decreases when the perishable rate γ1 and the replenishment rate β increases.

The Figure 2 grants the impact of the perishable rate γ2, on the total expected cost rate TC via
three curves which relate to β = 19,20 and 21. Since figure 2, we perceive that the total cost value
decreases when the perishable rate γ2 and the replenishment rate β increases.
In tables 7 and 8, we show that the impact of the cost values on the optimal values (S∗

1 , s
∗
1) and the

corresponding total expected cost rate. Towards this end, we first fix the parameters and cost value as
S2 = 20, s2 = 3, N1 = 3, N2 = 3, β = 18, γ1 = 0.01, γ2 = 0.8, cr1 = 0.45, cr2 = 0.5.
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Table 7 – Impact of Cost Values

Ch2 0.01
Cp2 0.4 0.5
Cb2 0.09 0.1 0.11 0.09 0.1 0.11
Cr Ch1 Cp1 Cb1

0.4 0.01 0.10 0.09 55 6 55 6 55 6 55 6 55 6 55 6
5.0730 5.0733 5.0736 6.1763 6.1765 6.1768

0.10 55 6 55 6 55 6 55 6 55 6 55 6
5.0734 5.0737 5.0740 6.1767 6.1770 6.1773

0.11 55 6 55 6 55 6 55 6 55 6 55 6
5.0735 5.0738 5.0741 6.1768 6.1771 6.1774

0.20 0.09 55 6 55 6 55 6 55 6 55 6 55 6
5.1261 5.1264 5.1267 6.2202 6.2205 6.2208

0.10 55 6 54 6 54 6 54 6 54 6 54 6
5.1266 5.1269 5.1272 6.2206 6.2209 6.2212

0.11 54 6 54 6 54 6 54 6 54 6 54 6
5.1271 5.1273 5.1276 6.2211 6.2214 6.2217

0.02 0.10 0.09 54 6 54 6 54 6 53 6 53 6 53 6
5.5517 5.5520 5.5523 6.6793 6.6795 6.6798

0.10 54 6 54 6 54 6 53 6 53 6 53 6
5.5522 5.5524 5.5527 6.6797 6.6800 6.6873

0.11 54 6 54 5 54 5 53 5 53 5 53 5
5.5526 5.5529 5.5532 6.6817 6.6819 6.6893

0.20 0.09 54 6 53 5 53 5 53 5 53 5 53 5
5.6281 5.6284 5.6287 6.6822 6.6835 6.6900

0.10 53 6 53 5 53 5 53 5 53 5 53 5
5.6296 5.6299 5.6309 6.6826 6.6837 6.6912

0.11 53 6 53 5 53 5 53 5 53 5 52 5
5.6371 5.6373 5.6376 6.6829 6.6838 6.6915

0.5 0.01 0.10 0.09 55 6 55 6 55 6 55 6 55 6 55 6
5.6462 5.6468 5.6471 6.6983 6.6985 6.6988

0.10 55 6 55 6 55 6 55 6 55 6 55 6
5.6771 5.6777 5.6780 6.7067 6.7079 6.7083

0.11 55 6 55 6 55 6 55 6 55 6 55 6
5.6784 5.6787 5.6790 6.7177 6.7178 6.7179

0.20 0.09 55 6 55 6 55 6 55 6 55 6 55 6
5.6861 5.6884 5.6887 6.7202 6.7265 6.7268

0.10 55 6 54 6 54 6 54 6 54 6 54 6
5.6886 5.6889 5.6890 6.7566 6.7569 6.7570

0.11 54 6 54 6 54 6 54 6 54 6 54 6
5.6887 5.6890 5.6891 6.7571 6.7574 6.7577

0.02 0.10 0.09 54 6 54 6 54 6 53 6 53 6 53 6
5.6892 5.6894 5.6896 6.7692 6.7698 6.7791

0.10 54 6 54 6 54 6 53 6 53 6 53 6
5.6893 5.6902 5.6907 6.7857 6.7860 6.7893

0.11 54 6 54 5 54 5 53 5 53 5 53 5
5.6896 5.6909 5.6912 6.7919 6.7942 6.7958

0.20 0.09 54 5 53 5 53 5 53 5 53 5 53 5
5.7281 5.7284 5.7287 6.8012 6.8015 6.8018

0.10 53 6 53 5 53 5 53 5 53 5 53 5
5.7296 5.7299 5.7309 6.8026 6.8029 6.8032

0.11 53 6 53 5 53 5 53 5 53 5 52 5
5.8371 5.8373 5.8376 6.8036 6.8044 6.8047
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Table 8 – Impact of Cost Value

Ch2 0.02
Cp2 0.4 0.5
Cb2 0.09 0.1 0.11 0.09 0.1 0.11
Cr Ch1 Cp1 Cb1

0.4 0.01 0.10 0.09 54 6 54 6 54 6 54 6 54 6 54 6
5.2189 5.2191 5.2194 6.2197 6.2213 6.2232

0.10 54 6 54 6 54 6 54 6 54 6 54 6
5.2196 5.2199 5.3101 6.2367 6.2370 6.2373

0.11 54 6 54 6 54 6 54 6 54 6 54 6
5.2234 5.2237 5.3240 6.2767 6.2770 6.2773

0.20 0.09 54 6 54 6 54 6 54 6 54 6 54 6
5.2281 5.2284 5.3287 6.3902 6.3913 6.3956

0.10 53 6 53 6 53 6 53 6 53 6 53 6
5.3296 5.3299 5.3302 6.4106 6.4109 6.4112

0.11 53 6 53 6 53 6 53 6 53 6 53 6
5.3311 5.3323 5.3346 6.4152 6.4163 6.4177

0.02 0.10 0.09 53 6 53 6 53 6 52 6 52 6 52 6
5.6517 5.6520 5.6523 6.7793 6.7795 6.7798

0.10 53 6 53 6 53 6 52 6 52 6 52 6
5.6522 5.6524 5.6527 6.7797 6.7800 6.7873

0.11 53 5 53 5 53 5 52 5 52 5 52 5
5.6526 5.6529 5.6532 6.7817 6.7819 6.7883

0.20 0.09 53 5 53 5 53 5 52 5 52 5 52 5
5.7281 5.7284 5.7287 6.7912 6.7915 6.7918

0.10 52 5 52 5 52 5 52 5 52 5 52 5
5.7296 5.7299 5.7309 6.8026 6.8029 6.8112

0.11 52 5 52 5 52 5 52 5 52 5 52 5
5.7371 5.7373 5.7376 6.8116 6.8134 6.8147

0.5 0.01 0.10 0.09 54 6 54 6 54 6 54 6 54 6 54 6
5.8762 5.8768 5.8771 6.8783 6.8785 6.8788

0.10 54 6 54 6 54 6 54 6 54 6 54 6
5.8771 5.8777 5.8780 6.9767 6.9790 6.9793

0.11 54 6 54 6 54 6 54 6 54 6 54 6
5.8784 5.8787 5.8790 6.9777 6.9870 6.9873

0.20 0.09 54 6 54 6 54 6 54 6 54 6 54 6
6.1761 6.1784 6.1787 7.2202 7.2565 7.2568

0.10 53 6 53 6 53 6 53 6 53 6 53 6
6.1786 6.1789 6.1792 7.2566 7.2569 7.2572

0.11 53 6 53 6 53 6 53 6 53 6 53 6
6.1791 6.1793 6.1796 7.2671 7.2674 7.2677

0.02 0.10 0.09 53 6 53 6 53 6 52 6 52 6 52 6
6.5627 6.5670 6.5823 7.6797 7.6894 7.6898

0.10 53 6 53 6 53 6 52 6 52 6 52 6
6.5792 6.5802 6.5907 7.6857 7.6920 7.6923

0.11 53 5 53 5 53 5 52 5 52 5 52 5
6.5906 6.5929 6.5942 7.6919 7.6942 7.6958

0.20 0.09 53 5 53 5 53 5 52 5 52 5 52 5
6.7281 6.7284 6.7287 7.7312 7.7315 7.7318

0.10 52 5 52 5 52 5 52 5 52 5 52 5
6.7296 6.7299 6.7309 7.7426 7.7429 7.7512

0.11 52 5 52 5 52 5 52 5 52 5 52 5
6.8371 6.8373 6.8376 7.7516 7.7534 7.7547
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Table 7 – Impact of Cost Values

Ch2 0.01
Cp2 0.4 0.5
Cb2 0.09 0.1 0.11 0.09 0.1 0.11
Cr Ch1 Cp1 Cb1

0.4 0.01 0.10 0.09 55 6 55 6 55 6 55 6 55 6 55 6
5.0730 5.0733 5.0736 6.1763 6.1765 6.1768

0.10 55 6 55 6 55 6 55 6 55 6 55 6
5.0734 5.0737 5.0740 6.1767 6.1770 6.1773

0.11 55 6 55 6 55 6 55 6 55 6 55 6
5.0735 5.0738 5.0741 6.1768 6.1771 6.1774

0.20 0.09 55 6 55 6 55 6 55 6 55 6 55 6
5.1261 5.1264 5.1267 6.2202 6.2205 6.2208

0.10 55 6 54 6 54 6 54 6 54 6 54 6
5.1266 5.1269 5.1272 6.2206 6.2209 6.2212

0.11 54 6 54 6 54 6 54 6 54 6 54 6
5.1271 5.1273 5.1276 6.2211 6.2214 6.2217

0.02 0.10 0.09 54 6 54 6 54 6 53 6 53 6 53 6
5.5517 5.5520 5.5523 6.6793 6.6795 6.6798

0.10 54 6 54 6 54 6 53 6 53 6 53 6
5.5522 5.5524 5.5527 6.6797 6.6800 6.6873

0.11 54 6 54 5 54 5 53 5 53 5 53 5
5.5526 5.5529 5.5532 6.6817 6.6819 6.6893

0.20 0.09 54 6 53 5 53 5 53 5 53 5 53 5
5.6281 5.6284 5.6287 6.6822 6.6835 6.6900

0.10 53 6 53 5 53 5 53 5 53 5 53 5
5.6296 5.6299 5.6309 6.6826 6.6837 6.6912

0.11 53 6 53 5 53 5 53 5 53 5 52 5
5.6371 5.6373 5.6376 6.6829 6.6838 6.6915

0.5 0.01 0.10 0.09 55 6 55 6 55 6 55 6 55 6 55 6
5.6462 5.6468 5.6471 6.6983 6.6985 6.6988

0.10 55 6 55 6 55 6 55 6 55 6 55 6
5.6771 5.6777 5.6780 6.7067 6.7079 6.7083

0.11 55 6 55 6 55 6 55 6 55 6 55 6
5.6784 5.6787 5.6790 6.7177 6.7178 6.7179

0.20 0.09 55 6 55 6 55 6 55 6 55 6 55 6
5.6861 5.6884 5.6887 6.7202 6.7265 6.7268

0.10 55 6 54 6 54 6 54 6 54 6 54 6
5.6886 5.6889 5.6890 6.7566 6.7569 6.7570

0.11 54 6 54 6 54 6 54 6 54 6 54 6
5.6887 5.6890 5.6891 6.7571 6.7574 6.7577

0.02 0.10 0.09 54 6 54 6 54 6 53 6 53 6 53 6
5.6892 5.6894 5.6896 6.7692 6.7698 6.7791

0.10 54 6 54 6 54 6 53 6 53 6 53 6
5.6893 5.6902 5.6907 6.7857 6.7860 6.7893

0.11 54 6 54 5 54 5 53 5 53 5 53 5
5.6896 5.6909 5.6912 6.7919 6.7942 6.7958

0.20 0.09 54 5 53 5 53 5 53 5 53 5 53 5
5.7281 5.7284 5.7287 6.8012 6.8015 6.8018

0.10 53 6 53 5 53 5 53 5 53 5 53 5
5.7296 5.7299 5.7309 6.8026 6.8029 6.8032

0.11 53 6 53 5 53 5 53 5 53 5 52 5
5.8371 5.8373 5.8376 6.8036 6.8044 6.8047
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Table 8 – Impact of Cost Value

Ch2 0.02
Cp2 0.4 0.5
Cb2 0.09 0.1 0.11 0.09 0.1 0.11
Cr Ch1 Cp1 Cb1

0.4 0.01 0.10 0.09 54 6 54 6 54 6 54 6 54 6 54 6
5.2189 5.2191 5.2194 6.2197 6.2213 6.2232

0.10 54 6 54 6 54 6 54 6 54 6 54 6
5.2196 5.2199 5.3101 6.2367 6.2370 6.2373

0.11 54 6 54 6 54 6 54 6 54 6 54 6
5.2234 5.2237 5.3240 6.2767 6.2770 6.2773

0.20 0.09 54 6 54 6 54 6 54 6 54 6 54 6
5.2281 5.2284 5.3287 6.3902 6.3913 6.3956

0.10 53 6 53 6 53 6 53 6 53 6 53 6
5.3296 5.3299 5.3302 6.4106 6.4109 6.4112

0.11 53 6 53 6 53 6 53 6 53 6 53 6
5.3311 5.3323 5.3346 6.4152 6.4163 6.4177

0.02 0.10 0.09 53 6 53 6 53 6 52 6 52 6 52 6
5.6517 5.6520 5.6523 6.7793 6.7795 6.7798

0.10 53 6 53 6 53 6 52 6 52 6 52 6
5.6522 5.6524 5.6527 6.7797 6.7800 6.7873

0.11 53 5 53 5 53 5 52 5 52 5 52 5
5.6526 5.6529 5.6532 6.7817 6.7819 6.7883

0.20 0.09 53 5 53 5 53 5 52 5 52 5 52 5
5.7281 5.7284 5.7287 6.7912 6.7915 6.7918

0.10 52 5 52 5 52 5 52 5 52 5 52 5
5.7296 5.7299 5.7309 6.8026 6.8029 6.8112

0.11 52 5 52 5 52 5 52 5 52 5 52 5
5.7371 5.7373 5.7376 6.8116 6.8134 6.8147

0.5 0.01 0.10 0.09 54 6 54 6 54 6 54 6 54 6 54 6
5.8762 5.8768 5.8771 6.8783 6.8785 6.8788

0.10 54 6 54 6 54 6 54 6 54 6 54 6
5.8771 5.8777 5.8780 6.9767 6.9790 6.9793

0.11 54 6 54 6 54 6 54 6 54 6 54 6
5.8784 5.8787 5.8790 6.9777 6.9870 6.9873

0.20 0.09 54 6 54 6 54 6 54 6 54 6 54 6
6.1761 6.1784 6.1787 7.2202 7.2565 7.2568

0.10 53 6 53 6 53 6 53 6 53 6 53 6
6.1786 6.1789 6.1792 7.2566 7.2569 7.2572

0.11 53 6 53 6 53 6 53 6 53 6 53 6
6.1791 6.1793 6.1796 7.2671 7.2674 7.2677

0.02 0.10 0.09 53 6 53 6 53 6 52 6 52 6 52 6
6.5627 6.5670 6.5823 7.6797 7.6894 7.6898

0.10 53 6 53 6 53 6 52 6 52 6 52 6
6.5792 6.5802 6.5907 7.6857 7.6920 7.6923

0.11 53 5 53 5 53 5 52 5 52 5 52 5
6.5906 6.5929 6.5942 7.6919 7.6942 7.6958

0.20 0.09 53 5 53 5 53 5 52 5 52 5 52 5
6.7281 6.7284 6.7287 7.7312 7.7315 7.7318

0.10 52 5 52 5 52 5 52 5 52 5 52 5
6.7296 6.7299 6.7309 7.7426 7.7429 7.7512

0.11 52 5 52 5 52 5 52 5 52 5 52 5
6.8371 6.8373 6.8376 7.7516 7.7534 7.7547

https://doi.org/10.17993/3cemp.2022.110250.33-4845

3C Empresa. Investigación y pensamiento crítico. ISSN: 2254-3376 Ed. 50 Vol. 11 N.º 2  August - December 2022 



Figure 1 – TC versus γ1

γ2 = 0.8, S1 = 52, s1 = 5, S2 = 20, s2 = 3, N1 = 3, N2 = 3, ch1
= 0.01, ch2

= 0.01, cr = 0.55, cr1 = 0.45, cr2 = 0.5, cb1 = 0.1, cb2 =

0.1, cp1 = 0.1, cp2 = 0.4..

Figure 2 – TC versus γ2

γ1 = 0.01, S1 = 52, s1 = 5, S2 = 20, s2 = 3, N1 = 3, N2 = 3, ch1
= 0.01, ch2

= 0.01, cr = 0.55, cr1 = 0.45, cr2 = 0.5, cb1 = 0.1, cb2 =

0.1, cp1 = 0.1, cp2 = 0.4.

7 CONCLUSION

In this article, we examined the substitutable perishable inventory system. Specifically, we analyzed the
structure of the system performance that takes place when a local purchase is made to clear the backlog
instantaneously if both commodities have reached zero and demand is backlogged up to predetermined
levels. Arriving customers follow a Markovian arrival process. The commodities are assumed to be
substitutable. If both commodities have reached zero, demand is backlogged up to predetermined levels.
Graphical results of perishable rates and replenishment rates had been presented. This shows that if
the perishable and replenished rate increases then the total cost would increases. The results of the
contribution were illustrated using numerical patterns to estimate the convexity of the overall cost rate
of this system. The impact of cost values on total expected cost rate were shown. In the future, our
proposed model can be expanded by various reordering policies and described by real data values.
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structure of the system performance that takes place when a local purchase is made to clear the backlog
instantaneously if both commodities have reached zero and demand is backlogged up to predetermined
levels. Arriving customers follow a Markovian arrival process. The commodities are assumed to be
substitutable. If both commodities have reached zero, demand is backlogged up to predetermined levels.
Graphical results of perishable rates and replenishment rates had been presented. This shows that if
the perishable and replenished rate increases then the total cost would increases. The results of the
contribution were illustrated using numerical patterns to estimate the convexity of the overall cost rate
of this system. The impact of cost values on total expected cost rate were shown. In the future, our
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