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RESUMEN 
 

En el trabajo se estudió un consorcio microbiano metanogénico de una mina de carbón de la cuenca de Bogotá en 
Colombia. Se establecieron cultivos de enriquecimiento de carbón ex situ para el crecimiento y la producción de gas 
de novo. El gas biogénico producido por los cultivos se analizó mediante cromatografía de gases con detectores de 
ionización de llama y conductividad térmica. Los cultivos se utilizaron para aislar estirpes microbianas y para generar 
bibliotecas del gene 16S rARN empleando de cebadores de bacteria y de arquea. El análisis de cromatografía de ga-
ses mostró producción de metano a 37 oC, pero no a 60 oC, donde el CO2 fue el componente principal del gas biogé-
nico. El análisis de la secuencia del gen 16S rARN de estirpes microbianos y de las bibliotecas de clones, estableció 
que el consorcio microbiano metanogénico estuvo formado por especies de bacterias de los géneros Bacillus y Graci-
libacter más la arquea del género Methanothermobacter. El consorcio microbiano metanogénico identificado es poten-
cialmente responsable de la generación de gas biogénico en la mina de carbón La Ciscuda. Los resultados sugirieron 
que los metanógenos de este consorcio producían metano por vía hidrogenotrófica o de reducción de CO2. 
 
Palabras claves: Geomicrobiología, minas de carbón, gas metano, Análisis del gen 16S rARN.  
 
ABSTRACT 
 
The work studied the methanogenic microbial consortium in a coal mine from the Bogotá basin in Colombia. Ex situ coal-
enrichment cultures were established for in vitro growth and de novo gas production. Biogenic gas produced by cultures was ana-
lyzed by gas chromatography using thermal conductivity and flame ionization detectors. Cultures were used to isolate microbial 
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specimens and to generate 16S rRNA gene libraries employing bacterial and archaeal primer sets. The gas chromatographic analy-
sis showed methane production at 37 oC, but not at 60 oC, where CO2 was the major component of the biogenic gas. 16S rRNA 
gene sequence analysis of microbial isolates and clone libraries established that the methanogenic microbial consortium was 
formed by bacteria species from Bacillus and Gracilibacter genera plus archaea from the Methanothermobacter genus. This meth-
anogenic microbial consortium was potentially responsible for biogenic gas generation in La Ciscuda coal mine. The results sug-
gested that these methanogens produced methane by hydrogenotrophic or CO2 reduction pathways. 
 
Keywords: Geomicrobiology, coal mine, methane gas, 16S rRNA gene analysis.  
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INTRODUCTION 
 
Coal bed methane (CBM) refers to methane generated 
by either thermogenic or biogenic processes in coal 
beds (Moore, 2012). This gas trapped in the coal bed is 
recovered by using production wells that cut coal beds, 
allowing the migration of gas from the coal beds to the 
wells, as is illustrated by Figure 1. The stable carbon 
(δ13C) and deuterium (δD) isotopic signatures and gas 
composition analyses in numerous basins worldwide 
have shown important microbial CBM occurrence 
(Strąpoć  et al., 2011), generating much interest in CBM 
technology. CBM generation through bio-stimulation 
and bio-augmentation have been documented as a po-
tential technology for methane production (Jones et al., 
2010). Currently, CBM is supplying 6% of the total natu-
ral gas consumed in the United States of America (U.S. 
Energy Information Agency, 2018).  
 
Analysis of 16S rRNA gene sequences of metagenome 
samples from coal bed cores or aquifers has enlarged 
knowledge on the microbial diversity in coal reservoirs 
throughout world. Coal beds showed a high prokaryotic 
diversity represented by species of Firmicutes, Spiro-
chetes, Bacteroidetes, and all subgroups of Proteobacte-
ria; as well as methanogens, including Methano-
sarcinales, Methanomicrobiales and Methanobacteriales 
species, which represent all the known methanogenic 
pathways (Strąpoć  et al., 2011; Meslé et al., 2013). 
 
Coal methanogenesis is a process involving complex 
consortia that degrade fossil organic matter present in 
coal beds. Briefly, hydrolytic and fermentative bacteria 
hydrolyze complex organic compounds to more simple 
monomers and oligomers. Then the fermenters, 
syntrophs and/or acetogens ferment and/or convert 
these monomers and oligomers mainly to hydrogen (H2), 
carbon dioxide (CO2) and acetate (Wang et al., 2010). 
Finally, methanogens produce methane by hydrogen-
otrophic (CO2 reduction), acetoclastic, or 
methylotrophic methanogenic pathways. Ex situ coal-
enrichment cultures studies showed the Methanosarcina, 
Methanocorpusculum and Methanosaeta species as pre-
dominant methanogens and a wide diversity of hydrolyt-

ic and fermentative bacteria in the methanogenic con-
sortia (Green et al., 2008; Kruger et al., 2008; Strąpoć  et 
al., 2008; Orem et al., 2010; Penner et al., 2010; Barn-
hart et al., 2013). Methane production by microbial con-
sortia appears to be influenced by coal micronutrient 
availability (Ünal et al., 2012), coal rank (Robbins et al., 
2016) and coal oxidation state (Gallagher et al., 2013). 
 
Because Colombia has the largest coal reserves in South 
America, CBM exploitation could contribute significantly 
to increase methane production in the country. The coal-
bearing Guaduas formation of Maastichtian to Paleo-
cene age is present in the Bogotá Basin, Eastern Cordille-
ra of Colombia. Stable carbon (δ13C) and deuterium 
(δD) isotopic signatures indicate that methane gas in the 
Guaduas formation has a mixture of thermogenic and 
biogenic gases (Garcia-Gonzalez, 2010). Since 
knowledge on coal mine methanogens is essential for 
the establishment of CBM technologies, the present 
work aimed to identify the microbial consortia involved 
in coal biogenic methanogenesis in the “La Ciscuda” 
coal mine. Using coal-enrichment cultures, 16S rRNA 
gene metagenome and gas chromatography (GC) anal-
yses, we identified the methanogenic microbial consor-
tia from this coal mine involved in coal degradation and 
subsequent gas production.  
 
MATERIALS AND METHODS 
 
Coal sampling 
Coal samples were taken from an underground and me-
thane-producing coal mine (La Ciscuda) located in the 
middle segment (Mantle No. 11, latitude: 5°12'40.08" 
north; longitude: 73°50'25.60" west) of the Checua-
syncline (Figure 1). Underground coal samples were 
affected by water infiltration from the surface due to 
their shallow depth (< 200 m deep). The geochemical 
characteristics of the coal and associated water in La 
Ciscuda are presented in Table 1.  
 
Coal-enrichment cultures  
Cultures inoculated with powdered- coal samples were 
established using Reinforced Clostridial Medium (RCM) 
purchased from Oxoid LTD (Basingstoke, England), and 
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gasified per 10 min with CO2 to replace oxygen dis-
solved in the medium. RCM was used because it allows 
both growth of anaerobic microbes and provides carbon 
sources (i.e., dextrose, sodium acetate and soluble 
starch) and nitrogen sources (beef extract, peptone, and 
yeast extract) and growth conditions required for meth-
anogenesis, such as osmotic balance (sodium chloride) 
and low redox potentials (L-cysteine). RCM composition 
per liter was as follows: beef extract (10 g), peptone (10 
g), sodium chloride (5 g), dextrose (5 g), yeast extract (3 
g), sodium acetate (3 g), soluble starch (1 g), L-cysteine 
HCl (0.5 g), agar (0.5 g), pH 6.8 ± 0.2. Gas (CO2) media 
supplement was purchased from CryoGas Company 
(Bogotá, Colombia). Briefly, coal portions (0.5 ± 0.2 g) 
were externally sterilized by immersing in ethanol (70%), 
dried and pulverized, and then the coal powder was 
placed in sterile glass canisters containing 20 mL of 
RCM. The coal-enrichment cultures were grown in tripli-
cate for a month. We always included control assays for 
non-microbial growth and non-production of biogenic 
gas, in which the powdered coal samples were placed 
into sterile glass canisters containing only sterile water.  

Gas chromatography analyses  
Gas analysis was carried out using the static headspace 
(S-HS) technique and gas chromatography (GC) coupled 
to a thermal conductivity detector (TCD) and a flame 
ionization detector (FID). The GC-TCD-FID analysis was 
performed in a gas chromatograph AT 7890A (Agilent 
Technologies, Palo Alto, CA, USA), equipped with TCD 
and FID. Gas analysis was performed on a HP 7694E 
static headspace device (Hewlett-Packard, Palo Alto, CA, 
USA) coupled to the gas chromatograph. The columns 
used in the analysis were as follows: i) GS-Carbonplot 
(monolithic carbon, 30 m x 0.53 mm x 3 μm) for H2, O2, 
N2, CO, CH4 separation; ii) HP-PLOT Molesieve [zeolite 
(molecular sieve 5 Å), 30 m x 0.53 mm x 50 μm] for 
CO2, C2H2, C2H4, C2H6, C3H8 separation. A nickel-
powder catalytic converter, installed between the TCD 
and FID, converted CO and CO2 to CH4. FID tempera-
ture was maintained at 250 °C. Oven temperature was 
programmed in the following sequence: from 40 °C (5 
min), at 10 °C/min to 100 °C, and then at 10 °C/min to 
250 °C. Argon (Linde SA Colombia, Bogotá, Colombia) 
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at a volumetric flow rate of 12 mL/min was used as the 
carrier gas. 
 
Isolate collection 
For microbial isolation, the coal-enrichment cultures 
were diluted in phosphate buffer supplemented with 1% 
Triton X-100. Culture dilutions were inoculated (0.1 mL) 
in glass tubes with fresh CO2-gasified RCM and incubat-
ed at either 37 oC or 60 oC, under aerobic and anaerobic 
conditions. Anaerobic condition was maintained using 
the Oxoid Atmosphere Generation System and supple-
ments (Oxoid Ltd, Cambridge, UK). For preservation, 
bacteria were inoculated in glass tubes with semisolid 
RCM (agar 6 g/L), where the microbial colonies were 
collected and grown again in fresh RCM. Bacteria iso-
lates were conserved in zeolite (Sigma-Aldrich, St. Louis, 
USA) with 30% of glycerol at – 80 oC. Bacteria strains 
and methanogenic consortia were stored in the LMMA-
UIS Microbial Collection (http://cepariolmma.uis.edu.co/). 
 
16S rRNA gene metagenome and bacteria isolate am-
plification  
DNA extractions from methanogenic culture and from 
bacteria isolates were achieved following the methodolo-
gy proposed by Liu (2009), and their quality and concen-
tration were tested by spectrophotometer. Amplification of 
the bacteria 16S rRNA gene was performed using the for-

ward 530F (5′-GTCCCAGCMGCCGCGG-3′) and reverse 
1490R (5′-GGTTACCTTGTTACGACTT-3′) universal pri-
mers (Wani et al., 2006). In the case of archaea, 16S rRNA 
gene was amplified using the forward PARCH340f (5´-
CCCTACCGGGGYGCASCAG-3´) and reverse 
PREA1100r (5´-YGGGTCTCGCTCGTTRCC-3´) primers 

(Ovreås et al., 1997). Reaction mixture (25 L) was as fol-

lows: 2.5 L of 10X buffer, 6.2 L of dNTPs (2 mM), 0.4 L 

of each primer (100 M), 0.4 L of DreamTaq™ DNA 

Polymerase (Fermentas, USA), 5 L of template DNA (5 

ng/L), and 10.1 L of distilled water. The amplification 
was carried out using a Thermocycler MasterCycler® Pro-
Realplex4 (Eppendorf, Hamburg, Germany). After an initial 
3 min denaturation step at 94 oC, 35 PCR cycles were 
done, each cycle consisting of 45 s at 94 oC, 1 min at 55 
oC, and 1 min at 72 oC, ending with an extension at 72 oC 
for 5 min. PCR products were resolved on a 0.8% agarose 
gel containing EZ-Vision DNA dye (Amresco, Ohio, USA) 
and images were recorded using a DigiGenius imaging 
system (Syngene, Maryland, USA). 
 
Metagenome clone library construction 
Using the Clone JET™PCR Cloning Kit” (Thermo Scientific, 
Massachusetts, USA) or pGEM-T- easy vector (Promega 
Corp, Wisconsin, USA), we created 16S rRNA gene libraries 
from each methanogenic culture. PCR products of each 16S 
rRNA gene were inserted into a pJET1.2/blunt vector and 
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transformed into chemically competent Escherichia coli 
JM101 cells. Colonies arising on Luria Bertani medium 
plates (triptone, 10 g, sodium chloride, 10 g, yeast extract, 5 
g, pH 7.0) and containing 50 µg/mL of ampicillin were 
grown in fresh Luria Bertani (LB) broth and then the plas-

mids were purified as described by Sambrook and Russell 
(2001). The archaea PCR products were cloned in pGEM-T-
easy vector and transformed into chemically competent E. 
coli JM109 cells. White colonies arising on LB plates con-
taining 50 mg/mL of ampicillin, IPTG (500 mM) and X-gal 
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(40 mg/mL), were grown in liquid LB broth and then plas-
mids were purified as described above. The recombinant 
plasmids were used to amplify rRNA 16S gene clones 
which were purified with PCR Clean-Up Systems (Promega 
Corp, Wisconsin, USA) and sequenced with Sanger´s meth-
od, using the Applied Biosystems Hitachi 3500 Genetic 
Analyzer (ThermoFisher Scientific, Massachusetts, USA) and 
manufacturer protocols. Each sample was sequenced at 
least twice with both forward and reverse primers. 
 
Comparative sequence and phylogenetic analyses  
The 16S rDNA partial sequences were first aligned to 
determine the informative regions and to discard se-
quence ends with erroneous variability using the BioEdit 
V7.2.5 software (Hall 1999). The edited sequences were 
compared with those stored in the National Center for 
Biotechnology Information (NCBI) database 
(www.ncbi.nlm.nih.gov). BLAST algorithm (Altschul et al., 
1990) was applied for identification of the closest spe-
cies sequences. Taxon sequence assignments were done 
using minimum identity values as follows: genera (≥ 
95%) and species (≥ 98.7%) (Stackerbrandt and Ebers 
2006). Microbial 16S rDNA gene sequences with BLAST 
query coverage of 100% and an identity value higher 
than 80% were deposited in GeneBank database with 
accession numbers as indicated in Table 2. Each opera-
tional taxonomic unit (OTU) as defined above was used 
for phylogenetic tree construction. For comparison, 
NCBI database related sequences (CP038186, 
CP042252, CP014793, CP041154, NR115692, 
NR074260, LT996592) were also included. Phylogenetic 
trees were constructed based on the Tamura-Nei model 
and the Unweighted Pair Group Method using Arithme-
tic Averages (UPGMA) method utilizing the Molecular 

Evolutionary Genetics Analysis (MEGA 5.2) program 
(Tamura et al., 2011). Bootstrap analysis with 2000 repli-
cates was applied to assign confidence levels to the 
nodes in the tree. 
 
RESULTS  
 
Compared with standard gas profiles (Figure 2a), GC-
TCD-FID analysis indicated that, after one-month, cul-
tures at 37 oC (Figure 2b) produced a de novo gas mix-
ture composed mainly of carbon dioxide (CO2), me-
thane (CH4) and carbon monoxide (CO), while cultures 
at 60 oC (Figure 2c) only produced CO2. As expected, 
control experiments (coal powder placed in sterile wa-
ter) did not produce de novo biogenic gas (Figure 2d). 
These results indicated that a methanogenic consortium 
obtained from La Ciscuda coal sample was responsible 
for biogenic gas generation in the cultures.  
 
A total of fourteen 16S rRNA gene sequences were ob-
tained from bacteria isolates (7) and from bacteria librar-
ies (7) developed from cultures (Table 2). BLAST anal-
yses of the isolate sequences showed identity values 
between 94.05–99.77% with NCBI database Bacillus 
sequences; four of these (MH057206.1, MH057208.1, 
MH057210.1 and MH057211.1) matched Bacillus li-
cheniformis sequences with identity values higher than 
98.7%. One sequence (MH057077.1) from a bacteria 
clone library also matched B. licheniformis species se-
quences with an identity value of 99.56%. Further, 
BLAST analysis of other bacteria clone library sequences 
(MH057075.1, MH057073.1, MH057074.1 and 
MH057076.1) showed identity values (93.84–95.15%) 
with NCBI database Gracilibacteraceae sequences. One 
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sequence (MH057075.1) matched Gracilibacter thermo-
tolerans sequences, the type species of the genus Gracili-
bacter (Lee et al., 2006), with identity values higher than 
95.0%. Similarly, BLAST analysis of the sequences from 
the archaea clone libraries (MH057078.1 and 

MH197101.1) showed high identity values (98.7%) 
with NCBI database Methanothermobacter thermauto-
trophicus (NR074260) and Methanothermobacter wolfeii 
(LT996592) sequences. In summary, the bacterial iso-
lates and clone libraries obtained from coal-enriched 
cultures indicated that a minimal methanogenic consorti-
um was formed by specie from two bacteria genera 
(Bacillus and Gracilibacter) and one archaea genus 
(Methanothermobacter) species. A UPGMA tree based 
on all 16S rRNA gene sequences (including type species 
sequences from the NCBI database) defined the same 
three main prokaryotic groups (Figure 3).  
 
DISCUSSION 
 
This work constitutes the first effort to identify the com-
position of microbial consortia involved in methane pro-
duction in a coal mine from the Bogotá Basin in Colom-
bia. Our results supported de novo biogenic nature of 
methane gas produced at the La Ciscuda coal mine as 

previously indicated using δ13C and δD isotopic signa-
tures (Garcia-Gonzalez 2010). Further, the study identi-
fied a minimal methanogenic consortium that inhabited 
this coal mine, formed by the bacteria species Bacillus 
licheniformis and Gracilibacter sp., possibly, G. thermo-
tolerans (Lee et al., 2006), and the methanogens Methan-
othermobacter thermautotrophicus and M. wolfeii 
(Wasserfallen et al., 2000). Excepting Gracilibacter, these 
microbial genera have been previously identified from 
coal-enrichment cultures experiments (Table 3).   
 
Although methanogens from coal-enrichment cultures 
were not isolated, they did grow as a methanogenic con-
sortium (Figure 2b). RCM is a very rich medium that provid-
ed multiple carbon and nitrogen sources and growth condi-
tions required for methanogenesis such as osmotic balance 
and low redox potentials. Under these growth conditions, 
hydrolytic and fermentative bacteria (i.e., B. licheniformis) 
can enzymatically hydrolyze starch to saccharides such as 
dextrose (Komolprasert and Ofoli 1991), as well as, can 
ferment this dextrose through mixed-acid fermentation 
pathways to organic acids and alcohols (Shariati et al., 
1995). Bacillus species, including B. licheniformis, can also 
solubilize or biodegrade coal lignite into aromatic and ali-
phatic compounds (Polman et al., 1994). Moreover, G. 

         t
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thermotolerans grows well in medium with similar carbon 
and nitrogen sources existing in RCM and their growth on 
media containing glucose produced acetate, lactate, and 
ethanol as main fermentation end products (Lee et al., 
2006). It also has been reported (Sakai et al., 2010) that G. 
thermotolerans formed a methanogenic consortium with 
Methanocella arvoryzae, a hydrogenotrophic methanogen 
isolated from rice field soil. These authors also indicated 
that G. thermotolerans fermentation products (acetate, H2 
and CO2) were required by Methanocella arvoryzae for 
methane production. We believe that in our study Bacillus 
and Gracilibacter species, especially the latter, provided 
substrates (H2 and CO2) to Methanothermobacter species 
(M. thermautotrophicus and M. wolfeii) for methane pro-
duction. Gracilibacter thermotolerans cannot grow above 
58 oC (Lee et al., 2006), explaining why our methanogenic 
consortium produced methane at 37 oC, but not at 60 oC.  
 
Based on our results from coal-enrichment cultures we 
can speculate on how biogenic methane could be gen-
erated in the La Ciscuda coal mine. As indicated in Table 
1, this coal mine is located at 200 m depth from surface, 
where anoxic and saline conditions prevail. Under these 
conditions the coal mine yields 636 cm3 of methane gas 
per kg of coal.  Parkes et al. (2011) showed that prokary-

otes stimulate mineral H2 formation for the deep bio-
sphere and for subsequent microbial activity, including 
CO2 and CH4 production. We believe that infiltration of 
meteoric waters into coal mines can stimulate microbial 
degradation of coal lignite to aromatic and other com-
pounds (Chang et al., 2005), producing H2 and CO2 as 
final products that are, in this case, the substrates for 
methanogenesis by Methanothermobacter species. Meth-
anothermobacter thermautotrophicus, formerly Methano-
bacterium thermoautotrophicum (Smith et al., 1997), and 
M. wolfei, are representative subsurface methanogen 
species (Wasserfallen et al., 2000) that previously have 
been described to produce methane by reduction of 
CO2 in coal mine methanogenic environments (Ward et 
al., 2004; Penner et al., 2010). 
 
CONCLUSION 
  
In this work, we identified bacteria (Bacillus and Gracili-
bacter) and archaea (Methanothermobacter) species 
forming a minimal methanogenic consortium from La 
Ciscuda coal mine as a first step for evaluation of CBM 
generation technologies. Based on this consortium we 
suggested that methane was produced by hydrogen-
otrophic or CO2 reduction pathways.   
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