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ABSTRACT

In this paper, we provide a characterization for the subshifts of finite type (SFT) in terms of Cellular
automata (CA). In addition, we prove that

1. The following are equivalent for a non-singleton subshift of finite type XF .

a) XF is transitive and Per(XF ), the set of periodic points of XF , is cofinite

b) XF is weak mixing

c) XF is mixing.

2. For non-singleton sofic shifts, only the statements (a) and (b) are equivalent.
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1 INTRODUCTION AND PRELIMINARIES

A dynamical system is a pair (X, f), where X is a metric space and f is a continuous self map. For
each dynamical system (X, f), the period set Per(f) = {n ∈ N : ∃ x ∈ X such that fn(x) = x ̸=
fm(x) ∀m < n} consisting of the lengths of the cycles there, is a subset of the set N of positive integers.
We say that a point x ∈ X is periodic if fnx = x for some n ∈ N, where fn is the composition of
f with itself n times. The smallest such positive integer n is called the period of x. Two dynamical
systems (X, f), (Y, g) are said to be topological conjugate if there exists a homeomorphism h : X → Y
such that h ◦ f = g ◦ h. If there is a continuous surjection h : X → Y such that h ◦ f = g ◦ h then
we say that (Y, g) is a factor of (X, f). A dynamical system (X, f) is said to be transitive if for any
non-empty open sets U, V in X there exists n ∈ N such that fn(U) ∩ V ≠ ∅ and is said to be mixing if
for any non-empty open sets U, V in X there exists n ∈ N such that fm(U) ∩ V ̸= ∅ for all m ≥ n. A
dynamical system (X, f) is said to be weak mixing, if given any four nonempty open sets U1, V1, U2, V2

in X there exists m ∈ N such that fm(U1) ∩ V1 and fm(U2) ∩ V2 are non-empty.

The subshifts form an important class of dynamical systems, because almost all dynamical systems
are factor of some subshifts. There are plenty of books that explain how their study would throw light on
still larger classes of dynamical systems (see [7], [10] and [14]). There are some dynamical systems such
that the notions transitivity together with cofiniteness, weak mixing, and mixing which are equivalent
(See [5], [8] for interval maps, See [2] for topological graph maps). It is natural to ask on which spaces a
similar result will be true. We find that the same result is true in the class of non-singleton SFTs, and in
the class of continuous 2-dimensional toral automorphisms. Note that SFTs, continuous 2-dimensional
toral automorphisms and topological graph maps are different kinds of dynamical systems, and we
cannot hope to have a similarity of proofs. In this paper, we concentrate on two-sided shifts. The case
of one-sided shifts is similar.

Let A be a non-empty finite set (called alphabet) with discrete topology and consider the set AZ,
which denotes the set of doubly-infinite sequences (xi)i∈Z where each xi ∈ A, with product topology. It
is compact and metrizable. The shift is the homeomorphism σ : AZ → AZ given by σ(x)i = xi+1 for all
i ∈ Z. A subset A ⊂ AZ is called σ-invariant if σ(A) ⊂ A. The pair (AZ, σ) forms a dynamical system
called a full shift. A subshift is a σ- invariant non-empty closed subset X of a full shift, together with
the restriction of σ to X. We denote the set of periods of all periodic points of σ in X by Per(X). We
call Per(X) the period set of X. A word w on A is a concatenation w1w2...wk, where each wi ∈ A
and (w)n = wr whenever n ≡ r(mod k). A subshift X is said to be a subshift of finite type (SFT) if
X = XF = {x ∈ AZ : no word in F occurs in x} for some finite set of words F . A subshift X ⊂ AZ is
called sofic if it is a factor of an SFT.

The notion of strongly connected digraphs is well known. For every SFT, there is an associated
digraph and an associated matrix as described in [7]. This may or may not be strongly connected. Let
G = (V,E) be any directed graph (digraph) with vertex set V and edge set E. A subgraph G′ = (V ′, E′)
of G is said to be a full subgraph if E′ = E ∩ {(v1, v2) : v1, v2 ∈ V ′}. A digraph is said to be simple if
from every vertex v to a vertex w there is atmost one edge and it is said to be strongly connected if for
every pair of vertices there exists a directed path. It is to be noted that a connected digraph may not
be strongly connected. The SFT associated for a digraph G is denoted as XG and the SFT associated
for an m×m matrix A with entries 0 or 1 is denoted as XA. Let V ′ = {v ∈ V : there exists a cycle
through this v}. Consider a full subgraph of a simple digraph G with vertex set V ′, say G′ = (V ′, E′).
Define a relation R on V ′ in such a way that xRy if there is a directed path from x to y and from y
to x. Then R is an equivalence relation on the set of vertices V ′. Let G

′
x be the full subgraph of G′

with [x], equivalence class of x, as the vertex set. This G
′
x is strongly connected simple digraph and

G′ can be written as a finite union of such strongly connected simple digraphs, say
⋃n

i=1Gi. The SFT
associated for a simple digraph G is denoted as XG. Note that Per(XG) = Per(XG′).

Let A be an alphabet having atleast two elements. Let r ∈ N0. A function f : A2r+1 → A is called a
local rule. It induces a function F : AZ → AZ by the rule

(F (x))n = f(xn−r, xn−r−1, ..., xn−1, xn, xn+1, ..., xn+r−1, xn+r) for all n ∈ Z. The pair (AZ, F ) (sim-
ply the map F : AZ → AZ) is called a cellular automaton (abbreviated as CA). A map F : AZ → AZ is
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a cellular automaton if and only if it is continuous and commutes with the shift (see [13]).

Our main results prove that:

1. Let (AZ, F ) be any CA. Then Fix(F ) is an SFT or empty set. Conversely given any SFT X
there exists a CA F such that Fix(F ) = X.

2. The following are equivalent for a subset S of N.

a) S = Per(X) for some mixing subshift of finite type X.

b) Either S = {1} or N \ F for some finite subset F of N.

3. a) The following are equivalent for a non-singleton SFT X.

i. X is transitive and Per(X) is cofinite
ii. X is weak mixing
iii. X is mixing.

b) In general, in the case of non-singleton sofic shifts, only the statements 3(a)ii and 3(a)iii are
equivalent.

The results are intuitive in nature and provide a basic understanding of the dynamics of shift spaces.
This review article will be useful to any reader interested in understanding basics of dynamics of shift
spaces.

2 SUBSHIFTS OF FINITE TYPE AND SOFIC SHIFTS: TRANSITIVITY, WEAK
MIXING, MIXING

One of the result in this paper is motivated by the following two known theorems.

Theorem 1. The following are equivalent for a topological graph map f : G → G (See [5], [8] for
interval maps, See [2] for topological graph maps).

1. f is transitive and Per(f) is cofinite (ie., N \ Per(f) is finite)

2. f is weak mixing

3. f is mixing.

Theorem 2. The following are equivalent for a continuous toral automorphism T : T2 → T2.

1. T is transitive and Per(T ) is cofinite (ie., N \ Per(T ) is finite)

2. T is weak mixing

3. T is mixing.

Proof. Proof follows from the main results of [16] and [17].

2.1 SUBSHIFTS OF FINITE TYPE

Let A be a k × k adjacency matrix (i.e., the matrix with entries 0 or 1). We call the matrix primitive if
there exists N ∈ N such that AN > 0. Now we consider the following known proposition.

Proposition 1. [7] An SFT induced by a matrix A with non-zero rows and columns is mixing if and
only if A is primitive.

https://doi.org/10.17993/3ctecno.2022.v11n2e42.13-23

Next we state the following known theorem. We denote any finite subset A of N as A ⊂⊂ N, and
gcd for the greatest common divisor.

Theorem 3. [1] The following are equivalent for a subset S of N.

1. S = Per(XG) for some strongly connected simple digraph G containing cycles of lengths m1, ...,mk

such that gcd(m1,m2, ...,mk) = 1.

2. Either S = {1} or S = N \ F for some F ⊂⊂ N.

Next we have:

Theorem 4. A strongly connected simple digraph G induced by an adjacency matrix Ak×k with non
zero rows and columns contains cycles of lengths m1,m2, ...,mk such that gcd(m1,m2, ...,mk) = 1 if
and only if A is primitive.

Proof. Suppose that G is a strongly connected simple digraph, and contains cycles of lengths
m1,m2, ...,mk such that gcd(m1,m2, ...,mk) = 1. Without loss of generality we can assume that
these are simple cycles of G that contain all vertices. By a basic number theory result, there exists
n0 ∈ N, F ⊂⊂ N such that for all n ≥ n0, n ∈ N \ F there exist a1, a2, ..., ak ∈ N such that
n = a1m1 + a2m2 + ...+ akmk. Therefore, given any vertex x there exists a cycle of length n for all
n ≥ n0. Let m = diam(G) = Max{l(x, y) : x, y ∈ V (G)} where l(x, y) denotes the length of a directed
path from x to y. Let N = n0 +m. Hence AN > 0 since for every x, y ∈ V (G) there exists a path of
length p for all p ≤ m and for every x ∈ V (G) there exists a cycle of length n for all n ≥ n0. Write
N = n0 +m− p+ p. Hence A is primitive.

Conversely, suppose that A is primitive and gcd(m1,m2, ...,ml) = p > 1 for all cycles of length
mi, 1 ≤ i ≤ p, p ∈ N. Let k = gcd of lengths of all cycles of G. Then there exist cycles of length
m1,m2, ...,ml such that gcd(m1,m2, ...,ml) = k. Then k divides the lengths of all cycles. Also, there
exists s ∈ N such that As > 0, and for every x, y ∈ V (G) there exists a path of length s from x to y
since A is primitive and G is strongly connected. Therefore k divides s and s+ 1, which implies k = 1.
A contradiction. Hence the proof.

Corollary 1. A strongly connected simple digraph G contains cycles of length m1, ...,mk such that
gcd(m1,m2, ...,mn) = 1 if and only if XG is mixing.

Proof. This follows from Proposition 1, Theorems 3 and 4.

Corollary 2. The following are equivalent for a subset S of N.

1. S = Per(X) for some mixing subshift of finite type X.

2. Either S = {1} or N \ F for some finite subset F of N.

Proof. Proof follows from Theorems 3, 4, and Corollary 1.

The proof of the following theorem relies mostly on the proof of Proposition 1, as given in [7].

Lemma 1. An SFT XA is weak mixing if and only if for every 1 ≤ i1, j1, i2, j2 ≤ k there exists n ∈ N
such that An(i1, j1) > 0 and An(i2, j2) > 0 where A denotes a k × k adjacency matrix.

Proof. Assume that XA is weak mixing. Let U1 = {(xn)n∈Z ∈ XA : x0 = i1}, V1 = {(xn)n∈Z ∈ XA :
x0 = j1}, U2 = {(yn)n∈Z ∈ XA : y0 = i2} and V2 = {(yn)n∈Z ∈ XA : y0 = j2} where 1 ≤ i1, j1, i2, j2 ≤ k.
These sets are open. Then there exists n ∈ N such that σn(Ui) ∩ Vi ̸= ∅, i = 1, 2. Hence x0 = i1, y0 =
i2, xn = j1 and yn = j2. Note that AN (i, j) =

∑k
r1=1 ...

∑k
rN−1=1A(i, r1)A(r1, r2)...A(rN−2, rN−1)A(rN−1, j)

for all N ∈ N. But A(i1, x1) = A(x1, x2) = A(x2, x3) = ... = A(xn−1, j1) = 1 and A(i2, y1) =
A(y1, y2) = A(y2, y3) = ... = A(yn−1, j2) = 1. Therefore An(i1, j1) > 0 and An(i2, j2) > 0.
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Conversely, assume that for every 1 ≤ i1, j1, i2, j2 ≤ k there exists N ∈ N such that AN (i1, j1) > 0 and
AN (i2, j2) > 0. Given non-empty open sets U1, V1, U2, V2 we can choose (i

(l)
n )n∈Z ∈ Ul and (j

(l)
n )n∈Z ∈ Vl

such that for M > 0 sufficiently large; and Ul ⊃ {(xn)n∈Z ∈ XA : xk = i
(l)
k ,−M ≤ k ≤ M},

Vl ⊃ {(xn)n∈Z ∈ XA : xk = j
(l)
k ,−M ≤ k ≤ M} for l = 1, 2 (It is possible since the set of symmetric

cylinders form a base for the topology on AZ).

By hypothesis, there exists N > 0 such that AN (i
(l)
M , j

(l)
−M ) > 0 for l = 1, 2. This means we can find

a word xl1...x
l
N−1 such that A(i

(l)
M , xl1) = A(xl1, x

l
2) = ... = A(xlN−1, j

(l)
−M ) = 1.

Define x
(l)
n =




i
(l)
n if n ≤ M
xln−M if M + 1 ≤ n ≤ M +N − 1

j
(l)
n−(2M+N) if M +N ≤ n

Then σ2M+N (Ul) ∩ Vl ̸= ∅ for l = 1, 2. Hence XA is weak mixing.

Next we have:

Theorem 5. An SFT is weak mixing if and only if it is mixing.

Proof. Let A be an adjacency matrix of order k. Assume that XA is weak mixing. We have to prove
that there exist cycles of lengths m1,m2, ...,mp such that gcd(m1,m2, ...,mp) = 1. Suppose not. Then
there exists s ∈ N \ {1} such that s divides the lengths of all cycles (let s = gcd of lengths all cycles).
Let 1 ≤ v1, w1, v2 ≤ k be such that v1w1 is a block in x for some x ∈ XA. Then there exist a cycle of
length n through v2 and a path of length n from w1 to v1, which implies s divides n and n+ 1. Hence
s = 1. A contradiction. Hence XA is mixing. Converse part is easy.

Hence we have:

Theorem 6. The following are equivalent for a non-singleton SFT XF .

(i) XF is transitive and Per(XF ) is cofinite.

1. XF is weak mixing.

2. XF is mixing.

Proof. We first observe that the period set Per(XF ) of a finite SFT XF is finite. So Per(XF ) is not
cofinite. Except singleton SFTs all other finite SFTs are not weak mixing and hence not mixing. Hence
the theorem follows from Theorems 3, 4 and 5, and Proposition 1.

Remark 1. Suppose some rows of A or columns of A is of full of zeros, say i th row and j th column.
Then remove ith row and j th column. Doing this for all such i and j, we obtain another matrix Ã of
smaller size. Then XA and XÃ are in a sense one and the same. Therefore the equivalence of (2) and
(3) is true for all subshifts induced by adjacency matrices.

Next we consider:

Theorem 7. (see [15]) (Blokh, Barge-Martin) Let f : I → I be an interval map such that the periodic
points are dense in I. Then the interval I decomposes into transitive components Cn in the following
way.

1. Cn is a closed non-degenerate interval or Cn is the union of two disjoint closed non degenerate
intervals,

2. f |Cn is transitive,

3. the complement set of


Cn is included in {x ∈ X : f2(x) = x}.

In addition, the number of transitive components Cn is finite or countable and their interiors are
pairwise disjoint.
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As similar to Theorem 7, now we have:

Theorem 8. Let XF be an SFT for some finite set of words F over an alphabet A with dense set of
periodic points. Then there exists some finite set of words G ⊃ F , and an SFT XG with dense set of
periodic points and it is a finite union of transitive SFTs, and Per(XF ) = Per(XG).

Proof. Let XG denotes the subshift of finite type associated for a simple digraph G such that
XG = XF . Let V be the set of all vertices of G. For v1, v2 ∈ V , we say that v1 ∼ v2 whenever there is a
path from v1 to v2 and vice-versa. Then ∼ forms an equivalence relation on V . Each equivalence class
corresponds to a strongly connected simple digraphs. Let G′ be the union of all such strongly connected
simple digraphs. Observe that Per(XG) = Per(XG′

). Now consider G ⊃ F such that XG = XG′ . Hence
the proof.

Consider a countable set {1, 2, ...}. With the discrete topology it is a non-compact metrizable space.
Let

∑
= {1, 2, ...}Z. With product topology

∑
is a totally disconnected, perfect and non-compact

metric space. As in the finite case, the cylinder sets form a countable basis of clopen sets. The shift,
σ, is a homeomorphism of the space to itself. The dynamical system (

∑
, σ) is the full shift on the

symbols. If A is a countable, zero-one matrix, then as in the finite case, we use transition rules to
define a shift-invariant subset of the full shift on countably many symbols, denoted by

∑
A. Then the

subspace
∑

A of
∑

is non-compact, metrizable and σ :
∑

A →
∑

A is the countable state Markov shift
defined by A.

Next consider the following two known propositions.

Proposition 2. [12] A countable state Markov shift
∑

A is topologically transitive if and only if A is
irreducible.

Proposition 3. [12] A countable state Markov shift
∑

A is topologically mixing if and only if A is
primitive.

Now we have:

Theorem 9. [12] The following are equivalent for countable Markov shift σ :
∑

A →
∑

A.

(i) σ :
∑

A →
∑

A is transitive and Per(σ) is cofinite.

(ii) σ :
∑

A →
∑

A is weak mixing.

(iii) σ :
∑

A →
∑

A is mixing.

Proof. The proof follows from Propositions 2 and 3.

2.2 SOFIC SHIFTS

The notion of labeled digraph is well known (see [14], [7]). For every sofic shift there is a labeled digraph
and vice versa (see [7]). As similar to digraphs, we can define simple labeled digraph and strongly
connected labeled digraph. First we have to define it for corresponding digraphs. Then consider the
corresponding labeled digraphs. As similar to digraphs, for every labeled digraph Γ there exists another
labeled digraph Γ′ such that Per(XΓ) = Per(XΓ′) and Γ′ is a finite union of strongly connected simple
labeled digraphs where XΓ denotes the subshift induced by Γ. Let Γ be a finite labeled digraph, the
edges of Γ are labeled by an alphabet Am = {1, 2, ...,m}. Note that we do not assume that the different
edges of Γ are labeled differently. Let E(Γ) denotes the set of all edges of Γ. The subset XΓ ⊂ AZ

m

consisting of all infinite directed paths in Γ is closed and shift invariant. If a subshift X is topologically
conjugate to XΓ for some labeled digraph Γ, then we say that Γ is a presentation of X.

Proposition 4. [7] A subshift X ⊂ AZ is sofic if and only if it admits a presentation by a finite
labeled digraph.
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Conversely, assume that for every 1 ≤ i1, j1, i2, j2 ≤ k there exists N ∈ N such that AN (i1, j1) > 0 and
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(l)
n )n∈Z ∈ Ul and (j

(l)
n )n∈Z ∈ Vl

such that for M > 0 sufficiently large; and Ul ⊃ {(xn)n∈Z ∈ XA : xk = i
(l)
k ,−M ≤ k ≤ M},

Vl ⊃ {(xn)n∈Z ∈ XA : xk = j
(l)
k ,−M ≤ k ≤ M} for l = 1, 2 (It is possible since the set of symmetric

cylinders form a base for the topology on AZ).

By hypothesis, there exists N > 0 such that AN (i
(l)
M , j

(l)
−M ) > 0 for l = 1, 2. This means we can find

a word xl1...x
l
N−1 such that A(i

(l)
M , xl1) = A(xl1, x

l
2) = ... = A(xlN−1, j

(l)
−M ) = 1.

Define x
(l)
n =




i
(l)
n if n ≤ M
xln−M if M + 1 ≤ n ≤ M +N − 1

j
(l)
n−(2M+N) if M +N ≤ n

Then σ2M+N (Ul) ∩ Vl ̸= ∅ for l = 1, 2. Hence XA is weak mixing.

Next we have:

Theorem 5. An SFT is weak mixing if and only if it is mixing.

Proof. Let A be an adjacency matrix of order k. Assume that XA is weak mixing. We have to prove
that there exist cycles of lengths m1,m2, ...,mp such that gcd(m1,m2, ...,mp) = 1. Suppose not. Then
there exists s ∈ N \ {1} such that s divides the lengths of all cycles (let s = gcd of lengths all cycles).
Let 1 ≤ v1, w1, v2 ≤ k be such that v1w1 is a block in x for some x ∈ XA. Then there exist a cycle of
length n through v2 and a path of length n from w1 to v1, which implies s divides n and n+ 1. Hence
s = 1. A contradiction. Hence XA is mixing. Converse part is easy.

Hence we have:

Theorem 6. The following are equivalent for a non-singleton SFT XF .

(i) XF is transitive and Per(XF ) is cofinite.

1. XF is weak mixing.

2. XF is mixing.

Proof. We first observe that the period set Per(XF ) of a finite SFT XF is finite. So Per(XF ) is not
cofinite. Except singleton SFTs all other finite SFTs are not weak mixing and hence not mixing. Hence
the theorem follows from Theorems 3, 4 and 5, and Proposition 1.

Remark 1. Suppose some rows of A or columns of A is of full of zeros, say i th row and j th column.
Then remove ith row and j th column. Doing this for all such i and j, we obtain another matrix Ã of
smaller size. Then XA and XÃ are in a sense one and the same. Therefore the equivalence of (2) and
(3) is true for all subshifts induced by adjacency matrices.

Next we consider:

Theorem 7. (see [15]) (Blokh, Barge-Martin) Let f : I → I be an interval map such that the periodic
points are dense in I. Then the interval I decomposes into transitive components Cn in the following
way.

1. Cn is a closed non-degenerate interval or Cn is the union of two disjoint closed non degenerate
intervals,

2. f |Cn is transitive,

3. the complement set of


Cn is included in {x ∈ X : f2(x) = x}.

In addition, the number of transitive components Cn is finite or countable and their interiors are
pairwise disjoint.
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Theorem 8. Let XF be an SFT for some finite set of words F over an alphabet A with dense set of
periodic points. Then there exists some finite set of words G ⊃ F , and an SFT XG with dense set of
periodic points and it is a finite union of transitive SFTs, and Per(XF ) = Per(XG).

Proof. Let XG denotes the subshift of finite type associated for a simple digraph G such that
XG = XF . Let V be the set of all vertices of G. For v1, v2 ∈ V , we say that v1 ∼ v2 whenever there is a
path from v1 to v2 and vice-versa. Then ∼ forms an equivalence relation on V . Each equivalence class
corresponds to a strongly connected simple digraphs. Let G′ be the union of all such strongly connected
simple digraphs. Observe that Per(XG) = Per(XG′

). Now consider G ⊃ F such that XG = XG′ . Hence
the proof.

Consider a countable set {1, 2, ...}. With the discrete topology it is a non-compact metrizable space.
Let

∑
= {1, 2, ...}Z. With product topology

∑
is a totally disconnected, perfect and non-compact

metric space. As in the finite case, the cylinder sets form a countable basis of clopen sets. The shift,
σ, is a homeomorphism of the space to itself. The dynamical system (

∑
, σ) is the full shift on the

symbols. If A is a countable, zero-one matrix, then as in the finite case, we use transition rules to
define a shift-invariant subset of the full shift on countably many symbols, denoted by

∑
A. Then the

subspace
∑

A of
∑

is non-compact, metrizable and σ :
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A →
∑

A is the countable state Markov shift
defined by A.

Next consider the following two known propositions.

Proposition 2. [12] A countable state Markov shift
∑

A is topologically transitive if and only if A is
irreducible.

Proposition 3. [12] A countable state Markov shift
∑

A is topologically mixing if and only if A is
primitive.

Now we have:

Theorem 9. [12] The following are equivalent for countable Markov shift σ :
∑

A →
∑

A.

(i) σ :
∑

A →
∑

A is transitive and Per(σ) is cofinite.

(ii) σ :
∑

A →
∑

A is weak mixing.

(iii) σ :
∑

A →
∑

A is mixing.

Proof. The proof follows from Propositions 2 and 3.

2.2 SOFIC SHIFTS

The notion of labeled digraph is well known (see [14], [7]). For every sofic shift there is a labeled digraph
and vice versa (see [7]). As similar to digraphs, we can define simple labeled digraph and strongly
connected labeled digraph. First we have to define it for corresponding digraphs. Then consider the
corresponding labeled digraphs. As similar to digraphs, for every labeled digraph Γ there exists another
labeled digraph Γ′ such that Per(XΓ) = Per(XΓ′) and Γ′ is a finite union of strongly connected simple
labeled digraphs where XΓ denotes the subshift induced by Γ. Let Γ be a finite labeled digraph, the
edges of Γ are labeled by an alphabet Am = {1, 2, ...,m}. Note that we do not assume that the different
edges of Γ are labeled differently. Let E(Γ) denotes the set of all edges of Γ. The subset XΓ ⊂ AZ

m

consisting of all infinite directed paths in Γ is closed and shift invariant. If a subshift X is topologically
conjugate to XΓ for some labeled digraph Γ, then we say that Γ is a presentation of X.

Proposition 4. [7] A subshift X ⊂ AZ is sofic if and only if it admits a presentation by a finite
labeled digraph.
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Theorem 10. [1] The following are equivalent for a subset S of N.

(1) S = Per(XΓ) for some strongly connected labeled digraph Γ containing cycles of length m1,m2, ...,mk

such that gcd(m1,m2, ...,mk) = 1.

(2) Either S = {1} or S = N \ F for some F ⊂⊂ N.

From the definition of transitivity, mixing, weak mixing and by using some ideas from Lemma 1, we
can prove the following lemma for any directed labeled graph Γ. Recall that for every non-empty open
set U in XΓ we can choose (in)n∈Z ∈ U such that for M > 0 sufficiently large; U ⊃ {(xn)n∈Z : xk =
ik,−M ≤ k ≤ M}.

Lemma 2. Let Γ be a labeled digraph. Then the following are true.

1. XΓ is transitive if and only if for every i, j ∈ E(Γ) there exists a directed path of length n from i
to j for some n ∈ N.

2. XΓ is weak mixing if and only if for every i1, j1, i2, j2 ∈ E(Γ) there exist directed paths of length
n from i1 to j1 and from i2 to j2 for some n ∈ N.

3. XΓ is mixing if and only if for every i, j ∈ E(Γ) there exists N ∈ N such that for all n ≥ N there
is a directed path of length n from i to j.

Theorem 11. Let Γ be a strongly connected labeled digraph. Then Γ contains cycles of lengths
m1,m2, ...,mk such that gcd(m1,m2, ...,mk) = 1 if and only if XΓ is mixing.

Proof. We can provide a proof similar to that of Theorem 4. Here while proceeding the proof without
loss of generality it is not possible to assume the cycles are simple. Still the conclusion is true.

Corollary 3. The period set of a mixing SFT is

either {1} or N \ F for some F ⊂⊂ N.

Proof. Proof follows from Theorems 10 and 11.

Theorem 12. A sofic shift is weak mixing if and only if it is mixing.

Proof. Because of Lemma 2 and Theorem 11, we can provide a proof similar to that of Theorem 5.

Remark 2. There exists a sofic shift XΓ which is transitive and its period set is cofinite, but it is not
Mixing.

Proof. Let XΓ be the sofic shift based on the directed graph Γ with vertices 0 and 1, arcs labeled
a, b, c from 0 to 1, and arcs labeled a, b, d from 1 to 0. Then XΓ is the image of the topologically
transitive subshift of finite type, based on Γ but with distinctly labeled edges. The period set of XΓ is
N. But XΓ is not topologically mixing by Theorems 11. Hence the remark follows.

Remark 3. If XΓ is a transitive non-singleton sofic shift, then the set of periodic points of σ in XΓ is
dense in XΓ. But a compact dynamical system which is totally transitive and has a dense set of periodic
points is weak mixing (See [4]). Therefore XΓ is totally transitive if and only if XΓ is weak mixing. In
general, for a subshift, the conclusion of Theorem 12 need not be true. There is a subshift which is weak
mixing but not mixing (Chacon shift, See [11]).

https://doi.org/10.17993/3ctecno.2022.v11n2e42.13-23

3 A CHARACTERIZATION OF AN SFT

The cellular automata play an important role in various contexts such as computer graphics, parallel
computing and cell biology. It is natural to ask for a neat description of the sets of periodic points of
cellular automata, unfortunately we do not have a complete answer. There have been some papers that
discussed about the sets of periodic points for continuous self maps (See [3], [7], [9]). It is natural to
ask: Which sets will arise as the set of all periodic points of continuous self maps? This question is too
abstract. If we ask the same question in the class of some nice class of maps then we can expect a nice
answer. In this section, we consider in the case of CA. Characterization of the sets of periodic points
for a continuous self map of an interval is incomplete. J.-P. Delahaye gave partial results in this context
(see Propositions 5, 6). This is our first motivation for considering CA. We completely solved in the
case of a continuous 2-dimensional toral automorphism in [16] (see Theorem 13). This is our second
motivation for considering CA. In this section we give a partial answer in the case CA. Our result is
similar to the following propositions 5 and 6, and Theorem 13. It characterizes an SFT in terms of a
CA.

Proposition 5. [9] (i) The set of fixed points of a continuous function from [0, 1] to [0, 1] is a closed
subset of [0, 1].

(ii) For every closed subset F of [0, 1] there exists a continuous function f whose fixed point set is F
.

Definition 1. A subset F of [0, 1] is symmetric if for x ∈ [0, 1], 1
2 + x ∈ F ⇔ 1

2 − x ∈ F .

Proposition 6. [9] (i) The set of periodic points of period 1 or 2 of a continuous function from [0, 1]
to [0, 1] is a closed subset of [0, 1].

(ii) For every symmetric closed subset of [0, 1] there exists a continuous function from [0, 1] → [0, 1]
whose set of periodic points period 1 or 2 is F ∪ {1

2}.

Theorem 13. [16]

For any continuous toral automorphism T , the set P (T ) of periodic points of T is one of the following:

1. Q1 ×Q1, where Q1 denotes the set of all rational points in [0, 1).

2. Sr for some r ∈ Q ∪ {∞}; where Sr = {(x, y) ∈ T2 : rx+ y is rational }.

3. T2.

Definition 2. A dynamical system (X, f) has the shadowing property, if for any ϵ > 0 there exists
δ > 0 such that any finite δ-chain is ϵ-shadowed by some point. A point x ∈ X ϵ-shadows a finite
sequence x0, x1, ..., xn, if for all i ≤ n, d(F i(x), xi) < ϵ. A (finite or infinite) sequence (xn)n≥0 is a
δ-chain, if d(F (xn), xn+1) < ϵ for all n.

ie., ∀ϵ > 0, ∃δ > 0, ∀x0, ..., xn, (∀i, d(F (xi), xi+1) < δ =⇒ ∃x, ∀i, d(F i(x), xi) < ϵ).

Definition 3. A dynamical system (X, f) is open, if f(U) is open for any open U ⊂ X.

There are two distinct topological characterization of SFT known in literature as follows.

Theorem 14. [13] A subset X ⊂ AN is an SFT if and only if X has the shadowing property.

Theorem 15. [13] A subset X ⊂ AN is an SFT if and only if X is an open subset of AN.

Next we have:

Lemma 3. For every SFT X, there exists a finite set of words G having odd length such that X = XG.

Proof. Let X be a k-step SFT. Then there exists a finite set of words F having length atmost k
such that X = XF . If k is odd then consider G = {x ∈ Wk(AZ) : y is a subword of x for some y ∈ F}.
If k is even then consider G = {x ∈ Wk+1(AZ) : y is a subword of x for some y ∈ F}.
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Theorem 10. [1] The following are equivalent for a subset S of N.

(1) S = Per(XΓ) for some strongly connected labeled digraph Γ containing cycles of length m1,m2, ...,mk

such that gcd(m1,m2, ...,mk) = 1.

(2) Either S = {1} or S = N \ F for some F ⊂⊂ N.

From the definition of transitivity, mixing, weak mixing and by using some ideas from Lemma 1, we
can prove the following lemma for any directed labeled graph Γ. Recall that for every non-empty open
set U in XΓ we can choose (in)n∈Z ∈ U such that for M > 0 sufficiently large; U ⊃ {(xn)n∈Z : xk =
ik,−M ≤ k ≤ M}.

Lemma 2. Let Γ be a labeled digraph. Then the following are true.

1. XΓ is transitive if and only if for every i, j ∈ E(Γ) there exists a directed path of length n from i
to j for some n ∈ N.

2. XΓ is weak mixing if and only if for every i1, j1, i2, j2 ∈ E(Γ) there exist directed paths of length
n from i1 to j1 and from i2 to j2 for some n ∈ N.

3. XΓ is mixing if and only if for every i, j ∈ E(Γ) there exists N ∈ N such that for all n ≥ N there
is a directed path of length n from i to j.

Theorem 11. Let Γ be a strongly connected labeled digraph. Then Γ contains cycles of lengths
m1,m2, ...,mk such that gcd(m1,m2, ...,mk) = 1 if and only if XΓ is mixing.

Proof. We can provide a proof similar to that of Theorem 4. Here while proceeding the proof without
loss of generality it is not possible to assume the cycles are simple. Still the conclusion is true.

Corollary 3. The period set of a mixing SFT is

either {1} or N \ F for some F ⊂⊂ N.

Proof. Proof follows from Theorems 10 and 11.

Theorem 12. A sofic shift is weak mixing if and only if it is mixing.

Proof. Because of Lemma 2 and Theorem 11, we can provide a proof similar to that of Theorem 5.

Remark 2. There exists a sofic shift XΓ which is transitive and its period set is cofinite, but it is not
Mixing.

Proof. Let XΓ be the sofic shift based on the directed graph Γ with vertices 0 and 1, arcs labeled
a, b, c from 0 to 1, and arcs labeled a, b, d from 1 to 0. Then XΓ is the image of the topologically
transitive subshift of finite type, based on Γ but with distinctly labeled edges. The period set of XΓ is
N. But XΓ is not topologically mixing by Theorems 11. Hence the remark follows.

Remark 3. If XΓ is a transitive non-singleton sofic shift, then the set of periodic points of σ in XΓ is
dense in XΓ. But a compact dynamical system which is totally transitive and has a dense set of periodic
points is weak mixing (See [4]). Therefore XΓ is totally transitive if and only if XΓ is weak mixing. In
general, for a subshift, the conclusion of Theorem 12 need not be true. There is a subshift which is weak
mixing but not mixing (Chacon shift, See [11]).
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There are two distinct topological characterization of SFT known in literature as follows.

Theorem 14. [13] A subset X ⊂ AN is an SFT if and only if X has the shadowing property.

Theorem 15. [13] A subset X ⊂ AN is an SFT if and only if X is an open subset of AN.

Next we have:

Lemma 3. For every SFT X, there exists a finite set of words G having odd length such that X = XG.

Proof. Let X be a k-step SFT. Then there exists a finite set of words F having length atmost k
such that X = XF . If k is odd then consider G = {x ∈ Wk(AZ) : y is a subword of x for some y ∈ F}.
If k is even then consider G = {x ∈ Wk+1(AZ) : y is a subword of x for some y ∈ F}.
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Claim: XF = XG .

Let x ∈ XF . Suppose x /∈ XG . Then for some y ∈ F , y is a subword of x. A contradiction. Therefore
x ∈ XG . Next, let x ∈ XG . Which implies y is not a subword of x for all y ∈ F . Then x ∈ XF . Hence
the claim.

Next we have:

Theorem 16. Let (AZ, F ) be any CA. Then Fix(F ) is an SFT or an empty set. Conversely given any
SFT X there exists a CA F such that Fix(F ) = X.

Proof. Let (AZ, F ) be a CA defined by the local rule f : A2r+1 → A. Let F = {w ∈ A2r+1 :
f(w) ̸= the middle term of w}. Note that F is finite (it may be empty or A2r+1). First, let x ∈ XF .
Which implies (F (x))i = xi for all i. ie., F (x) = x. Next, let x ∈ AZ such that F (x) = x. Then
f(xi−rxi−r+1...x0...xi+r−1xi+r) = xi for all i. ie., x ∈ XF . Hence Fix(F ) = XF .

Conversely, given any SFT XF without loss of generality assume that F contains words of same
length (odd length) because of Lemma 3.

Define f : A2r+1 → A such that

f(w) =

{
the middle term of w if w is forbidden
some other alphabet otherwise

Then Fix(F ) = XF .

Remark 4. In the statement of Theorem 16, we can replace Fix(F ) by Fix(Fn) .

Proof. Let f : A2r+1 → A be the local rule of a CA F : AZ → AZ. The local rule f : A2r+1 → A
induces a function f̃ : A2s+2r+1 → A2s+1 for all s. Then by inductively, define fn : A2nr+1 → A such
that fn(w) = f(f̃n−1(w)) where f̃m : A2r+2(m−1)r+1 → A2r+1 denotes the induced function of fm for
s = r. Note that the length of f̃(w) is equal to the difference between the length of w and 2r. Let
Fn = {w : fn(w) ̸= the middle term of w}. Then Fix(Fn) = XFn .

Converse part follows easily.

Remark 5. Let (AZ, F ) be any CA. Then Fix(Fn) is an SFT for each n ∈ N. Conversely, given any
SFT X there exists CA Fn : AZ → AZ such that Fix(Fn

n ) = X.

4 CONCLUSIONS

For each self-map f on a set X, we associate a subset of N namely, Per(f). If f belongs to a certain
nice class of functions, then not all subsets of N may arise as the set of periods. Which subsets of N
will come in this class? We answer this question for mixing SFT?s, and for mixing sofic shifts.
It is natural to ask: On which class of dynamical systems the following statements are equivalent?

1. f is transitive and Per(f) is cofinite.

2. f is weak mixing

3. f is mixing.

We have proved that the above statements are equivalent in the case of non-singleton SFT’s but not
true in the case of sofic shifts. Also we have obtained a characterization for SFT ’s in terms of Cellular
automata.
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