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Abstract

The trajectory of any resident space object (RSO)
can be determined using three different orbit propaga-
tion methods. Special Perturbation (SP) propagators
use numerical techniques to integrate the equations
of motion, including a complete and accurate force
model. SP propagators provide very accurate orbit
predictions, but the high computational cost limits
the performance of this approach. General Pertur-
bation (GP) propagators apply perturbation theories
to develop an approximate analytical solution to the
equations of motion. GP propagators consider sim-
plified force models, which limit their accuracy. How-
ever, these propagators perform much faster than nu-
merical methods. Finally, the third type is the semi-
analytical propagators, which combine the strengths
of SP and GP propagators. In either case, an orbit
propagation program depends uniquely on the initial
states and some physical parameters to make its pre-
dictions.

The hybrid methodology was introduced in 2008. It
is a non-invasive technique that improves the accuracy
of any orbit propagator without increasing the com-
putational cost. This methodology has been applied
to different SP, GP and semianalitical propagators.
In [1, 2] different families of hybrid orbit propagators
based on statistical time series techniques were devel-
oped, whereas in [3, 4, 5] the proposed propagators
were based on machine learning techniques.

In this work, we apply the hybrid methodology to
improve the force model and the integration method
of the well-known SGP4 orbit propagator [6, 7] using
neural network (NN). The new propagator is named
HSGP4. The NN is trained using the difference in the
argument of latitude between accuracy ephemeris and
SGP4 for Galileo-type orbits.

For this experiment, we consider 180 of the 312 time
series used in [5]. This reduced set only includes time
series with positive trends in the first revolutions, of
which approximately 60%, 110 series, are used during
the training and validation processes of the forecast-
ing model. In contrast, approximately 40%, 70 series,
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are reserved for evaluating the generalization capabil-
ity of the model. On the other hand, each of the 110
series is divided into two subseries: 14 revolutions,
which represent approximately 200 hours, constitute
the training interval used for fitting the model’s pa-
rameters and the following 6 revolusions are used for
validation. It is worth noting that the first two revo-
lutions are necessary to start the network predictions.

The NN architecture [8, 5] consists of an input layer
of 169 neurons, two hidden layers with 256 and 128
neurons, and an output layer with one neuron. The
first hidden layer applies a linear function as acti-
vation function, whereas the exponential linear unit
(elu) for the second. The batch size parameter is 64,
and the optimizer to determine weights and bias of
the connection among the nodes was given by adam
(adaptive moment estimation). The cost function to
use in this work will be the popular error score RMSE
(root mean square error).

Fig. 1 shows the box-and-whisker plots of the dis-
tance errors between AIDA and SGP4 for the 110
TLEs of the predictive model. The time span con-
sidered is up to 12 days from the epoch of the TLE.
The relatively small values of the median in this Fig-
ure is a consequence that more of the 50% of the time
series εθ have small values of the trend components.

Figure 1: Box-and-whisker plots showing the distance
error (km) between AIDA and SGP4 for the sample
of 110 TLEs and a time span of 12 days.

Fig. 2 shows the box-and-whisker plots of the dis-
tance errors between AIDA and BestHSGP4 for the
dataset of 110 TLEs. The BestHSGP4 propagator
is obtained when the time series of the error is zero,
εθ = 0, that is, θAIDA = θSGP4. Compared with the
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previous box plot, whereas the maximum distance of
SGP4 is approximately 68.94 km after twelve days,
the maximum error of BestHSGP4 is reduced to only
1.96 km.

Figure 2: Box-and-whisker plots showing the distance
error (km) between AIDA and BestHSGP4 for the
sample of 110 TLEs and a time span of 12 days.

Fig. 3 shows the box-and-whisker plots of the dis-
tance error between AIDA and SGP4 for the unseen
70 TLEs used for testing the predictive model. The
time span considered in this process is also 12 days.
In this sample, the maximum distance error of SGP4
is approximately 23.88 km after twelve days, this is
about 45 km less than the dataset used to create the
predictive model. The outliers from the eight day are
due to the dispersion of the time series εθ.

Figure 3: Box-and-whisker plots showing the distance
error (km) between AIDA and SGP4 for the sample
of 70 TLEs and a time span of 12 days.

Fig. 4 shows the box-and-whisker plots of the dis-
tance errors between AIDA and BestHSGP4 for the
same 70 TLEs set. The Fig. 2 indicates that the the
magnitude of the BestHSGP4 distance error obtained
with the 70 TLEs set is similar to the 110 TLE set.

Once the NN model has been trained and included
in the hybrid propagation module (HSGP4), we eval-
uate the performance of the new propagator. First,
the HSGP4 is compared with SGP4 so as to assess
how well the model fits at 2, 4, 6, 8, 10, and 12 days
of propagation for the known 110 TLEs used when
the model was fit. Fig. 5 depicts the box-and-whisker
plots of the distance errors between AIDA and HSG4.

Figure 4: Box-and-whisker plots showing the distance
error (km) between AIDA and BestHSGP4 for the
sample of 70 TLEs and a time span of 12 days.

Figure 5: Box-and-whisker plots showing the distance
error (km) between AIDA and HSGP4 for the sample
of 110 TLEs and a time span of 12 days.

The capacity of generalization on the HSGP4 is
evaluated on the remaining unseen 70 time series set.
Fig. 6 depicts the box-and-whisker plots of the dis-
tance error between AIDA and HSG4.

The Q3 value of the BestHSGP4 is small during
the twelve propagation days and their values similar
to the obtained with the 110 TLE set. However, the
value of HSGP4 grows as quickly as the previous 110
but remains slight below the SGP4 value, less than 1
km. It is due to the values of the trend of the 70 TLE
set is less than the 110 set.

Figure 6: Box-and-whisker plots showing the distance
error (km) between AIDA and HSGP4 for the sample
of 70 TLEs and a time span of 12 days.

The two TLE datasets used for training and testing
the HSGP4 propagator follow the same behaviour, as
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can be seen in Fig. 5 and 6.

Fig. 7 and 8 show two of the best predictions of the
argument of latitude of the 70 time series set. The
forecasting model only needs the first two revolutions
to inicializate the calculus process. In both cases, the
model initially reproduces the periodic behaviour of
the series. However, as time progresses, the neural
network model loses its capability to recognize this
periodic pattern while maintaining the trend.

Table 1 and 2 show the distance error between
HSGP4 and AIDA for the TLEs 9 and 23. As can
be seen, the distance error of HSGP4, in both TLEs,
is close to the obtained with BestHSGP4 and reduced
by approximately 45 km respect to SGP4
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Figure 7: Red represents the predictions of the argu-
ment of latitude using the HSGP4 propagator, while
in blue the precise data for the test TLE 9.
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Figure 8: Red represents the predictions of the argu-
ment of latitude using the HSGP4 propagator, while
in blue the precise data for the test TLE 23.

Table 1: Maximum distance errors in km between
HSGP4 and AIDA for the TLE 9 after 2, 4, 6, 8,
10, and 12 propagation days

Error 2 4 6 8 10 12
SGP4 8.36 18.03 25.82 35.07 44.71 52.41

BestHSGP4 0.88 0.94 1.07 1.46 1.74 2.09
HSGP4 0.91 1.15 1.89 3.65 4.90 5.52

Table 2: Maximum distance errors in km between
HSGP4 and AIDA for the TLE 23 after 2, 4, 6, 8,
10, and 12 propagation days

Error 2 4 6 8 10 12
SGP4 7.59 15.79 23.25 31.32 41.37 49.12

BestHSGP4 0.80 0.82 0.85 0.92 1.29 1.65
HSGP4 1.07 1.38 1.38 1.99 2.77 4.09
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cation of the hybrid methodology to SGP4,” Advances
in the Astronautical Sciences, vol. 158, pp. 685–696,
2016, paper AAS 16-311.

[5] E. Segura, H. Carrillo, R. López, M. Pérez, I.
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