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Abstract

Aim of study. Regarding the third largest staple food crop in the world, determining the factors affecting wheat yield
is of great importance. This study aimed to determine useful subsets of agronomic traits and evaluate the order of impor-
tance of traits in grain yield.

Area of study: Fars province, Iran.

Material and methods: In total, the data corresponding to 22 agronomic traits was collected from six different regions
(Darab, Kavar, Marvdasht, Fasa, Lar, and Khonj) of 90 farms of Fars province, Iran as the most important wheat-growing
regions. Multivariate statistical analysis (correlation, stepwise regression, and principal component analysis (PCA)) and
machine learning modeling approaches, such as partial least squares regression (PLSR) and support vector regression
(SVR) models, were applied to agronomic traits.

Main results: The findings, based on integrated approaches such as correlation, stepwise regression, and PCA, high-
lighted that number of spikes m2, grain number spike™!, and thousand-grain weight had a major impact on the yield
followed by awn length, spike length, narrow leaf herbicide, broadleaf herbicide, time to plant maturity (month), and
soil salinity. Besides, PLSR with nine inputs (nine selected traits) displayed better prediction capability (R>=85 %,
RMSE=0.32, MSE=0.10, and BIAS=-0.05) than that with all twenty-two input traits.

Research highlights: Integrated multivariate statistical analyses and machine learning regression methods could be
a powerful tool in determining traits that have a significant impact on yield. These achievements can be considered for
future breeding programs.

Additional key words: Triticum aestivum; multivariate statistical analysis; partial least squares regression; support
vector regression.

Abbreviation used: MSE (mean squared error); PCA (principal component analysis); PLSR (partial least squares
regression); RMSE (root-mean-square error); SVR (support vector regression); TGW (thousand-grain weight); TOL
(tolerance); VIF (variance inflation factor).
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Introduction tors, nutrient storage, crop management such as fertiliz-
er amount and infection to pests and diseases, land man-

Following rice and maize, wheat (Triticum aestivum L..)  agement, and land conditions (Farokhzadeh et al., 2020).

is the third key food crop in the world and it is farmed Also, soil properties such as soil texture, percentage/con-
in a variety of environments. Wheat yield is affected by centration of nitrogen (N), potassium (K), phosphorus (P),
agronomic, phenological, physiological, and climatic fac- percentage of organic matter, and electrical conductivity
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(EC) affect wheat yield (Asseng et al., 2001; Takahashi &
Anwar, 2007).

So far, many studies have been conducted to reveal the
relationship between yields and other related traits and
consequently identify the traits affecting the growth and
development of wheat (Zhang et al., 2016b; Farokhzadeh
et al., 2020). For instance, in a study conducted by Yang
et al. (2022), according to a two-site multi-cultivar test
via principal component analysis (PCA), structural equa-
tion model, and partial least squares model, 11 phenotypes
were considered as the key phenotypes that contributed
most to grain yield, including spike density, leaf area in-
dex, biomass, harvest index, net photosynthetic rate, leaf
chlorophyll, canopy temperature, carboxylation efficiency,
stomatal conductance, leaf nitrate reductase, and transpi-
ration rate. Norouzi et al. (2010) applied artificial neural
networks to predict dryland wheat yield in semi-arid and
mountainous areas of western Iran. They stated that the
sediment transport index was the most significant topo-
graphic factor in the yield of wheat. Barikloo et al. (2017)
evaluated the performance of a neuro-genetic hybrid mod-
el to predict wheat yield based on land characteristics.
Sensitivity analysis indicated that soil parameters such as
available phosphorus, total nitrogen, gravel content, organ-
ic matter percentage, and soil reaction play the main role in
determining wheat yield. They found that total soil organic
matter and nitrogen had the highest and lowest correlations
with the yield quantity and quality of wheat respectively.
In addition, they argued that some of the chemical and
physical properties of soil such as nitrogen content had an
impact on soil fertility and water storage in the soil, which
are the major factors in wheat yield.

Characterizing the traits that contributed most to yield
diversity, could provide the basis for developing cultivars
with high yields. Using multivariate analysis including
PCA, stepwise regression and machine learning not only
may extract the concealed pattern present in data but also
facilitate ways of determining notable traits (Farokhzadeh
etal, 2021).

The PCA is a usual procedure to condense a larger set
of correlated variables into smaller and effectively inter-
pretable axes of variation. The PCA technique can help us
to understand the main data structure and develop a small-
er number of uncorrelated variables. The objective of the
principal component analysis was to determine the highest
variance with the lowest number of components possible
(Farokhzadeh et al., 2022).

In recent decades, various yield models, including linear
and non-linear models, have been applied to modeling
linear and non-linear relationships among variables. Yield
modeling not only allows us to predict plant production but
also contributes to understanding how the yield is affected
by environmental factors and yield components.

Generally, partial least squares regression (PLSR) is
accepted as one of the methods with highest efficiency
in terms of extracting and creating reliable model to
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predict chemical composition in sunflower seed (Fassio
& Gozzolino, 2003), predict grain yield in maize farm
through drought tolerance traits (Shaibu & Adnan, 2015),
examine growth of rice leaf and nitrogen level (Nguyen
& Lee, 2006), determine the factors in rice yield and the
yield of fields of winter wheat (Zhang et al., 2020), and
determine the priority of the factors in winter wheat yield
(Hu et al,, 2018). PLSR, as an effective method, combines
multiple linear regression and PCA to transform the data
matrix efficiently and alleviate the collinearity issue of
independent variables (Costa et al., 2012). The support
vector machine (SVM) was first introduced by Vapnik et
al. (1995). It has gained much popularity as a machine
learning tool in classification and regression analysis
called SVM classification and support vector regression
(SVR), respectively. The SVR technique provides users
with high flexibility of underlying variables distribution,
the relationship between the independent and dependent
variables, and the control on the penalty term (Hu et al.,
2018; Zhang et al., 2020). Similar to PLSR, SVR has
been used in crop research including agricultural drought
prediction (Tian et al., 2018), yield prediction in pepper
(Wilson et al., 2021), and predicting the mass of ber
fruits (Abdel-Sattar et al., 2021), but there are few studies
regarding the application of SVR in crop yield prediction.

PLSR is also highly recommended for analyzing an im-
mense array of pertinent predictor variables with a sample
size that is not large enough in comparison with the number
of independent variables (Carrascal et al., 2009) and SVR
has the capacity to process the data of high dimensionality
and is less affected by sample size (Meng & Zhao, 2015).
In addition to the aforementioned and also sample size in
the present study, these two machine learning methods
were used to fit the yield prediction model based on agro-
nomic traits. Besides, to our best knowledge, no study has
directly compared the performance of the aforementioned
two methods, PLSR and SVR, in developing models for
predicting wheat grain yield.

On the other hand, the relationship between agronomic
traits and yield may be due to the influence of the
environment. However, few studies examined traits related
to yield based on data from multiple locations. For instance,
in Gustavo et al.’s (2022) study, a large database included
367 papers published compiled to recognize the main
determinants of the number of grains per unit in response to
environmental and genetic factors. They suggested that the
responsiveness of the number of grains per unit area was
similarly explained by changes in both the number of spikes
m? and the number of grains spike™'. To fill this gap, in the
current study, a comprehensive investigation of key traits
that contribute to yield was conducted on 22 agronomic
traits collected from six different regions of 90 farms to
minimize the effect of the environment on the relationships
between traits and yield. Multivariate statistical analyses
were used to clarify and assess the underlying determinants
of wheat yield diversity. In addition, two machine learning
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Table 1. Descriptive statistics of the model dataset (total sample) used in the study.

Traits Variable Maximum Minimum Mean DeVSi::ion ocfﬁizftl:t’iv(;:lhcg:glfi;inetlil

Seeding rate (kg ha™) x1 350.00 220.00 285.17 3.95 0.228%*
Awn length (cm) x2 12.00 4.00 8.13 1.87 0.353**
Spike length (cm) x3 13.00 5.00 10.59 1.35 0.316%*
Plant height (cm) x4 98.00 70.00 83.61 6.94 0.452%**
Nitrogen fertilizer (N, kg ha™') x5 350.00 100.00 210.22 61.83 0.381%**
Phosphorus fertilizer (P, kg ha') X6 150.00 0.00 71.28 44.64 0.441%*
Potassium chloride fertilizer (K, kg ha™') x7 100.00 0.00 33.17 30.99 0.254*
Narrow leaf herbicide x8 2.00 0.00 1.34 0.47 0.278**
Broadleaf herbicide x9 2.00 0.00 1.05 0.52 0.368**
Time to plant maturity (month) x10 7.50 5.00 6.35 0.66 0.392%*
Number of irrigation cycles x11 10.00 5.00 7.16 1.34 0.230*
Animal manure application x12 3000.00 0.00 111.11 507.13 0.375%*
Pest infestation (%) x13 18.00 0.00 5.76 3.20 -0.276**
Disease infestation (%) x14 15.00 0.00 4.61 3.56 -0.433%**
Number of weeds m™ x15 20.00 3.00 8.60 3.95 -0.302%*
Rainfall (mm) x16 104.70 66.60 93.32 12.87 -0.159
Planting depth (cm) x17 5.00 2.00 3.41 0.68 -0.299**
Soil salinity (dS m™) x18 3.50 0.50 1.63 0.81 -0.585%%*
Number of spikes m? x19 402.00 220.00 277.74 34.86 0.915%*
Grain number spike! x20 66.00 27.00 41.46 8.49 0.841%**
Thousand grain weight (g) x21 45.00 31.00 37.66 3.67 0.798%*
Grain yield (t ha') x22 8.00 3.80 5.66 0.91 1.00

* and **: Significant (0= 5%), and highly significant (a= 1%), respectively.

methods, PLSR, as a linear model, and SVR, as a non-
linear model, were applied to assess the predicting power of
two models of the relationship between 21 traits with grain
yield as well as to assess selected traits related to yield.

Material and methods

Data collection

The data were collected from six different regions
(Darab, Kavar, Marvdasht, Fasa, Lar, and Khonj) of 90
farms in Fars province, Iran, as the most important wheat-
growing regions during 2020-2021. Repeated random
sampling was performed on every farm using a 1-m? quadrat
to measure the agronomic traits, including grain yield
(t ha'!), thousand seed weight (g), number of spikes m™,
grain number spike™!, awn length (cm), spike length (cm),
plant height (cm), number of weeds m?, pest and disease
infestations percentage. Soil EC (dS m') was measured
with an EC meter for a slurry consisting of 1:5 (w/v)
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soil/distilled water (Bao et al., 2005). Rainfall (mm) was
obtained from the weather stations. Other traits including
the nitrogen fertilizer (N, kg ha'), phosphorus fertilizer (P,
kg ha'), potassium chloride fertilizer (K, kg ha'), animal
manure application, number of irrigation cycles, seed rate
(kg ha?'), use of herbicides (narrow leaf-herbicide and
broadleaf herbicide), time to plant maturity (month) and
planting depth (cm) were collected using a questionnaire on
each farm. It should be noted that samples using a quadrat
of 1 m? were taken in each farm. Then the pest damaged
and diseased wheat plants were counted, separately and the
percentage of disease and pest infestations were calculated
via count of: (pest damaged or diseased plant count/total
plant counts) x 100.

Multivariate statistical analysis

The Shapiro-Wilk test is a statistical test that was used
to check if a variable follows a normal distribution. Pear-
son’s correlation coefficient was used to measure the de-
gree of linearity of the relationship between two variables.
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Table 2. Stepwise regression analysis of grain yield as dependent and other traits as independent variables in wheat.

Unstandardized

Standardized

. Entering
Traits coefficients coefficients F P 311;131 R? into model,
B Std. error Beta respectively
(Constant) -2.603 0.573 - - - - -
Number of spikes m™ 0.008 0.002 0.313 452.40**  0.8371 0.8371 1
Grain number spike™! 0.030 0.006 0.278 15.37*%*%  0.0245 0.8616 2
Spike length (cm) 0.064 0.023 0.095 6.52%%* 0.0098  0.8713 3
Broadleaf herbicide 0.162 0.062 0.092 4.88%* 0.0070  0.8783 4
Soil salinity (dS m™) -0.184 0.052 -0.162 5.11%* 0.0070  0.8853 5
Time to plant maturity (month) 0.209 0.055 0.152 10.01** 0.0123 0.8976 6
Narrow leaf herbicide 0.209 0.065 0.107 5.06* 0.0059  0.9036 7
Thousand-grain weight (g) 0.042 0.015 0.167 4.94% 0.0055 0.9091 8
Rainfall (mm) 0.007 0.002 0.095 5.75% 0.0061 0.9152 9
Awn length (cm) 0.048 0.02 0.098 6.05% 0.0060  0.9212 10

* and **: Significant (0= 5%), and highly significant (0= 1%), respectively; B: unstandardized coefficients; R coefficient of determination.

Stepwise regression was applied to identify the worthiest
effective features on grain yield in the regression model.
Through a stepwise regression analysis, grain yield was
considered as a dependent variable while the rest of the
traits were considered as independent variables.

Since there was a correlation among independent
variables, the multicollinearity test was performed to
test regression assumptions through the computation of
TOL (tolerance) and VIF (variance inflation factor) using
SPSS software. The VIF index was smaller than 10, which
indicates the absence of multicollinearity between variables.
Also, the TOL index, which was greater than 0.1, indicates
that there was no multicollinearity between variables.

The PCA was accomplished to distinguish new vari-
ables (principal components) containing the trait combi-
nations that include the most variation. In this study, an
association of some important traits with grain yield was
estimated using PCA.

Data analysis in SAS (Statistical Analysis System v. 9.2)
was used to check the normal distribution of data (Shapiro-
Wilk test) and also to perform stepwise regression analysis
and descriptive statistics, and in SPSS (Statistical Package
for the Social Sciences, v. 24) for Pearson’s correlation
analysis. Pheatmap, factoextra, and ggplot2 packages in
RStudio (v. 4.0.3) were used to plot correlation heatmap
and PCA bi-plot.

Machine learning methods

Machine learning model analysis, including PLSR and
SVR analysis, were conducted using PYTHON (multi-
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paradigm programming language, v. 3.10.5) for prediction
and EXCEL software for statistical analyses and graphs
drawing. For this aim, 80% of samples were used for the
training stage, and the rest 20% of samples, for testing
stage. Mathematical background on PLSR and SVR is as
follows:

— SVR. The principles used in SVR are identical to
those used in SVM classification. SVR is a modified form
of SVM in which instead of categorized dependent varia-
bles, numerical ones are used. SVR enables optimal inter-
pretation of the resulting model since it allows non-linear
model construction without altering the explanatory varia-
ble outlines. Pertinent to SVR is the implementation prin-
ciple of maximal margin, which allows its description as a
convex optimization problem. Hence the method can pro-
ceed with predictions as long as the error does not exceed
a certain set value. Moreover, regression is not over-fitted
as the SVR method allows it to be penalized using a cost
parameter.

— PLSR. This is a robust, efficient regression method
for multivariate analysis over a wide data range (Martens
& Martens, 2000). This technique reduces predictors to a
smaller set of non-correlated components for least square
regression. PLSR is uniquely useful for analyzing highly
collinear predictors or for data that predictors exceed ob-
servations and the ordinary least square regression method
would have failed completely or yielded coefficients with
high standard errors. Additionally, PLSR outperforms the
traditional regression method as it employs a linear mul-
tivariate model to correlate two data matrices, X and Y,
and further progresses to model the corresponding struc-
tures. The ability of this technique to further analyze mul-
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Figure 1. Heatmap correlation matrix among 22 agronomic traits: x1, seeding rate
(kg ha'); x2, awn length (cm); x3, spike length (cm); x4, plant height (cm); x5,
nitrogen fertilizer (n; kg ha'); x6, phosphorus fertilizer (P; kg ha'); x7, potassium
chloride fertilizer (K; kg ha'); x8, narrow-leaf herbicide; x9, broadleaf herbicide;
x10, time to plant maturity (month); x11, number of irrigation cycles; x12, animal
manure application; x13, pest infestation (%); x14, disease infestation (%); x15,
number of weeds m; x16, rainfall (mm); x17, planting depth (cm); x18, soil salinity
(ds m™); x19, number of spikes m?; x20, grain number spike!; x21, thousand-grain

weight (g); and x22, grain yield (t ha).

tiple, noisy, collinear, and incomplete variables in X and Y
(Wold et al., 2001) describes its uniqueness and efficiency.
PLSR theory, principles, and application have been exten-
sively reviewed by Abdi (2010).

Model performance

The four statistical evaluation criteria were used to as-
sess the model performance, including the coefficient of
determination (R?), the root-mean-square error (RMSE),
the mean squared error (MSE), and BIAS for the training
and testing datasets. These statistical indexes were calcu-
lated as:

R? = (n E;I—ixPiXmi‘ — ?—1XP|' E?—ixmi')z
[” i=1 Xﬁ,— -G, Xpi)z][” i=1 X:zm' - (B, Xmi)?]

RMSE = JEFLI(X_DE _me)g

n

z
n
_ !'=1(Xp:' — Xmi
n
— X

MSE

n
i=1 Xm‘
n

BIAS =
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where X,,;is the measured yield value in the field, X, is the
predicted yield value, and n is the number of samples. A
combination of the mentioned statistical parameters is suf-
ficient for model evaluation. Sheikh Khozani et al. (2020)
used these indices to examine the performance of models.

Results

The Shapiro-Wilk test of data collected for different
traits indicated a normal distribution for variables. Statis-
tical information related to 22 different traits is presented
in Table 1.

Multivariate statistical analysis

Correlation

The phenotypic correlations (r,) between grain yield
and different traits are listed in Table 1. Also, heatmap cor-
relation matrix among 22 agronomic traits is presented in
Fig. 1. The correlation coefficients (r) of significant corre-
lations ranged from 0.228 to 0.915. Grain yield indicated
significant positive correlations with the majority of traits
except for pest and disease infestations percentage, num-
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Table 3. The results of the principal component analysis for different traits in wheat.

Traits PC1 PC2 PC3 PC4 PC5 PCé6
Seeding rate (kg ha™) 0.103 0.046 0.022 0.585 0.010 0.052
Awn length (cm) 0.183 -0.320 -0.104 0.002 0.250 -0.071
Spike length (cm) 0.121 0.070 -0.188 -0.153 0.074 0.503
Plant height (cm) 0.257 -0.312 -0.026 0.077 0.110 0.246
Nitrogen fertilizer (N, kg ha™) 0.238 -0.235 0.254 -0.008 -0.171 0.197
Phosphorus fertilizer (P, kg ha!) 0.196 0.064 0.399 -0.233 -0.087 0.125
Potassium chloride fertilizer (K, kg ha) 0.122 0.063 0.451 -0.083 -0.207 -0.086
Narrow leaf herbicide 0.116 0.138 0.273 0.075 -0.097 0.521
Broadleaf herbicide 0.165 0.156 0.166 0.123 -0.224 -0.105
Time to plant maturity (month) 0.124 0.378 -0.237 0.174 -0.181 0.097
Number of irrigation cycles 0.017 0.500 -0.132 -0.113 -0.010 0.108
Animal manure application 0.131 0.167 -0.005 -0.035 0.315 0.231
Pest infestation (%) -0.201 0.223 0.237 0.067 0.407 -0.010
Disease infestation (%) -0.235 0.205 0.300 0.062 0.176 -0.149
Number of weeds m -0.151 -0.024 0.419 0.222 0.297 0.037
Rainfall (mm) -0.123 0.041 0.016 -0.584 0.288 0.053
Planting depth (cm) -0.156 -0.076 -0.120 0.296 0.354 0.261
Soil salinity (dS m™) -0.283 0.263 -0.101 0.036 -0.194 0.142
Number of spikes m 0.357 0.111 -0.032 -0.012 0.183 -0.138
Grain number spike’! 0.322 0.139 -0.034 -0.060 0.154 -0.153
Thousand-grain weight (g) 0.296 0.214 -0.035 0.102 0.162 -0.319
Grain yield (t ha™) 0.367 0.141 -0.015 -0.024 0.187 -0.042
Eigenvalue 6.21 2.86 2.30 1.83 1.29 1.07
Proportional variance (%) 28.22 13.02 10.48 8.33 5.85 4.87
Cumulative variance (%) 28.22 41.25 51.72 60.05 65.90 70.77

ber of weeds m™, planting depth, and soil salinity. Also,
there was no correlation between rainfall and grain yield.

Stepwise linear regression

Regression analysis showed that the number of spikes
m?, grain number spike’!, spike length, broadleaf herbi-
cide, soil salinity, time to plant maturity, narrow leaf her-
bicide, thousand-grain weight (TGW), rainfall, and awn
length had justified the maximum of grain yield changes
(Table 2).

Principal component analysis (PCA)

The PCA showed six major principal components (with
eigenvalues more than one), indicating 70.77 % of the total
variance among 90 wheat samples (Table 3). The first three
principal components explained 28.22, 13.02 and 10.48 %
of the total variance, respectively. These components rep-
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resented 51.72 % of the total variance components (Table
3). The greatest variability in the data is justified by the first
PC, in which number of spikes m, grain number spike™!,
TGW, and grain yield had the most positive contribution
while soil salinity had the most negative contribution. In
PC2, number of irrigation cycles and time to plant matu-
rity had the most positive contribution while awn length
and plant had the most negative contribution. In PC3, K, P,
number of weeds m?, and disease infestation had the most
positive contribution. In PC4, seeding rate and rainfall had
the most positive and negative contributions, respectively.
In PC5, Animal manure application, pest infestation, and
planting depth had the most positive contributions. Finally,
spike length and narrow leaf herbicide had the most posi-
tive contribution to variation justified by PC6.

Next, PCA-Biplot was drawn by R packages factoextra,
and ggplot2. It illustrates the relationships of the samples
as well as the measured traits in wheat. The sample size
is based on the amount of yield. The cosine of the angles
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Yield-related traits identification 7

PCA - Biplot

Dt (28 2%)

Figure 2. PCA-Bi-plot of the measured traits in wheat. Larger circles represent
higher yield, and smaller circles show lower yield. Traits x1 to x22: see Figure 1.

between vectors shows the extent of correlation between
traits. The angles between grain yield vector with planting
depth (x17), rainfall (x16), and number of weeds (x8 and
x9) m? were obtuse, indicating a negative correlation,
while grain yield vector had acute angles with the rest of
the traits, indicating a positive correlation (Fig. 2).

Finally, 9 traits were specified by integrated approach-
es including stepwise regression, correlation, and PCA. In
summary, stepwise regression was applied to designate the
most effective traits on grain yield in the regression model,
which 10 traits with R* = 92.12% justified the maximum
yield changes. Analysis of the correlation coefficient indi-
cated that among these 10 traits, 9 traits were highly cor-
related with grain yield. In addition, PCA was conducted
to identify significant traits related to grain yield and since
loadings in the PC show that the variables how strongly
influence the component and in other words reflect varia-
bles’ significance, we enumerated the variables with large
loadings in the PC, which 9 traits had large loadings in the
PC1 and PC2. In other words, in all three methods (Step-
wise linear regression, correlation, and PCA), these 9 traits
including the awn length (cm), spike length (cm), narrow
leaf herbicide, broadleaf herbicide, time to plant maturity
(month), soil salinity (dS m™), number of spikes m, grain
number spike!, and TGW (g) were jointly identified as im-
portant and effective traits on grain yield.

Grain yield modeling by SVR for all traits

The results of the training (I) and testing (II) stages for
all traits are shown in Fig. 3 as a scatter plot (A) and line-
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graph (B). According to the results shown in these figures,
the SVR model applied to all traits, predicted the grain
yield with R? 0f 0.7292 and 0.6239 for training and testing
datasets, respectively. Moreover, based on the results of
line-graph, this model could not estimate grain yield for
all traits. As indicated in the line-graph, these models are
not efficient in terms of predicting minimum or maximum
grain yield.

Grain yield modeling by PLSR for all traits

The results of the training (I) and testing (II) stages
for all traits are shown in Fig. 4 as a scatter plot (A) and
line-graph (B). Taking all traits as inputs, the PLSR model
predicted the grain yield with R? 0f 0.92 and 0.76 for train-
ing and testing datasets, respectively. Therefore, the PLSR
model on all traits, as shown in the line-graphs, is strong
in predicting the maximum and minimum grain yield. Ac-
cordingly, from two prediction models, PLSR was chosen
for further evaluation of the selected traits associated with
yield.

Grain yield modeling by SVR for the most
important variables

The results of the training and testing stages for the
9 selected traits are shown in Table 4. The SVR model
applying on all traits predicted the grain yield with R? of
0.73 and 0.62 for training and testing datasets, respectively.
Moreover, applying the SVR model on 9 selected traits
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Table 4. Grain yield estimation model results based on the SVR (support vector regression) and PLSR
(partial least squares regression) models for training and testing datasets.

Training dataset

Testing dataset

Models R? RMSE MSE BIAS R? RMSE MSE BIAS
SVR (All data) 0.73 0.57 0.33 0.04 0.62 0.67 0.44 0.29
PLSR (All data) 0.92 0.26 0.07 0.00 0.76 0.46 0.21 0.27
SVR (9 traits) 0.88 0.35 0.12 -0.02 0.59 0.53 0.29 0.10
PLSR (9 traits) 0.92 0.26 0.07 0.00 0.85 0.32 0.10 -0.05

R coefficient of determination; RMSE: root-mean-square error; MSE: mean squared error.

predicted the grain yield with R? of 0.88 and 0.59 for
training and testing datasets, respectively. Accordingly, this
model could not estimate satisfactorily grain yield neither
for all traits nor 9 selected traits.

Grain yield modeling by PLSR for the most
important variables

The results of the training (I) and testing (II) stages are
illustrated in Fig. 5 as a scatter plot (A) and line-graph (B)
for the 9 selected traits. The figures show a satisfactory
agreement between the measured and predicted PLSR

model values. Applying the PLSR model on 9 selected
traits predicted the grain yield with R? of 0.92 and 0.85 for
training and testing datasets, respectively.

Table 4 presents the R, RMSE, MSE, and BIAS values
of the applied models for both training and testing stages
for all traits and 9 selected traits by integrated approaches
including stepwise regression, correlation, and PCA. As
shown in Table 4, the SVR model demonstrated the least
accurate results for estimating grain yield with the highest
RMSE, MSE, BIAS, and the lowest value of R? for both
training and testing stages for all data and 9 selected traits.
Accordingly, this model could not estimate grain yield
satisfactorily neither for all traits nor 9 selected traits. Table
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Figure 3. Scatter plot (A) and line-graph (B) of predicted vs. measured grain yield for the training
(I) and testing (II) datasets of all traits, using SVR. Traits include seeding rate (kg ha'), awn
length (cm), spike length (cm), plant height (cm), nitrogen fertilizer (N, kg ha'), phosphorus
fertilizer (P, kg ha!), potassium chloride fertilizer (K, kg ha'), narrow-leaf herbicide, broadleaf
herbicide, time to plant maturity (month), number of irrigation cycles, animal manure application,
pest infestation (%), disease infestation (%), number of weeds m™, rainfall (mm), planting depth
(cm), soil salinity (dS m™"), number of spikes m, grain number spike’!, thousand-grain weight (g),

and grain yield (t ha'').
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Figure 4. Scatter plot (A) and line-graph (B) of predicted vs. measured grain yield for the training
(I) and testing (I1) datasets of all traits, using PLSR. Traits as Figure 3.

4 also shows that the PLSR model outperforms SVR models
given that for all the data and nine selected traits the value
of RMSE, MSE, and BIAS were the lowest and the value of
R? was the highest. Therefore, given the results, the PLSR
model was implemented for nine selected traits as the best
model to achieve the most reliable estimate of grain yield.

Discussion

Regarding the third main staple food crop and one of
the most economically significant crops worldwide, deter-
mining the factors affecting wheat yield is of paramount
importance to subsequent improve yield and ensure food
security (Farokhzadeh et al., 2021).

The factors in yield are usually correlated, meaning
redundancies or potentially misleading outcomes when it
comes to identifying the dominant variables that control
the yield (Carrascal et al., 2009), and may misdirect the
plant breeders to achieving their main breeding objectives.
In this study also, Pearson correlation analysis revealed
the relationship among 22 traits (Fig. 1). In this regard, to
get a better understanding of key determinants of wheat
yield, a comprehensive data analysis including multivar-
iate statistical analysis (stepwise regression, correlation
analysis, and PCA) combined with machine learning
methods (PLSR and SVR) was done. Several studies have
documented the relationship between yield and some yield
components in wheat (Leilah & Al-Khateeb, 2005; Baye
et al., 2020). In this context, to clarify the underlying de-
terminants of wheat yield diversity, the yield components
were also included in the input variables list.

Spanish Journal of Agricultural Research

Correlation and stepwise linear regression

Analysis of the correlation coefficient indicated that
among traits, number of spikes m? was highly correlated
with grain yield followed by grain number spike' and
TGW in wheat. These findings were in accordance with
previous studies carried out to determine traits affecting
grain yield (Farokhzadeh et al., 2013; 2020).

Stepwise regression analysis was used to measure the
effect of agronomic traits on wheat grain yield. Through
this method, 92.12% of the total change in grain yield was
attributed to 10 traits. All these traits except rainfall had a
significant positive correlation with grain yield. Although
rainfall trait had no significant correlation with grain yield,
it had a direct effect on grain yield regarding the standard-
ized coefficient of rainfall in the stepwise regression mod-
el. The lack of a significant correlation between rainfall
and grain yield can be due to the fact that irrigation prob-
ably neutralizes the effect of rainfall effect. Farokhzadeh
et al. (2022) using stepwise regression reported that wheat
grain yield as a dependent variable has been modeled as a
function of the independent variables grain number spike’,
days to heading, and spikelet number spike™'.

Principal component analysis (PCA)

PCA was performed and the first two components were
utilized to make a bi-plot to visualize the relationships of the
samples as well as the measured traits (Fig. 1). As seen, low
or average yield samples are on the left side and high and
very high yield samples are on the right side of the bi-plot.
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Figure 5. Scatter plot (A) and line-graph (B) of predicted vs. measured grain yield for the training
(I) and testing (II) datasets of nine traits, using PLSR. Traits include awn length (cm), spike length
(cm), narrow-leaf herbicide, broadleaf herbicide, time to plant maturity (month), soil salinity (dS
m'), number of spikes m?, grain number spike™!, and thousand-grain weight (g).

Samples with larger PCA1 and PCA2 scores showed a very
high yield. As clearly revealed in the PCA bi-plot, number of
spikes m2, grain number spike™!, and TGW were the domi-
nant and similar traits in samples with very high yield, while
pest infestation (x13), disease infestation (x14), and soil sa-
linity (x18) are the dominant traits of samples with a low or
average yield. The results of PCA confirm the correlation co-
efficient and stepwise regression results expressing that the
increase in the number of spikes m?, grain number spike™,
and TGW results in higher yields. Different reports confirm
the importance of the traits that are identified in this study.
For example, the importance of awn length, spike length,
time to plant maturity (month), weed percentage, soil salin-
ity, number of spikes m?, grain number spike’!, and TGW
have been highlighted in some studies (Shamsi et al., 2011;
Farokhzadeh et al., 2013; 2020; 2022). The main goal of
wheat breeding programs is to improve grain yield potential.
Grain yield and yield components, including the number of
spikes, grain number spike™!, and TGW are polygenic com-
plex traits that are influenced by genetic background, envi-
ronment, and the interaction between them. Usually, grain
yield can be determined by combining two components:
grain number and TGW (Zhang et al., 2016a). Physiolog-
ical studies showed that increased grain yield is positively
associated with an increase in grain number, attended by a
negative association between grain number and grain weight
(Miralles & Slafer, 2007). Grain weight is a yield compo-
nent for breeders that have made considerable attempts to
improve (Lopes et al., 2012). Larger seeds are not only di-
rectly related to grain yield, but also affect beneficially seed-
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ling vigor and early growth, thus promoting and stabilizing
production ability (Botwright et al., 2002). Under current
agronomic production systems, to enhance grain yield po-
tential, improvement of spikes number or grains m? is more
important than other yield components (Gaju et al., 2009).

It is important to highlight the awn length affects wheat
yield. Abebe et al. (2009) revealed that the awn length
influences the grain yield. The study showed that awn
affects significantly spikes photosynthetic characteristics
and tolerance to stress in barley. Seed weight and size were
reduced due to the absence of awns and in turn reduction in
starch content caused by it.

As expected, soil salinity was another key trait identified
by the multivariate statistical analysis in this study. The soil
salinity issues generally happen in arid/semi-arid areas and
decrease the productivity of crops at different levels. Salin-
ity is also a major factor limiting crop yield in defective-
ly drained soils (Patel et al., 2002; Rogers, 2002). Rajpar
et al. (2006) reported spike length, plant height, number
of spikelet spike” and grain yield progressively decreased
with increasing soil salinity. Besides, with the increase in
soil ECe, Na" and K" concentrations increase and decrease,
respectively, which leads to reduce the K*/Na" ratio in the
flag leaf sap and grains (Rajpar et al., 2006). The percentage
of weeds is one of the most important harmful and reducing
factors in agricultural systems. It is the main consumer of
nutrients such as chemical fertilizers that can increase their
growth and development compared to crops (Jalilian et al.,
2018). The percentage of weeds reduces grain yield and
yield components (Mekonnen, 2022).
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Yield estimation model results based on the
SVR and PLSR models

In the current study, two analyzing methods, SVR and
PLSR, were performed on agronomic traits obtained from
90 farms in six different areas for model development.
PLSR performed better than SVR, in which R?> and RSME
were 0.76 vs. 0.62 and 0.46 vs. 0.67, respectively, and
showed a good predictive ability and robustness compared
with the SVR. This result is consistent with the conclusion
of a previous study which stated that PLSR can prioritize
the most important factors controlling winter wheat yield
through a long-term experiment (Hu et al., 2018). Duan
et al. (2020) argued that PLSR gives us a practical way to
determine the factors in yield as it practically removes the
correlation of the variable and modifies the bias of the fac-
tors’ role in rice yield. These findings are consistent with
the present work, which indicates that PLSR has a better
performance in terms of predicting yield. Also, Zhang et
al. (2020) estimated the yield of field-grown winter wheat
by applying the PLSR model. These reports are in accord-
ance with the present study which implies that PLSR dis-
played better prediction capability.

Taking all traits in predicting grain yield with the supe-
rior model (PLSR), the predicted R? and RSME of the vali-
dation (testing) dataset for grain yield prediction were 0.76
and 0.46, respectively. Whereas applying this model on a
testing dataset with 9 selected traits as inputs improved R?
and RSME to 0.85 and 0.32, respectively. PLSR model
could attain a comparable accuracy by using the 9 selected
traits compared with using all traits. This result indicated
the substantial influence of nine selected traits in explain-
ing the grain yield variation. In other words, multivariate
statistical analyses could provide great potential to reduce
the number of inputs (traits) of the model and consequently
increase the prediction accuracy of PLSR.

The high accuracy of the PLSR model with 9 inputs
(traits) implies that the selected traits are attributable to the
improvement of grain yield. From a plant breeding per-
spective, our study recommends considering the number
of spikes m?, grain number spike!, TGW , awn length,
spike length, and time to plant maturity (month) in breed-
ing programs for achieving improved grain yield in wheat.
Farokhzadeh et al. (2022) using integrating results of mul-
tivariate statistics and supervised learning methods illus-
trated that spikelet number spike™! and grain number spike™!
traits can be used to create a selection index for the high
grain yield in wheat.

Conclusions

The grain yield of wheat is the most important econom-
ic part of the plant, which is the result of yield components
and other related traits. Identifying the main components
of grain yield and their relationship with grain yield can
be essential in directing breeding and management pro-
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grams to increase yield. In the current study, multivariate
analyses including, correlation, stepwise regression, and
principal component analysis (PCA) were applied to se-
lect useful subsets of agronomic traits from 90 farms and
to evaluate the order of importance of traits influencing
the grain yield. Moreover, partial least squares regression
(PLSR) displayed better prediction capability with nine in-
puts (nine selected traits). In brief, integrated multivariate
statistical analyses and machine learning regression meth-
ods could be a powerful tool in determining key contribut-
ing traits to wheat yield.

Acknowledgments

The authors are very grateful to Zohreh Sheikh Khozani
for her help in the data modeling and analysis and Ehsan
Bijanzadeh for valuable guidance throughout this study.

Authors’ contributions

Conceptualization: Z. Zinati, S. Farokhzadeh.

Data curation: S. Farokhzadeh.

Formal analysis: S. Farokhzadeh, Z. Zinati.

Funding acquisition: A. Behpoori.

Investigation: A. Behpoori, Z. Khosravi.

Methodology: S. Farokhzadeh.

Project administration: Z. Zinati.

Resources: S. Farokhzadeh, Z. Zinati.

Software: S. Farokhzadeh, Z. Zinati.

Supervision: A. Behpoori.

Validation: Z. Zinati, S. Farokhzadeh, A. Behpoori.

Visualization: S. Farokhzadeh, Z. Zinati.

Writing — original draft: S. Farokhzadeh, Z. Zinati.

Writing — review & editing: Z. Zinati, S. Farokhzadeh, A.
Behpoori.

References

Abdel-Sattar M, Aboukarima AM, Alnahdi BM, 2021. Ap-
plication of artificial neural network and support vector
regression in predicting mass of ber fruits (Ziziphus mau-
ritiana Lamk.) based on fruit axial dimensions. PLoS
ONE 16(1): e0245228. https://doi.org/10.1371/journal.
pone.0245228

Abdi H, 2010. Partial least squares regression and projection
on latent structure regression (PLS regression). Wiley In-
terdisciplinary Reviews: Comput Stat 2: 97-106. https://
doi.org/10.1002/wics.51

Abebe T, Wise RP, Skadsen RW, 2009. Comparative tran-
scriptional profiling established the awn as the major pho-
tosynthetic organ of the barley spike while the lemma and
the palea primarily protect the seed. Plant Genome 2: 247-
259. https://doi.org/10.3835/plantgenome.2009.07.0019

March 2023 « Volume 21 o Issue 1 « ¢0901


https://doi.org/10.1371/journal.pone.0245228
https://doi.org/10.1371/journal.pone.0245228
https://doi.org/10.1002/wics.51
https://doi.org/10.1002/wics.51
https://doi.org/10.3835/plantgenome.2009.07.0019

12 Ali Behpouri, Sara Farokhzadeh, Zahra Zinati and Zobeir Khosravi

Asseng S, Turner NC, Keating BA, 2001. Analysis of wa-
ter- and nitrogen-use efficiency of wheat in a Mediter-
ranean climate. Plant Soil 233: 127-143. https://doi.
org/10.1023/A:1010381602223

Bao SD (ed), 2005. Analysis of soil agrochemistry. China Ag-
riculture Press, Beijing, China. 495 pp.

Barikloo A, Alamdari P, Moravej K, Servati M, 2017. Pre-
diction of irrigated wheat yield by using hybrid algorithm
methods of artificial neural networks and genetic algo-
rithm. J Water Soil 31: 715-726.

Baye A, Berihun B, Bantayehu M, Derebe B, 2020. Genotypic
and phenotypic correlation and path coefficient analysis
for yield and yield-related traits in advanced bread wheat
(Triticum aestivum L.) lines. Cogent Food Agric 6(1):
1752603. https://doi.org/10.1080/23311932.2020.1752603

Botwright TL, Condon AG, Rebetzke AG, Richards RA,
2002. Field evaluation of early vigour for genetic improve-
ment of grain wheat. Aust J Agric Res 53(10): 1137-1145.
https://doi.org/10.1071/AR02007

Carrascal LM, Galvan I, Gordo O, 2009. Partial least squares
regression as an alternative to current regression meth-
ods used in ecology. Oikos 118(5): 681-690. https://doi.
org/10.1111/1.1600-0706.2008.16881.x

Costa C, Menesatti P, Spinelli R, 2012. Performance model-
ling in forest operations through partial least square regres-
sion. Silva Fenn 46(2): 241-252. https://doi.org/10.14214/
sf.57

Duan L, Xie H, Li Z, Yuan H, Guo Y, Xiao X, Zhou Q, 2020.
Use of partial least squares regression to identify factors
controlling rice yield in Southern China. Agron J 112(3):
1502-1516. https://doi.org/10.1002/agj2.20161

Farokhzadeh S, Shahsavand-Hassani H, Mohammadi-Nejad
GH, 2013. Evaluation of genetic diversity of primary triti-
pyrum, triticale and bread wheat genotypes. Iran J Agron
Sci 5: 93-112.

Farokhzadeh S, Fakheri BA, Mahdinejad N, Tahmasebi S,
Mirsoleimani A, Heidari B, 2020. Mapping QTLs associ-
ated with grain yield and yield-related traits under alumi-
num stress in bread wheat. Crop Pasture Sci 71: 429-444.
https://doi.org/10.1071/CP19511

Farokhzadeh S, Fakheri BA, Zinati Z, Tahmasebi S, 2021.
New selection strategies for determining the traits contrib-
uting to increased grain yield in wheat (Triticum aestivum
L.) under aluminum stress. Genet Resour Crop Evol 68:
2061-2073. https://doi.org/10.1007/s10722-021-01117-4

Farokhzadeh S, Shahsavand-Hassani H, Zinati Z, Rajaei M,
2022. Evaluation of triticale lines compared to wheat cul-
tivars in terms of agronomic traits using supervised learn-
ing methods and multivariate statistics. Philipp Agric Sci
105(4): 369-389.

Fassio A, Cozzolino D, 2003. Non-destructive prediction of
chemical composition in sunflower seeds by near infrared
spectroscopy. Indust Crops Prod 20: 321-329. https://doi.
org/10.1016/j.inderop.2003.11.004

Gaju O, Reynolds MP, Sparkes DL, Foulkes MJ, 2009. Re-
lationships between large-spike phenotype, grain number,

Spanish Journal of Agricultural Research

and yield potential in spring wheat. Crop Sci 49: 961-973.
https://doi.org/10.2135/cropsci2008.05.0285

Gustavo AS, Guillermo AG, Roman AS, Daniel JM, 2022.
Physiological drivers of responses of grains per m2 to en-
vironmental and genetic factors in wheat. Field Crops Res
285: 108593. https://doi.org/10.1016/j.fcr.2022.108593

HuY, Wei X, Hao M, Fu W, Zhao J, Wang Z, 2018. Partial
least squares regression for determining factors con-
trolling winter wheat yield. Agron J 110: 281-292. https://
doi.org/10.2134/agronj2017.02.0108

Jalilian A, Mondani F, Khoramivafa M, Bagheri A, 2018.
Evaluation of Clipest model in simulation of winter wheat
(Triticum aestivum L.) and wild oat (Avena ludoviciana
L.) competition in Kermanshah. Iran J Agroeco 10: 248-
266.

Leilah AA, Al-Khateeb SA, 2005. Statistical analysis of wheat
yield under drought conditions. J Arid Environ 61(3): 483-
496. https://doi.org/10.1016/j.jaridenv.2004.10.011

Lopes MS, Reynolds MP, Manes Y, Singh RP, Crossa J, Braun
HIJ, 2012. Genetic yield gains and changes in associated
traits of CIMMYT spring bread wheat in a “historic” set
representing 30 years of breeding. Crop Sci 52(3): 1123-
1131. https://doi.org/10.2135/cropsci2011.09.0467

Martens H, Martens M, 2000. Modified Jack-knife estimation
of parameter uncertainty in bilinear modeling by partial
least squares regression (PLSR). Food Qual Prefer 11:
5-16. https://doi.org/10.1016/S0950-3293(99)00039-7

Mekonnen G, 2022. Wheat (Triticum aestivum L.) yield and
yield components as influenced by herbicide application
in Kaffa Zone, Southwestern Ethiopia. Int J Agron 2022:
3202931. https://doi.org/10.1155/2022/3202931

Meng M, Zhao C, 2015. Application of support vector ma-
chines to a small-sample prediction. Adv Petrol Explord
Dev 10(2): 72-75.

Miralles DJ, Slafer GA, 2007. Sink limitations to yield in
wheat: How could it be reduced? J Agric Sci 145: 139-
149. https://doi.org/10.1017/S0021859607006752

Nguyen HT, Lee BW, 2006. Assessment of rice leaf growth
and nitrogen status by hyperspectral canopy reflectance
and partial least square regression. Eur J Agron 24: 349-
356. https://doi.org/10.1016/j.€ja.2006.01.001

Norouzi M, Ayoubi S, Jalalian A, Khademi H, Dehghani AA,
2010. Predicting rainfed wheat quality and quantity by ar-
tificial neural network using terrain and soil characteris-
tics. Acta Agric Scand - B Soil Plant Sci 60(4): 341-352.
https://doi.org/10.1080/09064710903005682

Patel R, Prasher S, Bonnell R, Boughton R, 2002. Develop-
ment of comprehensive soil salinity index. J Irrig Drain
Eng 128: 185-188. https://doi.org/10.1061/(ASCE)0733-
9437(2002)128:3(185)

Rajpar I, Khanif YM, Soomro FM, Suthar JK, 2006. Effect
of NaCl salinity on the growth and yield of Inqlab wheat
(Triticum aestivum L.) variety. Am J Plant Physiol 1: 34-
40. https://doi.org/10.3923/ajpp.2006.34.40

Rogers ME, 2002. Irrigating perennial pasture with saline
water: Effects on soil chemistry, pasture production and

March 2023 « Volume 21 o Issue 1 « €0901


https://doi.org/10.1023/A:1010381602223
https://doi.org/10.1023/A:1010381602223
https://doi.org/10.1080/23311932.2020.1752603
https://doi.org/10.1071/AR02007
https://doi.org/10.1111/j.1600-0706.2008.16881.x
https://doi.org/10.1111/j.1600-0706.2008.16881.x
https://doi.org/10.14214/sf.57
https://doi.org/10.14214/sf.57
https://doi.org/10.1002/agj2.20161
https://doi.org/10.1071/CP19511
https://doi.org/10.1007/s10722-021-01117-4
https://doi.org/10.1016/j.indcrop.2003.11.004
https://doi.org/10.1016/j.indcrop.2003.11.004
https://doi.org/10.2135/cropsci2008.05.0285
https://doi.org/10.1016/j.fcr.2022.108593
https://doi.org/10.2134/agronj2017.02.0108
https://doi.org/10.2134/agronj2017.02.0108
https://doi.org/10.1016/j.jaridenv.2004.10.011
https://doi.org/10.2135/cropsci2011.09.0467
https://doi.org/10.1016/S0950-3293(99)00039-7
https://doi.org/10.1155/2022/3202931
https://doi.org/10.1017/S0021859607006752
https://doi.org/10.1016/j.eja.2006.01.001
https://doi.org/10.1080/09064710903005682
https://doi.org/10.1061/(ASCE)0733-9437(2002)128:3(185)
https://doi.org/10.1061/(ASCE)0733-9437(2002)128:3(185)
https://doi.org/10.3923/ajpp.2006.34.40

Yield-related traits identification 13

composition. Aust J Exp Agric 42: 265-272. https://doi.
org/10.1071/EA00128

Shaibu AS, Adnan AA, 2015. Predicting grain yield of maize
using drought tolerance traits. Afr J Agric Res 10(33):
3332-3337. https://doi.org/10.5897/AJAR2015.9561

Shamsi K, Petrosyan M, Noor-Mohammadi G, Haghparas
A, Kobraee S, et al., 2011. Differential agronomic re-
sponses of bread wheat cultivars to drought stress in the
west of Iran. Afr J Biotechnol 10: 2708-2715. https://doi.
org/10.5897/AJB10.1133

Sheikh Khozani Z, Khosravi KH, Torabi M, Mosavi A,
Rezaei B, Rabczuk T, 2020. Shear stress distribution pre-
diction in symmetric compound channels using data min-
ing and machine learning models. Front Struct Civ Eng
14: 10971109. https://doi.org/10.1007/s11709-020-0634-3

Takahashi S, Anwar MR, 2007. Wheat grain yield, phospho-
rus uptake and soil phosphorus fraction after 23 years of
annual fertilizer application to an Andosol. Field Crops Res
101: 160-171. https://doi.org/10.1016/j.fcr.2006.11.003

Tian Y, Xu YP, Wang G, 2018. Agricultural drought predic-
tion using climate indices based on support vector regres-
sion in Xiangjiang River basin. Sci Total Environ 622:
710-720. https://doi.org/10.1016/].scitotenv.2017.12.025

Vapnik V (ed), 1995. The nature of statistical learning theory.
Springer, NY. https://doi.org/10.1007/978-1-4757-2440-0

Spanish Journal of Agricultural Research

Wilson A, Hemalatha N, Sukumar R, 2021. Computational
prediction model for pepper yield prediction using sup-
port vector regression. AgriRxiv 10310468. https://doi.
org/10.31220/agriRxiv.2021.00069

Wold S, Sjostrom M, Eriksson L, 2001. PLS-regression:
A basic tool of chemometrics. Chemometr Intell Lab
Syst  58: 109-130. https://doi.org/10.1016/S0169-
7439(01)00155-1

Yang Y, Li N, Wu Y, Liu B, Li S, Tao L, et al., 2022. Key
phenotypes related to wheat grain yield in a two-site mul-
ti-cultivar test. Agron J 114(5): 2874-2885. https://doi.
org/10.1002/agj2.21098

Zhang H, Chen J, Li R, Deng Z, Zhang K, Liu B, Tian J,
2016a. Conditional QTL mapping of three yield compo-
nents in common wheat (7riticum aestivum L.). Crop J 4:
220-228. https://doi.org/10.1016/j.¢j.2016.01.007

Zhang PP, Zhou XX, Wang ZX, Mao W, Li WX, Yun F, et
al., 2020. Using HJ-CCD image and PLS algorithm to
estimate the yield of field-grown winter wheat. Sci Rep
10: 5173. https://doi.org/10.1038/s41598-020-62125-5

Zhang Y, Xu W, Wang W, Dong H, Qi X, Zhao M, et al.,
2016b. Progress in genetic improvement of grain yield
and related physiological traits of Chinese wheat in He-
nan Province. Field Crops Res 199: 117-128. https://doi.
org/10.1016/j.fcr.2016.09.022

March 2023 « Volume 21 o Issue 1 « ¢0901


https://doi.org/10.1071/EA00128
https://doi.org/10.1071/EA00128
https://doi.org/10.5897/AJAR2015.9561
https://doi.org/10.5897/AJB10.1133
https://doi.org/10.5897/AJB10.1133
https://doi.org/10.1007/s11709-020-0634-3
https://doi.org/10.1016/j.fcr.2006.11.003
https://doi.org/10.1016/j.scitotenv.2017.12.025
https://doi.org/10.1007/978-1-4757-2440-0
https://doi.org/10.31220/agriRxiv.2021.00069
https://doi.org/10.31220/agriRxiv.2021.00069
https://doi.org/10.1016/S0169-7439(01)00155-1
https://doi.org/10.1016/S0169-7439(01)00155-1
https://doi.org/10.1002/agj2.21098
https://doi.org/10.1002/agj2.21098
https://doi.org/10.1016/j.cj.2016.01.007
https://doi.org/10.1038/s41598-020-62125-5
https://doi.org/10.1016/j.fcr.2016.09.022
https://doi.org/10.1016/j.fcr.2016.09.022

	_Hlk125364424
	_Hlk126261389
	_GoBack
	_GoBack

