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Abstract

GTDS [11 2,3, [4] has played a significant role in Space
Research: as an orbit propagation (OP) and determi-
nation (OD) suite, as a prototype for subsequent oper-
ational systems, and as a platform for Astrodynamics
education and research. This research includes en-
hancement of the physical models, development of the
Draper Semi-analytical Satellite Theory (DSST) OP
method [l 6], development of DSST Weighted Least
Squares and Kalman Filter OD methods [7, [0, [10],
test of other analytical and semi-analytical propaga-
tors, and port to several operating systems. This ef-
fort has led to new operational orbit determination
systems and standalone tools and libraries in classi-
cal programming languages such as Fortran, C/C++,
and Java and interfaces with Python and Julia. Given
these applications, it is essential to understand the ac-
curacy of the GTDS physical models and the DSST
algorithm in their different versions. The recent avail-
ability of independent, very precise orbit ephemerides
offers new opportunities to evaluate the accuracy and
the computational efficiency of the current version of
GTDS and the Fortran, C/C++, and Java DSST
Standalone implementations [T, 12, 13, 14]. We
started the investigation by considering the Jason-
2 and Lageos-2 orbits. The Jason-2 satellite is in a
near circular orbit at 1330 km, and is perturbed by
the geopotential, lunar-solar, and solar radiation pres-
sure. The Lageos-2 is in a less circular orbit at 5780
km. Very precise ephemeris for both orbits is available
from the NASA Crustal Dynamics Data Information
System (CDDIS). Our general approach is to least-
squares fit the GTDS Cowell and the GTDS DSST
orbit propagators to the CDDIS orbits. For Jason-2,
with a one minute spacing between the ECEF vec-
tors and a one-day fit span, the GTDS Cowell or-
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bit propagator fits the CDDIS data with a converged
iteration position residual RMS of 1.5 meters (Fig-
ure [1). The ECEF x and y residuals (both the posi-
tions and velocities) exhibit a 12-hour signature en-
velop with multiple higher frequencies. The ECEF z
residuals exhibit only the multiple higher frequencies.
For the GTDS DSST fit, the converged iteration posi-
tion residual RMS increases to 2.1 meters (Figure [2)).
Similar Cowell and DSST least-squares fits were con-
ducted for the Lageos-2 case. The GTDS Cowell orbit
propagator fits the CDDIS data for Lageos-2 with a
converged iteration position residual RMS of 1.37 me-
ters (Figure . Again, the ECEF x and y residuals
exhibit a 12-hour envelop with multiple higher fre-
quencies. The ECEF z residuals exhibit only the mul-
tiple higher frequencies. For the GTDS DSST fit, the
converged iteration position residual RMS increases
to 3.9 meters (Figure {4)).

For the Jason-2 case, the envelops of the DSST
residual plots follow the envelops for the respective
Cowell residual plots. However, there are additional
periodic terms in the DSST residual plots. These ad-
ditional frequencies are intermediate between the high
frequencies and the 12-hour terms in Figure [I}

The differences between the DSST and Cowell
residuals are larger for the Lageos-2 case than for the
Jason-2 case. Also, the 12-hour signature seems less
obvious in some of the Lageos-2 DSST plots. This
suggests that the increase in the Lageos-2 DSST resid-
uals is connected to the treatment of the lunar-solar
perturbations.

In the full paper, we plan a more detailed analy-
sis of the differences between the DSST and Cowell
residuals for each of the orbital cases.
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Figure 1: Jason-2 GTDS Cowell DC Converged Iteration ECEF Measurement Residuals (EGM96 50x50, Jacchia-
Roberts, Lunar Solar Point Masses, SRP, SET, J2000 Integration Coordinate System) (position differences are
in meters and velocity differences are in cm/sec).
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Figure 2: Jason-2 GTDS DSST DC Converged Iteration ECEF Measurement Residuals (GGMO01S 50x50, Lunar
Solar Point Masses, SRP, SET, J2000 Integration Coordinate System) (position differences are in meters and

velocity differences are in cm/sec).
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Figure 3: Lageos-2

Cowell DC Converged Iteration ECEF Measurement Residuals (EGM96 50x50, Jacchia-

Roberts, Lunar Solar Point Masses, SRP, SET, J2000 Integration Coordinate System) (position differences are
in meters and velocity differences are in cm/sec).
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Figure 4: Lageos-2 GTDS DSST DC ECEF Measurement Residuals (GGMO01S 50x50, Lunar Solar Point Masses,
SRP, SET, J2000 Integration Coordinate System, DSST Short-period model: SPGRVFRC set to complete model,
SRP short period motion, Short-Period J2 partials ) (position differences are in meters and velocity differences
are in cm/sec).
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