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ABSTRACT

In this survey article on extreme states of operator spaces in Ci-algebras and related ternary ring of
operators an extension result for rectangular operator extreme states on operator spaces in ternary rings
of operators is discussed. We also observe that in the spacial case of operator spaces in rectangular
matriz spaces, rectangular extreme states are conjugates of inclusion or identity maps implemented by
isometries or unitaries. A characterization result for operator spaces of matrices for which the inclusion
map is an extreme state is deduced using the above mentioned results.
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1 INTRODUCTION

Arveson’s extension theorem [3, Theorem1.2.3] for completely positive(CP) maps in the context of
operator systems in Ci-algebras is a remarkable result in the study of boundary representations of
Ci-algebras for operator systems. The theorem asserts that any CP map on an operator system S in
a Cl-algebra A to B.H/ can be extended to a CP map from A to B.H/. A natural non-self-adjoint
counterpart of the set up Arveson worked with can be considered to be consisting of operator spaces
in ternary rings of operators(TROs) and completely contractive maps on them. An important recent
work in this scenario is [10] where rectangular matrix convex sets and boundary representations of
operator spaces were introduced. An operator space version of Arveson’s conjecture, namely, every
operator space is completely normed by it’s boundary representations is also established in [10].

Apart from Arveson’s fundamental work [3-5], we refer to the work of Douglas Farenick on extremal
theory of matrix states on operator systems [8,9] and Kleski’s work on pure completely positive maps
and boundary representations for operator systems [12].

In this article we study an extension result for rectangular extreme states on operator spaces in
TROs. A characterization result for rectangular extreme state on operator spaces of matrices with
trivial commutants is deduced.

2 Preliminaries

In this section we recall the fundamental notions that we require for the discussions later on in this
article.

Let H and K be Hilbert spaces and B.H, K/ be the space of all bounded operators from H to K.
When K = H, we denote B.H,H/ by B.H/. A (concrete) operator space is a closed subspace of the
(concrete) Ci-algebra B.#H /. The space B.H, K/ can be viewed as a subspace of B.C H/, and hence it
is always an operator space which we study more in later parts of this article.

An abstract characterisation of operator spaces was established by Ruan [16]. A subclass of operator
spaces called ternary rings of operators referred to as TROs is of special interest to us here. These
were shown to be the injective objects in the category of operator spaces and completely contractive
linear maps by Ruan [17].

Definition 1. A ternary ring of operators (TRO) T is a subspace of the Ci-algebra B.H/ of all
bounded operators on a Hilbert space H that is closed under the triple product .x,y,z/ — xyiz for all
z,y,z B T.

A triple morphism between TROs is a linear map that preserves the triple product.

A triple morphism between TROs can be seen as the top-right corner of a *~homomorphism between
the corresponding linking algebras [11]; see also [6, Corollary 8.3.5].

Clearly, an obvious, but important example of a TRO is the space B.H,K/, where H and K are
Hilbert spaces.
Definition 2. Let X and Y be operator spaces. A linear map ¢ : X — Y is called completely
contractive (CC) if the linear map 1, ¢ : M,, X - M,, Y is contractive for all n.

We denote the set of all CC maps from X to B.H,K/ by CC.X,BH,K//.
Definition 3. A representation of a TRO T is a triple morphism ¢ : T — B.H,K/ for some Hilbert
spaces H and IC.

A representation ¢ : T — B.H,K/ is irreducible if, whenever p, q are projections in B.H/ and
B.K/ respectively, such that g¢.x/ = ¢.x/p for every x E T, one has p =0 and ¢ =0, or p =1 and
q=1.
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A linear map ¢ : T - B.H,K/ is nondegenerate if, whenever p, q are projections in B.H/ and
B.K/, respectively, such that q¢.z/ = ¢.x/p = 0 for every z E T, one has p =0 and ¢ = 0.

Definition 4. A rectangular operator state on an operator space X is a non degenerate linear map
¢: X > BH,K/ such that ¢, = 1 where the norm here is the completely bounded norm.

Several characterizations of nondegenerate and irreducible representations of TROs are obtained
in [7, Lemma 3.1.4 and Lemma 3.1.5].

A concrete TRO T B.H,K/ is said to act irreducibly if the corresponding inclusion representation
is irreducible.

3 systems and spaces

An operator system in a Ci-algebra is a unital selfadjoint closed linear subspace. Let S be an operator
system in a Ci-algebra A, and B be any other Ci-algebra.

A linear map ¢ : S - B is called completely positive (CP) if the linear map I, ¢ : M,, S - M,, B is
positive for all natural numbers n.

We denote the set of all unital CP maps from S to B.H/ by UCP.S,B.H//.

One of the crucial theorems in this context is Arveson’s extension theorem [3, Theorem1.2.3].
Arveson’s extension theorem asserts that any CP map on an operator system S to B.H/ can be
extended to a CP map from the Ci-algebra A to B.H/.

Given an operator space X B.H, K/, we can assign an operator system S.X/ B.K H/, called the
Paulsen system [15, Chapter 8] which is defined to be the space of operators

Me =« .. ..
K x,yE X\, uEC

where Iy, I denote the identity operators on H, K respectively. It is well known that [15, Lemma
8.1] any completely contractive map ¢ : X — B.H, K/ on the operator space X extends canonically to
a unital completely positive (UCP) map S.¢/ : S.X/ — B.K H/ defined by

Mg, = | Mg ¢x/
SW({ y"C NIHOJ /= Lﬁ-y’;‘ uIHJ'

4 Extreme states and boundary theorems

4.1 Commutant of a TRO and boundary theorem

We introduce the notion of commutant of a rectangular operator set X B.H, K/ for Hilbert spaces
H and K. In the context of Hilbert Ci-module by Arambasi¢ [1] introduced a similar notion. We can
now define commutants of operator spaces in general and TROs in particular. We will prove that in
the case of TROs, the commutants satisfy the usual properties with respect to the relevant notions of
invariant subspaces and irreducibility of representations and thereby justifying the term. We observe
that commutant behaves well with respect to the Paulsen map which is crucial for us. Throughout the
artilce unless mentioned otherwise T represents a TRO.

Definition 5. For X B.H, K/, the commutant of X is the set in B.K H/ denoted by X1 and defined
by
)(1 = AAl A2 E B.K H/ : A1 E B’C/ and A2 E BH/,Alx == LEAQ and

Aot = 21 Ay, Az E X¢
where .Ay As/.m mo/ = Aim Asne, m E K and no E H.
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Remark 1. For any non-empty set X B.H,K/, the commutant X' is a von Neumann subalgebra of
B.K H/.

Definition 6. Let ¢ : T - B.H,K/ be a non-zero representation and H1 H and K1 K be closed
subspaces. We say that the pair Hi,K1/ of subspaces is ¢-invariant if $.T/H; Ky and ¢.T /1K1 H;.
The following two results follow easily from the definitions above.

Lemma 1. Let ¢ : T — B.H, K/ be a non-zero representation. Let p and q be the orthogonal projections
on closed subspaces Hy H and K1 K respectively. Then .Hy, K1/ is a ¢ -invariant pair of subspaces

if and only if ¢ p E qS.T/I.

Corollary 1. Let ¢ : T — B.H, K/ be a representation. Then ¢ is irreducible if and only if ¢ has no
¢-invariant pair of subspaces other than .0,0/ and .H,K/.

The following result illustrate that the term commutant used above is an appropriate one.
Proposition 1. Let ¢ : T — B.H, K/ be a non zero representation of a TRO T. Then ¢ is irreducible
if and only if .T)' = C.Ix Ig/.

Proof. Assume ¢ is irreducible. Let ¢ p be a projection in ¢.T'/ I, From the definition of commutant
we have ¢.x/p = q¢.xz/. By irreducibility of ¢ we have either p = 0 and ¢ =0, or p =1 and ¢ = 1.
Hence ¢.T/' = C.Ix Iy/.

Conversely let <;5.T/I = C.Ig Iy/ and p, q be projections such that ¢.x/p = q¢.z/. Applying adjoint
we have pp.z/i = ¢.x/iq. Thus ¢ p E ¢.T/'. By assumption, either p =0 and ¢ =0, or p=1 and ¢ = 1.
Hence ¢ is irreducible.

The following result shows that commutant behaves well with respect to the Paulsen map.

Lemma 2. For a rectangular matriz state ¢ : X — My, ,,,.C/ we have
0. X/ =1[8.0/.5.X//]"
Proof. To show <;5.X/I [S.qb/.S.X//]i, consider Ay As E (;S.X/I, then we have

{/\ qﬁ.x/J {Al oJ_ A, ¢.x/A2J

oy/t w0 Az |oy/lAL pAs
. )\Al AMﬁ(I}/
N _142¢-3//i pA

. A1 0 A (;5:6/
L0 A [oy/t
Hence A1 Ay B [S.¢/.5.X//]L.

Conversely, since the Paulsen system contains a copy of scalar matrices, if A E [S.¢/.5.X// ]i, then
A=Ay As, where A] E B.K/ and Ay £ B.H/. Using the commutativity relation of the Paulsen map

on the matrices
0 ¢.x/ 0 0
{0 0 J and Ljﬁ.x/i oJ

we can conclude thgt A1¢:x/ = ¢.x/Ay and Asp.x/i = p.x /i Ay, Az B X. Hence A= A; Ay B gb.X/i.
Thus [S.¢/.5.X//]' ¢.X /"
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We prove a version of the rectangular boundary theorem proved in [10, Theorem 2.17] which is an
analogue of boundary theorem of Arveson in the context of operator systems. Arveson’s boundary
theorem [4, Theorem 2.1.1] states that if S B.#H/ is an operator system which acts irreducibly
on H such that the Ci-algebra Ci.S/ contains the algebra of compact operators K.H/, then the
identity representation of Ci.S/ is a boundary representation for S if and only if the quotient map
B#H/ — B.H/ K.H/ is not completely isometric on S. Our context here is that of an operator space
and the generated TRO.

Throughout we assume that X is an operator space, and T is a TRO containing X as a generating
set. We say that a rectangular operator state ¢ : X — B.H,K/ has wunique extension property if any
rectangular operator state ¢ on T' whose restriction to X coincides with ¢ is automatically a triple
morphism. Boundary representations for operator spaces were introduced in [10]. For our purposes we
consider the following definition which is slightly different from the definition given in [10, Definition
2.7] but we remark that both are the same.

Definition 7. An irreducible representation 6 : T — B.H,K/ is a boundary representation for X if
0 is a rectangular operator state on X and 0, has unique extension property.

An exact sequence of TROs induces an exact sequence of the corresponding linking algebras, which
is actually an exact sequence of Ci-algebras. The decomposition result for representations of Ci-algebras
is well known [5, section 7] and the result for TROs follows from it.

If0—T°— T — T! - 0 is an exact sequence of TRO’s, then every non degenerate representation

m:T - BH,K/
of T decomposes uniquely into a direct sum of representations 7 = 7. 7riT where 75 is the unique
extension to T’ of a nondegenerate representation of the TRO-ideal [7, Definition 2.2.7] T°, and where

7 is a nondegenerate representation of T that annihilates 7°. When 7 = 0 we say that 7 lives on T°.

With X and T as above let K£.H,K/ denotes the set of compact operators from H to K. Then
Kr =TaK.H,K/is a TRO-ideal and we have an obvious exact sequence of TRO’s. Denote Kr to
be the set of all irreducible triple morphisms 6 : T - B.H, K/ such that 0 lives on K7 and 6, is a
rectangular operator state on X. The following is a boundary theorem in this context.

Theorem 1. Let X B.H,K/ be an operator space such that TRO T generated by X acts irreducibly
and Kr # ~0°. Then Kt contains a boundary representation for X if and only if the quotient map
q:T - T Kt is not completely isometric on X.

Proof. Assume that the quotient map ¢ is not completely isometric on X. If £ contains no boundary
representations for X, then every boundary representation must annihilate X7 and consequently it
factors through q. By [10, Theorem 2.9], there are sufficiently many boundary representations m;, [ E I,
for X so that

q.zij] < .xij) = sup m.xij/ < .q.xi5/
lET

for every n1mn matrix .z;;/ over X and every n > 1. This is a contradiction.

Conversely, if the quotient map is completely isometric on X, then we show that no 7 E 7 can be
a boundary representation for X. Let 7 : T'— B.H,K/ be an irreducible representation that lives on
K1 and consider the map @ : ¢.T/ - B.K H/ defined by Q.q.a// = w.a/. Then @ is well defined and

Q.q.a// =ma/ <a=q.a/.

Similarly @y.q.aij// < .q.a;;// and hence @ is completely contractive. Then the Paulsen’s map
S.Q/:S.q.T// - B.K H/ is unital and completely positive. By Arveson’s extension theorem S.Q/
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extends to a completely positive map S.Q/: C1.5.q.T/// - B.K H/. Define ¢ : T' - B.H,K/ via

i O

Then clearly 1 is linear. Also for all a E T,

Y.a/ = {8 w(?/J <5.Q/ ({8 q(C)L/J> <5.Q/q.a/ L a.

Since m £ K and ¢, = 7, we have 14 = 1. Also we have 1.7/ = 0 and hence 7.Kp/ = 0 which is
a contradiction to the fact that 7 lives in Krp.

Remark 2. The following result is a specific form of rectangular boundary theorem given above. Here
we give an independent proof which directly uses the corresponding version of Arveson’s boundary
theorem and Lemma 2.

Theorem 2. Assume that X is an operator space in My, ,,.C/ such that dim.Xi/ =11If¢: X >
M,,.m-C/ is a rectangular matriz state on My, ,.C/ for which ¢.x/ = =, Az B X, then ¢.a/ = a,
Aok My, m.C/.

Proof. By Lemma 2, ¢.X/i = [S.¢/.S.X//]I. Hence dim[S.qb/.S.X//}I = 1. Since p.x/ =z, Az B X,
we have S.¢/.y/ =y, Ay BE S.X/. Then by [9, Thoerem 4.2] , S.¢/.2/ = z, A 2 E My1p. In

particular,
0 ¢a/| 0 al, |0 a
o % =sens o] =0 8]

and hence ¢.a/ =a, A a E My, m-C/.

4.2 Rectangular operator extreme states

We prove an important extension result in this section. In this section we prove that any rectangular
operator extreme state on an operator space in a TRO can be extended to a rectangular operator
extreme state on the TRO. Extension results in the same spirit concerning operator systems and UCP
maps were proved by Kleski [12]. The following definition which appeared in [10, Definition 2.9] is
important for our further discussion.

We begin by defining rectangular operator convex combination, and rectangular operator extreme
states.

Definition 8. Suppose that X is an operator space, and ¢ : X — B.H,K/ is a completely contractive
linear map. A rectangular operator convex combination is an expression ¢ = 0411525151 + WV + ol dnfn,
where 3 : H — Hy and a; : K — Ky are lz’negr maps, and ¢; : X — B.?—[>,.IC>/ are completely contractive
linear maps for i = 1,2,y n such that ojoy + 7 + adyo, = 1 and By + 7 + BLBn = 1. Such a
rectangular convex combination is proper if o;, B; are surjective, and trivial if a;ai =M1, Bliﬂi = \1,
and alg;B; = \i¢; for some \; B [0, 1].

A completely contractive map ¢ : X - B.H, K/ is a rectangular operator extreme state if any proper
rectangular operator convex combination ¢ = o ¢181 + V + alydn By is trivial.

Rectangular operator states will be referred to as rectangular matriz states if the underlying Hilbert
spaces are finite dimensional. The following theorem illustrates a relation between linear extreme states
and and rectangular operator extreme states.

Theorem 3. Let X Xy be operator spaces. If a completely contractive map ¢ : Xo —» B.H, K/ is
linear extreme in the set CC.Xo, B/H,KC// of all completely contractive maps from Xo to B/H, K/,
and Dy, is rectangular operator extreme, then ¢ is a rectangular operator extreme state.
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Proof. Let ¢ : X9 — B.H, K/ be linear extreme and ¢, be rectangular operator extreme. Then S.¢/:
S.Xy/ = B.K H/ is linear extreme in UCP.S.Xy/, B.KX H//. For, let 11,¢2 EUCP.S. X2/, B.K H//
and 0 < t <1 be such that

S.p/ =tV +.1*%t/T,.

Then S.¢/ * t¥; is UCP, so by ( [10], Lemma 1.11) there exists a completely contractive map
¢1: Xo - B.H,K/ such that

Azl g A o1.x/ -
i Qy' MJ) -t Lbl.;/i ;IH J w
1 0 I 0
AT Az

Thus ¥y = S.¢1/. Similarly Uy = S.¢2/ for some cc map ¢2 : Xo - B.H,K/. Hence

where

S.¢/ = tS.¢1/+.1*t/S.¢2/ and therefore
¢ = tor+.1%t/po.

Since ¢ is a linear extreme point, we have ¢ = ¢; = ¢o. Thus

S.¢/ = S.1/ =S¢/
S.¢) = Wy =1,

Thus S.¢/: S.X2/ — B.K H/ is a linear extreme point. Since S.¢/,  , is pure [10, Proposition 1.12],
by [12, Proposition 2.2] S.¢/ is a pure UCP map on S.X3/. Hence ¢ is a rectangular operator extreme
state on Xo.

Here we consider the set of bounded operators from X to B.H, K/ with the weaki topology called
the bounded weak topology or BW-topology, identifying this set with a dual Banach space. In its
relative BW-topology, CC.X, B.H,K// is compact (see [3, Section 1.1] or [15, Chapter 7] for details).

Theorem 4. Let X1 Xo be operator spaces. Then every rectangular operator extreme state on X1 has
an extension to a rectangular operator extreme state on Xs.

Proof. Let ¢ B CC.X1, B.H,K// be a rectangular operator extreme state and let
F="yECCXo, BH,K/| 0y, ="

Then clearly F is linear convex, and BW-compact. We claim that it is a face. For let 11,1y E
CC.X1,B.H,K// and 0 < t < 1 be such that ti; +.1*t/19 E F.
Then

twlxl +.1* t/ft/ngl =¢
ts'wl/s.xl/ +.1* t/S-¢2/S‘X1/ = S¢/

Since S.¢/ is pure,
Sah/sx,, =52/, =59/

V1, = V2, = ¢

= 91,1 B F and hence F is a face. Thus F has a linear extreme point say gbI which is a linear extreme
point of CC.Xs, B.H,K//. By Theorem 3, it follows that ¢' : Xy — B.#H,K/ is a rectangular operator

extreme state.
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Now, in view of the above results, extension of rectangular operator extreme state from an operator
space to the generated TRO is immediate.

Corollary 2. If X is an operator space and T is the TRO generated by X and containing X, then any
rectangular operator extreme state on the operator space X can be extended to a rectangular operator
extreme state on the TRO T.

Proof. Follows directly from the Theorem 4 by taking X; = X and Xo =1T.

4.3 Rectangular matrix extreme states

Here we take up the special case of finite dimensional rectangular operator states and show that they are
isometric or unitary ‘conjugates’ of the identity map. Here we investigate the relation between matrix
extreme states on operator spaces and commutants of images of operator spaces under rectangular
matrix extreme states. For operator spaces in rectangular matrix algebras with trivial commutants, we
deduce that rectangular matrix extreme states are certain ’conjugates’ of the identity state.

Proposition 2. If ¢ : X - M, ,,,.C/ is a rectangular matriz extreme state on the operator space X,
then dim.¢. X /'/ = 1.

Proof. The commutant ¢.X / I'is a unital i-subalgebra of My, ,,.C/ and is therefore the linear span
of its projections. Choose any nonzero projection p q B ng.X/i. Then ¢ = qpp + .1 * q/¢.I *p/. Since
¢ is a rectangular matrix extreme point, we have pip = A1, ¢ig = M and .I *p/i.] *p/ = Aol
d*q/i.I*q/ = X and qép = Mo, I *q/d.1*p/ = A2¢, for some A1, A B [0, 1]. Thus A? = A\; and
A3 = \y. This gives p = I and q = I. Therefore ¢.X /! = CI. Hence dim.¢.X /!/ = 1.

Theorem 5. Assume that X is an operator space in My, ,.C/ and that
dim. X'/ =1.

1. If p : X - M, 5.C/ is a rectangular matriz extreme state on X, then r <n, s < m and there are
isometries w: C" — C" and v : C° = C™ such that ¢.x/ = wizv, A z E X.

2. A rectangular matriz state ¢ on X with values in My, ,,.C/ is rectangular matriz extreme if and
only if there exist unitaries v EM,.C/ and u £ M,,.C/ such that ¢.x/ = vizu, A z B X.

Proof. (1): Let X M, ,,.C/, and dim.XI/ =1.Let ¢ : X - M, 5.C/ be a rectangular matrix extreme
state. By Corollary 2, ¢ can be extended to a rectangular extreme state ® : My, ,,.C/ — M,.s.C/. Then
S.®/:SM,,,.C// - B.C" C*/is pure. So by [12, Theorem 3.3] there exists a boundary representation
w : My4m.C// = B.L/ for S M, ;,,.C// and an isometry u : C" C* — L such that

S.¢/.y/ = vw.y/u, for all y £ S.M,,,.C//.

By [10, Proposition 2.8] we can decompose L as an orthogonal direct sum £ = K,, H,, in such a way
that w = S.w/ for some irreducible representation 7 : My, ,.C/ = B.Hyp, Ky /.

From the construction of H,, and /C,,, it follows that « maps C" 0 to I, and 0 C* to ‘H,,. By defining
the maps u1 and us as uy.z/ = u.xz 0/,  EC" and u1.y/ = u.0 y/, y £ C° we see that u; : C" — K,
and ug : C* — H,, are isometries such that u = uj uy. Then ®.2/ = uilﬂ'.flf/’U/Q, Az B My, -C/ and thus
¢ is a compression of an irreducible representation of My, ,,,.C/. Since every irreducible representation
of My, m,.C/ is unitarily equivalent to the identity representation [7, Lemma 3.2.3] we have that ¢ is a
compression of the identity representation. That is, there are isometries w : C" - C" and v : C* - C™
such that

p.x/=wzv, Az E X,

Since v and w are isometries, we conclude that » < n and s < m.
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(2) Let ¢ : X - M;,.C/ be a rectangular matrix extreme state. Then by part .a/, there are
isometries (unitaries in this case) u EM,.C/, v E M,,.C/ such that

p.x/ = vizu, Az B X.

Conversely let ¢.x/ = vizu, Az E X for unitaries u and v then

Az u 0| | A z||u O .
Then by [9, Theorem 4.3] S.¢/ is pure. Hence ¢ is a rectangular matrix extreme state by ( [10,

Proposition2.12]).

The following result is now an immediate consequence of Proposition 2 and Theorem 5.

Theorem 6. Let X M, ,,,.C/ be an operator space. Then the inclusion map i.x/ = z, Az E X, isa

rectangular matrixz extreme state if and only if dim.Xi/ =1.

REFERENCES

[1] Arambasié¢ L.(2005). Irreducible representations of Hilbert C*-modules. Math. Proc. Roy. Irish
Acad., 105 A, 11-14; MR2162903.

[2] Arunkumar C.S., Shabna A. M., Syamkrishnan M. S. and Vijayarajan A. K. (2021).
Extreme states on operator spaces in ternary rings of operators. Proc. Ind. Acad. Sci.131, 44, MR
4338047.

[3] Arveson W. B. (1969). Subalgebras of Ci-algebras. Acta Math. 123, 141-224; MR0253059.

[4] Arveson W. B.(1972). Subalgebras of Ci-algebras I1. Acta Math. 128(1972) no. 3-4 , 271-308;
MR0394232.

[5] Arveson W. B.(2011). The noncommutative Choquet boundary II: Hyperrigidity. Israel J. Math.
184 (2011), 349-385; MR2823081.

[6] Blecher D. P. and Christian Le Merdy (2004). Operator algebras and their modules-an operator

space approach. London Mathematical Society Monographs, New Series, vol. 30, Oxford University
Press, Oxford.

[7] Bohle D. (2011). K-Theory for ternary structures, Ph.D Thesis, Welstfilishe Wilhelms-Universitét
Miinster.

[8] Farenick D. R. (2000). Extremal Matrix states on operator Systems. Journal of London Mathe-
matical Society 61, no. 3, 885-892; MR1766112.

[9] Farenick D. R.(2004). Pure matrix states on operator systems. Linear Algebra and its Applications
393, 149-173; MR2098611.

[10] Fuller A. H., Hartz M. and Lupini M. (2018). Boundary representations of operator spaces,
and compact rectangular matrix convex sets. Journal of Operator Theory, Vol.79, No.1, 139-172;
MR3764146.

[11] Hamana M. (1999). Triple envelopes and Shilov boundaries of operator spaces. Mathematical
Journal of Toyama University 22, 77-93; MR1744498.

[12] Kleski C. (2014). Boundary representations and pure completely positive maps. Journal of
Operator Theory, pages 45-62; MR3173052.

133 | https://doi.org/10.17993/3ctic.2022.112.124-134



Cuadernos de desarrollo aplicados a las TIC. ISSN: 2254-6529 Ed. 41 Vol.1T1N.° 2

[13] Lobel R. and Paulsen V. I. (1981). Some remarks on Ci-convexity. Linear Algebra Appl. 78,
63-78, 1981; MR0599846.

[14] Magajna B. (2001). On Ci-extreme points. Proceedings of the American Mathematical Society
129, 771-780; MR1802000.

[15] Paulsen V. I. (2002). Completely bounded maps and operator algebras. Cambridge Studies in
Advanced Mathematics Vol. 78, Cambridge University Press, Cambridge.

[16] Ruan Z. J. (1988). Subspaces of Ci-algebras. Journal of Functional Analysis 76, 217-230,
MR0923053.

[17] Ruan Z. J. (1989). Injectivity and operator spaces. Transactions of the American Mathematical
Society, 315, 89-104; MR0929239.

[18] Webster C. and Winkler S. (1999). The Krein-Milman theorem in operator convexity. Tran-
sactions of the American Mathematical Society, Vol.351, no 1, 307-322; MR1615970.

[19] Wittstock G. (1984). On Matrix Order and Convexity. Functional Analysis: survey and recent
results, I1I, Math Studies 90, 175-188, MR0761380.

134 https://doi.org/10.17993/3ctic.2022.112.124-134



