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Abstract 

Using the tools of praxeological analysis and didactical transposition analysis, 
the treatments of the Fundamental Theorem of Calculus in one Norwegian, 
Grade 13 textbook is analysed, with a particular focus on the development of 
the logos block of the FTC. The terms structure, functioning and utility, first 
introduced by Chevallard in 2022, is further to describe different dimensions 
of the mathematical object at stake. Through the analysis, a lack in the logos 
relating to the concept of integrability is identified in the textbook, and 
consequences of this is explored in relation to a set of tasks found in the book. 
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Analysis, the Fundamental Theorem of Calculus.
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Resumen 

Utilizando las herramientas del análisis praxeológico y el análisis de 

transposición didáctica, se analizan los tratamientos del Teorema 

Fundamental del Cálculo en un libro de texto noruego de grado 13, con un 

enfoque particular en el desarrollo del bloque logos de la FTC. Los términos 

estructura, funcionamiento y utilidad, introducidos por primera vez por 

Chevallard en 2022, describen además diferentes dimensiones del objeto 

matemático en juego. A través del análisis, se identifica en el libro de texto 

una carencia en los logos relacionada con el concepto de integrabilidad, y se 

exploran las consecuencias de esto en relación con un conjunto de tareas que 

se encuentran en el libro. 

Palabras clave: Transposición Didáctica, Libros de Texto de Grado 13, 

Análisis Praxeológico, el Teorema Fundamental del Cálculo.
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he movement, transformation, and incorporation of knowledge from 

one institution, where it is created, into the activity of other 

institutions (typically educational institutions) has been studied in 

mathematics and stem education in general (Freudenthal, 1983/2002; 

Bosch & Gascón, 2006) and in calculus specifically (e.g., Petropoulou et al., 

2016; Strømskag & Chevallard, 2022) In the Anthropological Theory of the 

Didactic (ATD), this process of transposing an object of knowledge from one 

institution of knowledge to another institution is modelled by the concept of a 

didactic transposition (Bosch & Gascón, 2006). The transposition of the 

scholarly concept of integral analysis to the techniques and concepts of 

integrals found in upper secondary mathematics courses is an example of this. 

In this paper, a study and analysis of a Norwegian textbook, Matematikk R2 

(Borge et al., 2022), for upper secondary school Grade 13 (hereafter simply 

Grade 13) mathematics is presented, focusing on the Fundamental Theorem 

of Calculus (FTC) and the didactic transposition of this theme. 

     The textbook selected is a part of the resources produced for the recent 

curriculum reform in Norway, Kunnskapsløftet 20 (Directorate of Education 

and Training, 2020). The reform was implemented for Grade 13 in 2022, after 

Grade 12 in 2021 and Grade 11 in 2020 and consists of a substantial 

reorganisation of the curricula and their contents. The reform introduced more 

specific goals for learning integral calculus. Students is now expected to be 

able to “account for the fundamental theorem of calculus, and account for 

consequences of the theorem”. The previous reform, Kunnskapsløftet 06, did 

not mention the FTC (Directorate of Education and Training, 2006). 

Much weight is put on integral calculus in higher mathematics education, 

and students has been shown to have numerous difficulties in understanding 

the concept (e.g., Orton, 1983; Thompson & Harel, 2021; Burgos et al., 

2021). A previous study (Topphol & Strømskag, 2022), identified a difficulty 

in relating the indefinite integral (which will be defined later) and the 

antiderivative, namely the definite integral, ∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎
 (essentially the first 

part of the FTC) and showed that this difficulty could be traced back to the 

textbooks they had used in upper secondary. One textbook (Heir et al., 2016), 

the previous edition of Matematikk R2, written for Kunnskapsløftet 06, was 

examined specifically. Matematikk R2 (Borge et al., 2022), was also the first 

textbook written for Kunnskapsløftet 20 that was available to the author of 

this article. 

T 
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    With the advent of a new curriculum in mathematics, it is therefore of 

interest to investigate how the theme of integration is treated under the new 

curriculum. More concretely, I investigate the question of how integral 

calculus is presented in Matematikk R2 (Borge et al., 2022), and what 

consequences there might be. Specifically, I seek to answer the questions: 

1. What sort of changes have been made during the transposition of the 

theme of integration, and particularly the FTC, from scholarly 

knowledge to knowledge to be taught at Grade 13, as presented in 

Matematikk R2? 

2. In case of any unused potential in the presentation of the FTC, with 

regard to strengthening its logos in Matematikk R2, what does this 

potential consist of? 

 

Theoretical tools 
 

This study is conducted with theoretical tools from the Anthropological 

Theory of the Didactic (ATD; Chevallard, 2019). 

    Knowledge is within the ATD modelled in terms of a praxeology, 𝓅, 

consisting of four components: type(s) of tasks, T, a technique, τ (or set of 

techniques), used to solve the tasks, a technology, , used to describe and 

explain the techniques, and a theory, , used to justify the technology. The 

types of tasks and the techniques make up the praxis block of the praxeology, 

and the technology and the theory make up the logos block (Chevallard, 

2019). Schematically, it is commonly written as 𝓅 = [T / τ / θ / Θ]. 

    Subscripts u (for university) and s (for school or secondary) respectively, 

are used to distinguish the praxeological elements. Thus, Tu is the types of 

tasks found in university mathematics textbooks, while Ts are types of tasks 

in the Grade 13 textbook. 

    The concept of a didactical transposition refers to a process, where an object 

of knowledge is transformed, from scholarly knowledge, through its selection 

by the noosphere to become knowledge to be taught, until it is actually taught, 

and becomes available to the students, in the teaching institutions (Chevallard 

& Bosch, 2014) (Figure 1). 
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Figure 1. The Didactic Transposition Process (Adapted from Chevallard & Bosch, 

2014, p. 171) 

 

As explained by Strømskag and Chevallard:  
A praxeology 𝓅 is usually the product of the activity of an institution 

or a collective of institutions I. It is often a result of an institutional 

transposition of a praxeology 𝓅* living in a collective of institutions 

I* to a praxeology 𝓅 that has to live within I and thus has to satisfy 

a set of conditions and constraints specific to I (Chevallard, 2020). 

This is the case when I is a collective of “didactic” institutions, that 

is, institutions declaring to teach some bodies of knowledge, such as 

secondary school for example. This is referred to as didactic 

transposition of I* into I. (Strømskag & Chevallard, 2022) 

    In the study of a mathematical object, ℴ, here the FTC, one can talk about 

the object’s structure, functioning, and utility (Chevallard, 2022). Structure 

refers to what ℴ consists of, or what elements the object ties together. 

Functioning refers to how ℴ works to tie the elements together. Utility refers 

to what ℴ can be used for. I distinguish between intra mathematical utility, 

or utility to mathematics itself, and extra mathematical utility, or utility to 

fields outside of mathematics. 

 

Methodology 
 

The methodological approach is a didactic transposition analysis (Chevallard, 

1989; Chevallard & Bosch, 2014), where a reference praxeological model is 

constructed, and used to analyse the Grade 13 textbook (see e.g., Wijayanti & 

Winsløw, 2017). A reference praxeological model of the theme of integration 

is first created, a model where the researchers expose their own perspectives 

on the body of knowledge at hand. Then, an analysis of the Grade 13 textbook 

is conducted where praxeological elements are identified. At last, the 

reference model and the Grade 13 textbooks are compared. In all three steps I 

will structure the descriptions around the notions of structure, functioning, 

and utility of the mathematical object, adding to the method of Wijayanti and 
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Winsløw (2017). I focus mainly on the intra mathematical utility, in addition 

to structure and functioning of the mathematical object. 

    The reference praxeological model is partially based on Calculus: A 

Complete Course (Adams & Essex, 2018), from here on referenced to as 

Calculus. This book was chosen because of its use in many of the early 

mathematics courses in my own home university, the widespread international 

audience, and the authors’ long experience in writing calculus textbooks. An 

article by Botsko (1991), presenting a more general form of the FTC than is 

found in Calculus, and the Norwegian calculus book Kalkulus (Lindstrøm, 

2016), are used as supplementary sources. Because a single textbook is itself 

a result of a didactic transposition (Winsløw, 2022), it does not in general 

suffice alone as a description of scholarly knowledge. 

 

A Reference Praxeological Model for the FTC 
 

The FTC connects the concepts of antiderivatives, the indefinite integral, and 

the definite integral, defined as Riemann integrals (see e.g., Adams & Essex, 

2018, pp. 302–307). By FTC establishing the Newton-Leibniz formula, 

 

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

= 𝐹(𝑏) − 𝐹(𝑎), 

 

and what I will call the derivative-integral formula, 

 
𝑑

𝑑𝑥
∫ 𝑓(𝑡)𝑑𝑡

𝑥

𝑎

= 𝑓(𝑥). 

 

the FTC provides results that allows for calculations of areas that are not easily 

measured through simpler geometric means, and for doing calculations on 

accumulation. These results have numerous applications in other fields (for 

examples, see any university level calculus textbook, e.g., Adams & Essex, 

2018, pp. 393–458; Lindstrøm, 2016, pp. 439–459). Through extensions and 

generalisations, like Fourier analysis and differential equations, based on 

improper integrals, it has proved indispensable in our technology-driven 

world. 
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Conditions for Riemann Integrability 
 

Integrability and continuity are the main conditions for the FTC to work. For 

a function to be Riemann integrable, the integrand function must be bounded, 

and the upper and lower Riemann sums must exist. For an integral of a 

function over a closed interval, continuity is sufficient, but not a necessary 

condition. A detailed discussion of Riemann sums, integrability, and 

boundedness, can be found in Calculus’ Appendix Sections III and IV (Adams 

& Essex, 2018, A-21 – A-31). 

 

Definitions 
 

An antiderivative of 𝑓(𝑥) on an interval I, is defined as a function, 𝐹(𝑥), such 

that 𝐹′(𝑥) = 𝑓(𝑥) for all 𝑥 ∈ 𝐼.  

    An indefinite integral of f on an interval I, defined as 

 

∫ 𝑓(𝑥)𝑑𝑥 = 𝐹(𝑥) + 𝐶    on 𝐼, 

 

where F is an antiderivative of f for all x ∈ 𝐼, and C is a real valued constant. 

The addition of the constant C makes it possible to use the indefinite integral 

to represent all antiderivatives in one expression. 

    A definition of the definite integral can now be stated (Adams & Essex, 

2018, p. 304): 
Suppose there is exactly one number I such that for every partition P 

of [𝑎, 𝑏] we have 

𝐿(𝑓, 𝑃) ≤ 𝐼 ≤ 𝑈(𝑓, 𝑃). 
 

Then we say that the function 𝑓 is integrable on [𝑎, 𝑏], and we call 

I the definite integral of f on [𝑎, 𝑏]. The definite integral is denoted 

by the symbol 

 

𝐼 = ∫ 𝑓(𝑥)𝑑𝑥.
𝑏

𝑎

 

 

    L and U are the lower and upper Riemann sums for a partition of the interval 

[𝑎, 𝑏]. Boundedness plays a role in the existence of lower and upper Riemann 
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sums. If the function f is not bounded on the interval, then either a lower or an 

upper Riemann sum cannot exist (details can be found in Adams & Essex, 

2018, A-28–A-29). 

 

Theorems which the FTC Builds on 
 

Three theorems will be used in proving the FTC. The derivative of a constant 

function is zero (Theorem 13, Adams & Essex, 2018, p 142). A zero-width 

integral has result zero, and integrals have the additivity property (Theorem 

3, Adams & Essex, 2018, p 308). The Mean-Value Theorem for Integrals 

(Theorem 4, Adams & Essex, 2018, p 310). Additivity will also prove 

significant as it provides a basis for a common technique used for, for 

example, area calculations. 

 

The Statement of the FTC 
 
A statement of the FTC is seen in Calculus (Adams & Essex, 2018, 
pp. 313–314): 

Suppose that the function 𝑓 is continuous on an interval 𝐼 containing 

the point 𝑎. 

 

PART I. Let the function 𝐹 be defined on 𝐼 by 

 

𝐹(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎

. 

 

Then 𝐹 is differentiable on 𝐼, and 𝐹′(𝑥) = 𝑓(𝑥) there. Thus, 𝐹 is an 

antiderivative of 𝑓 on 𝐼: 

 
𝑑

𝑑𝑥
∫ 𝑓(𝑡)𝑑𝑡

𝑥

𝑎

= 𝑓(𝑥). 

 

PART II. If 𝐺(𝑥)  is any antiderivative of 𝑓(𝑥)  on 𝐼 , so that 

𝐺′(𝑥) =  𝑓(𝑥) on 𝐼, then for any 𝑏 in 𝐼, we have 

 

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

= 𝐺(𝑏) − 𝐺(𝑎). 
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    A similar statement can be found in Kalkulus (Lindstrøm, 2016, p. 416). 

Part II is there referred to as a corollary. In both treatments, continuity of the 

integrand is assumed both in Part I and Part II. This is also a necessary 

condition for the conclusion in Part I of the FTC.  

    However, there is a version of the FTC Part II, which is instead based on an 

integrand bounded on the interval of integration, allowing a countable 

(possibly countably infinite and possibly zero) number of discontinuities (i.e., 

the conditions for Riemann integrability). Such a function is called continuous 

almost everywhere. Similarly, a function G which is the derivative of another 

function f everywhere, except for a countable number of points is said to be 

derivative of f almost everywhere.  

    In other words, there exists a version of the FTC Part II which can be 

applied to all Riemann integrable functions (Botsko, 1991). The FTC Part II 

can be restated: 
PART II. If 𝑓(𝑥) is a Riemann integrable function, and if 𝐺(𝑥) is a 

continuous function for which 𝐺′(𝑥) = 𝑓(𝑥) almost everywhere on 

I, then for any a and b in I, we have 

 

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

= 𝐺(𝑏) − 𝐺(𝑎). 

 

The condition that 𝐺(𝑥)  is continuous is important, and the lack of this 

condition would have some consequences (see e.g., Pavlyk, 2008).   

    Now, it is not obvious why this is relevant for an upper secondary calculus 

textbook. I do also not expect secondary students to learn this version of the 

FTC. But the existence of this form of the theorem illustrates two important 

points. First, the difference between the two formulations of the definite 

integral, the definition based on Riemann sums, and the calculational 

formulation based on antiderivatives, often do have different conditions for 

their validity, in their forms expressed in typical textbooks. This difference is 

not always clearly communicated. And second, it illustrates one effect of the 

condition of boundedness. This, as will be demonstrated, is another crucial 

point that is not communicated in the textbook examined in this article. 
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Proving the FTC 
 

A proof of Part I can be found in Calculus (Adams & Essex, 2018): 

 
Using the definition of the derivative, we calculate 

 

𝐹′(𝑥) = lim
ℎ→0

𝐹(𝑥 + ℎ) − 𝐹(𝑥)

ℎ
 

= lim
ℎ→0

1

ℎ
(∫ 𝑓(𝑡)𝑑𝑡

𝑥+ℎ

𝑎

− ∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎

) 

= lim
ℎ→0

1

ℎ
∫ 𝑓(𝑡)𝑑𝑡

𝑥+ℎ

𝑥

  by Theorem 3(d) 

= lim
ℎ→0

1

ℎ
ℎ𝑓(𝑐)              

for some 𝑐 = 𝑐(ℎ)(depending on ℎ)

between 𝑥 and 𝑥 + ℎ (Theorem 4)   
                           

 

= lim
𝑐→𝑥

𝑓(𝑐)                    since 𝑐 → 𝑥 as ℎ → 0 

= 𝑓(𝑥)                           since 𝑓 is continuous. 
 

Also, if 𝐺′(𝑥) = 𝑓(𝑥) , then  𝐹(𝑥) = 𝐺(𝑥) + 𝐶  on 𝐼  for some 

constant 𝐶 (by Theorem 13 of section 2.8). Hence, 

 

∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎

= 𝐹(𝑥) = 𝐺(𝑥) + 𝐶. 

 

    A proof of the FTC Part II, applying to all Riemann integrable functions, 

can be found in Botsko (1991). 

 

Types of Tasks and Techniques from University Textbooks 
 

The intra-mathematical utility of the FTC can be seen in the types of tasks it 

provides the foundation for. Based on tasks found in the two textbooks 

Calculus by Adams and Essex (2018) and Kalkulus by Lindstrøm (2016), 

seven types of tasks can be identified, and they make up the bulk of Tu: 
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Table 1. 

Types of tasks relating to the FTC 

 
Type of tasks Technique required (τ) 

t1: Evaluate a definite integral τ1: - Find an antiderivative and apply 

Newton-Leibniz formula. 

t2: Find the area of a bounded 

region 

τ2: - Find all zeros of the integrand on 

the interval of integration. 

- Evaluate the definite integral over 

each subinterval. Negate value if the 

area lies below the abscissa. 

- Add the resulting integrals. 

t3: Derivative of functions defined 

by an integral with variable 

integration limit. 

τ3: - Apply the derivative-integral 

formula. 

 

t4: Find the average value of a 

function 

τ4: - Find the area of a bounded region 

(τ2). 

- Divide by length of integration 

interval. 

t5: Integral equation τ5: - Apply the derivative-integral 

formula (τ3). 

- Solve resulting algebraic equation. 

t6: Approximating a sum using an 

integral 

τ6: - Recognize the sum as a Riemann 

sum. 

- Find a non-discrete real valued 

function, f, corresponding to the 

expression in the sum. 

- Find an antiderivative of f and apply 

Newton-Leibniz formula. 

t7: Approximating/calculating an 

integral using a Riemann sum 

τ7: - Calculating function values for the 

integrand in each subinterval. 

- Approximate area over each 

subinterval using rectangles. 

- Approximate integral by summation 

of rectangles. 
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    With the possibility of applying the FTC to discontinuous integrands, all 

these types of tasks can be extended. In several cases, solving the 

discontinuous versions do require extra techniques.  

 

    Reference example 1 
 

Calculate the integral ∫ 𝑓(𝑥)𝑑𝑥
2

−1
 for 

 

𝑓(𝑥) = sign(x) = {
−1 ∀ 𝑥 < 0 
   0 ∀ 𝑥 = 0 
   1 ∀ 𝑥 > 0.

 

 

    Two techniques can be used. For the first technique, observe that 𝐹(𝑥) =
|𝑥| , is an antiderivative of 𝑓(𝑥)  everywhere except 𝑥 = 0 , and F is 

continuous. Using this antiderivative, 

 

∫ 𝑓(𝑥)𝑑𝑥
2

−1

= |𝑥||
−1

2
= 2 − 1 = 1. 

 

    Note that this technique is the same as for tasks of type t1. This is, however, 

not general, and only works for certain cases of discontinuous, bounded 

functions. 

    The second technique is more general. The interval of integration is 

subdivided, such that f is continuous on each of the subintervals. The integral 

is calculated over each subinterval separately, and then added, which is 

possible due to the additivity of integrals. This technique yields  

 

∫ 𝑓(𝑥)𝑑𝑥
2

−1
=  ∫ −𝑥𝑑𝑥 + ∫ 𝑥𝑑𝑥

2

0

0

−1
= −1 + 2 = 1. 

 

    Note the similarity between this technique and τ2. The main difference is 

that one does not need to negate the area that lies below the abscissa. 
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    Reference example 2: Examples of improper integrals 
 

One example and one task from Calculus provide an interesting case. 

Example 6 (Adams & Essex, 2018, p. 316) starts with the function 𝑓(𝑥) =
1

𝑥
, 

and explains that the integral of 𝑓(𝑥) from −1 to 1 diverges. The book does 

not present the full argument at this point and instead refers to this integral 

being of a type called and improper integral. But the key reason for why 

∫
1

𝑥
𝑑𝑥

1

−1
= 0 is false, is that the function is not defined, has no limit in 𝑥 =

0, and is not integrable on neither [−1,0] nor [0,1]. The FTC does therefore 

not apply. Note the significance of the criterion of integrability. 

    The consequence of the lack of integrability is clearer in Task 49 (Adams 

& Essex, 2018, p. 319), a classical example (see e.g. Orton, 1983; Rubio & 

Gómez-Chacón, 2011). Here, the erroneous calculation  

 

∫
𝑑𝑥

𝑥2

1

−1

= −
1

𝑥
|

1

  
-1

= −1 +
1

−1
= −2 

is to be criticized. 

    To see the solution, note first that since the function is strictly positive, the 

integral is also expected to be positive, and the answer -2 is clearly wrong. 

Also, since the function 1/𝑥2  is not defined at 𝑥 = 0 , and is in fact 

unbounded on any interval including 𝑥 = 0, and therefore not integrable, the 

FTC does not apply to the interval [−1,1]. 
 

Praxeological Analysis of the FTC in Matematikk R2 
 

I here describe the treatment of the FTC found in the textbook Matematikk R2 

(Borge et al., 2022)1, 2. In doing so, I examine the mathematical organization 

of integration and the FTC. This will then be used as a foundation for the 

praxeological analysis. The examination therefore has a focus on how the 

techniques are developed and justified and then applied to tasks. 

 

Organisation of Integration and the FCT in Matematikk R2 
 

Aschehoug’s Matematikk R2 divides the treatment of the integral into six 

chapters. They deal with the definite integral (Chapter 2A, pp. 90–103), 
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numerical integration and Riemann sums (Chapter 2B, pp. 104–112), different 

uses of the definite integral (Chapter 2C, pp. 113–127), the FTC (Chapter 2D, 

pp. 128–142), methods of integration (Chapter 2E, pp. 1143–153), and some 

volume and surface integrals (Chapter 2F, pp. 154–169). I will mainly focus 

on Chapter 2A, 2B and 2D, but one example is also taken from Chapter 2F. 

    Two important features of the organisation of the book are the activities 

called explore3 and talk4. These are activities intended to help students explore 

and talk about these themes collectively and are often placed strategically as 

part of the theoretical treatment of the themes. These tasks are not uniquely 

named, and I will therefore give them reference names here, which do not 

correspond to any naming found in the textbook itself. 

 

The Logos Elements of Matematikk R2 
 

The notions of limits, continuity and existence of functions are discussed in 

the Grade 12 mathematics textbook Matematikk R1, providing a foundation 

for integral and differential calculus (Borgan et al., 2021). I cannot provide 

any detailed account of this here, but it suffices to say that the treatment is 

based on intuitive notions of what it means for a function to tend to a limit, 

and what it means for a function or a value to tend to infinity. The distinction 

of bounded and unbounded functions is not made, but different sorts of 

discontinuity are discussed and demonstrated. 

 

The Definition of the Definite Integral 
 

Chapter 2A starts with an explore task (Borge et al., 2022, p. 90), named 

Explore-Task 1 henceforth. The students are tasked with examining the area 

under two graphs by making a lower and upper approximation of the area 

under 𝑓(𝑥) = 𝑥2  and 𝑔(𝑥) = 5𝑥 , using rectangles with equal width. The 

terms upper and lower staircase sums, a simplification of Riemann sums, not 

to be confused with the step function, are then defined. “The collected area of 

the rectangles below and above the graph we call a lower staircase sum, N, 

and an upper staircase sum, Ø, respectively” (Borge et al., 2022, p. 91). The 

true area under the graph lies between these two staircase sums. 

    Then, a definition of the integral based on staircase sums is presented. 

Starting with an area, A, between the values 𝑥 = 𝑎 and 𝑥 = 𝑏, and under the 
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graph of a continuous function f, defined on the interval [𝑎, 𝑏], on which 

𝑓(𝑥) ≥ 0 for all 𝑥 ∈ [𝑎, 𝑏] (see Figure 2). The interval is divided in n equal 

subintervals. Points from 𝑥0 = 𝑎 to 𝑥𝑛 = 𝑏, with distance Δ𝑥 =
𝑏−𝑎

𝑛
, such 

that 𝑥𝑖 − 𝑥𝑖−1 = Δ𝑥 , are marked on the x-axis. The i-th subinterval is 

[𝑥𝑖−1, 𝑥𝑖] (see Figure 3). For one subinterval, a pair of rectangles are defined, 

one with height equal to the lowest function value, and one with height equal 

to the highest function value on the interval. This process is repeated for all 

n subintervals. To get the lower staircase sum, Nn, the smallest rectangles for 

each subinterval are selected, and correspondingly, the largest rectangles for 

the upper staircase sum, Øn. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Area under the graph of f(x) (taken from Borge et al., 2022, p. 95) 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Subdivision of the area under the graph of f(x) (taken from Borge et al., 

2022, p. 95) 
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    Then the book explains the convergence of staircase sum: 
We let 𝑛 → ∞, so that Δ𝑥 → 0. We say that the sequence of staircase 

sums, {Nn} and {Øn}, converge towards a limit value if Nn and Øn 

gets closer and closer to that value when 𝑛 → ∞. When the two 

sequences converge toward the same limit, we call this limit the 

definite integral of f on the interval [a,b], and write ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
. We 

read this as “the definite integral of f from a to b”. (Borge et al., 2022, 

p. 95) 

    After presenting the definition, a note about integrability is given. 
If the two limits are equal, the definite integral is equal to the area 𝐴. 

This is always the case for continuous functions, and we say that 𝑓 

is integrable on the interval [𝑎, 𝑏]. 

If the limits are different, 𝑓 is not integrable. 

All the functions you will meet in R2 are integrable. (Borge et al., 

2022, p. 96) 

    The note about integrability does not seem to serve much purpose, besides 

reassuring the students that they will not need to deal with this topic in depth, 

since all functions in the following sections are promised to be integrable. 

However, as will be seen, this is not true, for at least one case, and can 

potentially lead to false justifications. 

 

Riemann Sums 
 

In Chapter 2B, the concept of staircase sums is expanded upon to define 

Riemann sums. First, the selection of height of the rectangles in the interval 

[𝑥𝑖−1, 𝑥𝑖] , is changed from the strictly highest and strictly lowest in the 

interval, to an arbitrary value. A value, 𝑥𝑖
∗ ∈ [𝑥𝑖−1, 𝑥𝑖], in each subinterval is 

selected, and the function value for each 𝑥𝑖
∗ is calculated. The book then notes 

that both the upper and lower staircase sums are on the form 

 

∑ 𝑓(𝑥𝑖
∗) ⋅ Δ𝑥

𝑛

𝑖=1

, 

called a Riemann sum. 

    It is noted that the Riemann sums require that f is defined on a closed 

interval [𝑎, 𝑏], and that the n subintervals can have varying width, but in Grade 

13 mathematics they will consider only cases with constant width. The fact 



REDIMAT, 12(2) 

 

 

158 

that continuous functions are integrable is reiterated, but again without 

mentioning why. The definite integral is then defined as a sequence of 

Riemann sums: 

 

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

= lim
𝑛→∞

∑ 𝑓(𝑥𝑖
∗) ⋅ Δ𝑥,   where  Δ𝑥 =

𝑏 − 𝑎

𝑛
.

𝑛

𝑖=1

 

 

    The following pages of Chapter 2B present different types of numerical 

integration, and the following Chapter 2C illustrates different uses of the 

integral, with a focus on techniques for area calculations. 

 

Antiderivatives and Indefinite Integrals 
 

Chapter 2D begins by presenting antiderivatives and indefinite integrals. First, 

an explore-task is presented (Explore-Task 2), where the derivative of a 

function 𝑓′(𝑥) = 2𝑥  is given, together with its graph (see Figure 4). Two 

areas under the graph, A1 between 𝑥 = 0 and 𝑥 = 2, and A2 between 𝑥 = 2 

and 𝑥 = 3, are shown in the graph, and five tasks are given (Borge et al., 2022, 

p. 128): 
a) How big are the two areas 𝐴1 and 𝐴2? 

b) Find three possible 𝑓(𝑥), and calculate 𝑓(0) and 𝑓(2) in all three 

cases.  

c) What connection does it appear to be between 𝐴1, 𝑓(0) and 𝑓(2) 

in the three cases? 

d) Can you find a corresponding connection between 𝐴2, 𝑓(2) and 

𝑓(3) in the three cases?  

e) The figures below (see Figure 4) show the graphs of two 

derivatives 𝑔′(𝑥) and ℎ′(𝑥). Examine whether the connection you 

found in task c) also holds for these two cases. 

Use the same technique to calculate the exact areas under the 

function 𝑖′(𝑥) = 𝑒𝑥 and under the function 𝑗′(𝑥) =
1

𝑥
. 
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Figure 4. Explore task about the indefinite integral (Borge et al., 2022, p. 128) 

 

    The technique of finding an 𝑓(𝑥) when you know 𝑓′(𝑥) is named to find 
the antiderivative. The book observes that the only difference between the 

three functions found in Question b) is a constant, justifying the introduction 

of a general constant, C. Antiderivatives are then defined: “If 𝐾′(𝑥) = 𝑓(𝑥), 

we say that K is one antiderivative of f. All antiderivatives of f are then given 

as 𝐾(𝑥) + 𝐶, where 𝐶 ∈ ℝ.” (Borge et al., 2022, p. 129). This is called an 

indefinite integral and defined as ∫ 𝑓(𝑥)𝑑𝑥 = 𝐾(𝑥) + 𝐶,  where 𝐾′(𝑥) =
𝑓(𝑥) and 𝐶 ∈ ℝ. The process of finding an indefinite integral is called to 

integrate. 
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    Note that a connection between the antiderivative, the indefinite integral, 

and the area under a graph is communicated, constituting an attempt at sharing 

the burden of the work done by the later proof of the FTC. 

 

The Fundamental Theorem of Calculus 
 

Another explore-task immediately precedes the FTC (Explore-Task 3). The 

students are given the function 𝑓(𝑥) = 2𝑥 + 3 and a graph of f, and they are 

asked to use the formula of a trapezoid to explain why 𝐹(𝑥) = 𝑥2 + 3𝑥 

describes the area under the graph, from 𝑥 = 0 to an arbitrary x-value greater 

than 0. Continuing, the students are asked to use the area function to explain 

why the area under the graph from 𝑥 = 2 to 𝑥 = 5, becomes 𝐴 = 𝐹(5) −
𝐹(2) = 40 − 10 = 30, and why this implies  

 

∫ 𝑓(𝑥)𝑑𝑥 = 𝐹(5) − 𝐹(2)
5

2

. 

 

    A proof, or rather a demonstration, is presented. The book does not 

explicitly call it a proof, but claims to be demonstrating the carrying idea of 

what could become a proof: 

 
We shall show the carrying idea in the proof for the Fundamental 

Theorem of Calculus, using the figure below (see Figure 5). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. The definite integral of 𝑓(𝑥) from 𝑥 = 𝑎 to 𝑥 = 𝑏 (taken from Borge et 

al., 2022, p. 136) 
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We call the area of the blue region 𝐹(𝑥). This area corresponds to 

the definite integral that we defined using Riemann sums 

 

𝐹(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡.

𝑥

𝑎

 

 

The area of the pink region, Δ𝐴, is a small additional area. The sum 

of the two area corresponds to the definite integral 

 

𝐹(𝑥 + Δ𝑥) = ∫ 𝑓(𝑡)𝑑𝑡

𝑥+Δ𝑥

𝑎

. 

 

The area of only the pink region is therefore the difference between 

the two area above. 

 

Δ𝐴 = 𝐹(𝑥 + Δ𝑥) − 𝐹(𝑥). 
 

An approximation for Δ𝐴 is a rectangle of width Δ𝑥 and height 𝑓(𝑥) 

 

Δ𝐴 ≈ Δ𝑥 ⋅ 𝑓(𝑥). 
 

As with the Riemann sums, the approximation is more accurate the 

narrower the rectangle is, that is, the smaller Δ𝑥 is. 

We set the two expressions for Δ𝐴  equal to each other, and 

recalculate 

𝐹(𝑥 + Δ𝑥) − 𝐹(𝑥) ≈ Δ𝑥 ⋅ 𝑓(𝑥) 
 
𝐹(𝑥 + Δ𝑥) − 𝐹(𝑥)

Δ𝑥
≈ 𝑓(𝑥) 

 

lim
Δ𝑥→0

𝐹(𝑥 + Δ𝑥) − 𝐹(𝑥)

Δ𝑥
= 𝑓(𝑥) 

 
𝐹′(𝑥) = 𝑓(𝑥). 

 

So 𝐹 is therefore the antiderivative of 𝑓. 
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The step from the approximation value on line 2 to the limit on line 

3 of the calculation on the previous page demands a formal proof, 

which we will not enter in R2, but this step is the carrying idea in the 

proof. (Borge et al., 2022, p. 136) 

 

    After this, the book provides an example and a few tasks where the FTC is 

used to differentiate functions defined by definite integrals. The Newton-

Leibniz formula is then proved: 
Starting with the FTC, we can now develop a useful result. 

∫ 𝑓(𝑥)𝑑𝑥
𝑎

𝑎
= 𝐹(𝑎) = 0 because we do not have a region with area 

when the upper and the lower limits of the integral are equal. 

Now, let 𝐾 be an arbitrary antiderivative of 𝑓. Then 𝐹(𝑥) = 𝐾(𝑥) +
𝐶. Thus 

∫ 𝑓(𝑥)𝑑𝑥 = 𝐹(𝑏) = 𝐹(𝑏) − 𝐹(𝑎)
𝑏

𝑎

 

                     = (𝐾(𝑏) + 𝐶) − (𝐾(𝑎) + 𝐶) 
 
= 𝐾(𝑏) − 𝐾(𝑎) 
= [𝐾(𝑥)]𝑎

𝑏  
Here 𝐹(𝑏) = 𝐹(𝑏) − 𝐹(𝑎) since 𝐹(𝑎) = 0. 

[𝐾(𝑥)]𝑎
𝑏  is a shorthand for 𝐾(𝑏) − 𝐾(𝑎). (Borge et al., 2022, p 138) 

 

Tasks and Techniques in Matematikk R2 
 

The theory is then used as foundation for what types of tasks can be given. In 

the textbook, tasks of all the seven types defined in the reference model were 

found. The significance of this is that the technology, s, seems to be relatively 

similar to u. One significant difference can, however, be seen in three specific 

tasks.  

    One of the tasks is an examine tasks and one is a talk tasks. Since the 

textbook provides no solutions, students and teachers are left with the option 

to either argue well enough to be convinced, or to seek answers from external 

sources. In some cases, answers are implied in the following text, but not in 

all cases. 

    Towards the end of the section, two examine-tasks are given. Both are 

motivated simply by stating the mathematical problem, and the book does not 

provide any reason for the utility of the techniques demonstrated in these 
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tasks. The second of these tasks demonstrates a technique relevant to the 

discussion. I call this task Explore-Task 4. 

    Explore-Task 4 shows a calculation, 

 

∫ |𝑥3 − 𝑥|𝑑𝑥
2

−1

= ∫ (𝑥3 − 𝑥)𝑑𝑥
0

−1

+ ∫ (𝑥 − 𝑥3)𝑑𝑥
1

0

+ ∫ (𝑥3 − 𝑥)𝑑𝑥
2

1

=
11

4
, 

 

and asks why this calculation holds. Note the similarity between the technique 

used to solve Explore-Task 4, to the second technique used in Reference 

Example 1. Dividing the area of integration, as a technique, is well within the 

scope of the textbook, and not restricted to examples with calculations of 

areas. There are, however, no similar tasks later, and the task seems therefore 

to serve a purpose as a mathematical curiosity. The utility of the FTC to this 

task, and possibly similar types of tasks, is not examined. 

    The talk task, from now on called Talk-Task 1, that comes after the 

introduction of the Newton-Leibniz formula is also worth some attention 

(Borge et al., 2022, p. 140). Here the students are asked to discuss an 

erroneous result. “Discuss what is wrong with this calculation:” 

 

∫
1

𝑥2 𝑑𝑥
1

−1

= [−
1

𝑥
]

−1

1

= −2. 

 

    Note the similarity between this task, and Task 49 from Reference Example 

2. Matematikk R2 does not present any solution to the task. However, the 

intended solution is likely to be related to the area interpretation, given θs. 

Boundedness as a condition for integrability is not part of θs, and only the area 

analogy is present in detail in the preceding theoretical discussion. Since the 

task does not have a solution presented in the textbook, it is therefore unlikely 

that students would discover the significance of the criteria of integrability 

and boundedness. 

    Task 2.121 is a third task relevant to the discussion (Borge et al., 2022, p. 

168). This task presents the famous Gabriel’s Horn. The function 𝑓(𝑥) = 1/𝑥 

is given, and the students are asked to define the integrals of the volume and 

surface of revolution, 𝑉(𝑎) and 𝐴(𝑎) respectively, about the abscissa from 

𝑥 = 1 to 𝑥 = 𝑎, where 𝑎 > 1. Then, by letting 𝑎 → ∞, they are tasked with 
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examining whether the limits lim
𝑎→∞

𝑉(𝑎)  and lim
𝑎→∞

𝐴(𝑎)  exist. To solve the 

task, the limits 

 

lim
𝑎→∞

𝑉(𝑎) = lim
𝑎→∞

𝜋 ∫
𝑑𝑥

𝑥2

𝑎

1

= 𝜋, 

and 

lim
𝑎→∞

𝐴(𝑎) = lim
𝑎→∞

2𝜋 ∫
1

𝑥
√1 + (ln 𝑥)2𝑑𝑥

𝑎

1

→ ∞, 

are calculated. 

    This task demonstrates a type of improper integral with integration limits 

that tend to infinity, that is, it breaks the criterion of a closed interval of 

integration. It also demonstrates that some integrals of this type can be 

calculated to a concrete value, while others cannot. Task 2.121 is the only 

instance of such a task and seems to be another case of a mathematical 

curiosity. The technique used in this task is not used for anything else, nor are 

any later uses for the techniques mentioned. 

    A common theme of these three tasks is that of examining the very limits 

of the FTC. More specifically, they illustrate what sort of functions are 

permissible as integrands in a definite integral. And with the addition of Task 

2.121, it illustrates how one can handle cases where the FTC cannot be applied 

directly, but where it needs to be modified in certain ways. The connection 

between them is, however, not explicitly made. 

 

Elements of the Didactic Transposition 
 

In this section I will compare the praxeological organisation found in the 

Grade 13 book Matematikk R2 with the reference model. In this way I will be 

able to describe the didactic transposition from scholarly knowledge to the 

Grade 13 noosphere. I do it element by element first, and then, in the following 

section I discuss implications and answer the research questions concretely. 

 

Didactical Transposition – Elements of the Logos 
 

Comparing the demonstration of the FTC in Matematikk R2 with the reference 

proof for the FTC Part I, we first see some similarities. The premises are the 

same, that of a continuous integrand, and they therefore have the same 
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applicability. As the reference proof, it also starts by defining the function 

𝐹(𝑥) using an integral, and both have the goal of proving that 𝐹′(𝑥) = 𝑓(𝑥).  

But we do see some major differences. Whereas the reference model states 

the theorem formally first, Matematikk R2 presents the proof before the formal 

statement of the theorem. As a result, it is less clear in the beginning of the 

proof what to expect as the end goal. By stating the goal in the beginning, the 

reference proof start by using the definition of the derivative, and directly 

show that by rewriting 𝐹′(𝑥), we will end up with 𝐹′(𝑥) = 𝑓(𝑥). 

    The reference proof also bases its argument on previously proven results, 

which in turn are based on formal definitions, making the proofs rigorous. The 

argument in Matematikk R2, is instead based on graphical representations, and 

justifies the algebraic expressions it later manipulates using this graph. What 

it does reference, and therefore lends its legitimacy to, is the definition of the 

definite integral and Riemann sums. It is therefore crucial that these are 

defined properly for the FTC to be properly justified. 

    In Matematikk R2, there is also one major step within the proof that is not 

explained. For the argument to become rigorous, the step from 

 
𝐹(𝑥 + Δ𝑥) − 𝐹(𝑥)

Δ𝑥
≈ 𝑓(𝑥) 

 

to the equality 

 

lim
Δ𝑥→0

𝐹(𝑥 + Δ𝑥) − 𝐹(𝑥)

Δ𝑥
= 𝑓(𝑥), 

 

needs to be argued. This is not done in the proof, nor does it reference any 

previously proven theorems. The book does, however, not claim to present a 

formal proof. They instead call this step the carrying idea and foreshadows a 

more complete proof to be found later in the students’ journey towards 

knowledge. 

    While a rigorous approach would base the argument on previously proven 

theorems, founded on the formal definition of limits, Matematikk R2 bases its 

argument on intuitions and algebraic manipulations. The importance of rigor 

can, however, be seen. Matematikk R2 shows that by referring to the fact that 

a more rigorous proof exists, which the students will possibly encounter 

somewhere later along their trajectory of learning. 
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    One structural change which is consequential, is the dependence on a 

correct definition of the integral. Matematikk R2 does have a definition that is 

useable in most cases encountered in the textbook, but not, as claimed, in all 

cases. By basing the definition of a definite integral on continuous functions, 

and not contending with what it means for a function to be integrable, more 

than in a passing note, it leaves out a crucial piece of information. 

 

Didactic Transposition – Tasks 
 

The intra-mathematical utility of the FTC presented in Matematikk R2 seems 

to be quite similar to that of the university textbooks. Much of the same types 

of tasks available in the university textbooks are also available using θs. 

The exception is when integrability is at stake. The case of Task 49 from 

Calculus and Talk-Task 1 in Matematikk R2 exemplifies this. Although 

Matematikk R2 has a logos that can provide support for justifying that the 

calculation fails, through arguing that the area cannot be negative, it does not 

have a means of explaining why the calculation fails. The fact that 

boundedness is a criterion for integrability is not discussed, and neither is the 

fact that it is precisely because of boundedness that a function which is 

continuous on a closed interval is also always integrable. A pertinent question 

related to this would then be “what would the students have made of the task 

if the interval of integration were [0,1] rather than [−1,1]?” Certainly, the 

function looks continuous on the whole interval. 

    Furthermore, Examine Task 2, and Task 2.121 show the use of techniques 

and themes that could have been useful in a more thorough treatment of 

integrability. The technique of dividing the area of integration into 

subintervals, seen in Examine Task 2, which can also be used for piecewise 

continuous functions, as seen in Reference Example 1, could be instrumental 

in providing examples of integrable non-continuous functions. In that way, 

the importance of boundedness could be illustrated. Task 2.121 is an example 

of an improper integral. The fact that this task is included, does show the 

willingness of the textbook to include integrals that are not proper definite 

integrals, but which are nevertheless extensions of the concept of definite 

integrals. With relatively few modifications, a discussion about other types of 

improper integrals, for example of the type where the integrand itself tends to 

infinity rather than the independent variable, could be included. 
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    Thus, in these three examples, one can see a potential for a deepening of 

the understanding of the FTC, and particularly for the premises for its 

application. For that to be possible, a more precise notion of integrability is 

needed, which also includes the criterion of boundedness. The connection is, 

however, not made clear in Matematikk R2, and the three tasks stand as 

separate examples of mathematic curiosities rather than providing 

justification for further theoretical developments. The lack of this distinction 

in some form is therefore a major constraint. 

 

Concluding remarks 
 

On this background, the didactic transposition can be summarised. It is first 

important to note the clear similarities between the organisation seen in 

Matematikk R2 and the one identified in the referenced university textbooks. 

The treatment of the FTC, and not only the Newton-Leibniz formula, allows 

for a broader range of tasks and techniques. In particular, the inclusion of, and 

focus on Part I of the FTC presents conditions that allow for a closer 

connection between the analogies of accumulation and area, well known to be 

a difficulty for students (Thompson & Harel, 2021; Burgos et al., 2021). 

    The main concern, however, is that the notion of integrability is 

undeveloped. Although the term is used once, it is never defined properly, and 

the condition of boundedness is never mentioned or described.  

    The importance of boundedness is most apparent in cases where the 

integrand is either not bounded, or the function is not continuous but still 

integrable. Didactic implications of boundedness, and of closure of the 

interval of integration, in relation to improper integrals has been examined in 

several publications (e.g., González-Martín & Camacho, 2004; González-

Martín & Correira de Sá, 2007; Rúbio & Gómez-Chacón, 2011), showing that 

first-year university students have great difficulty in comprehending the 

importance and significance of these two criteria, and even seem to be 

generally unaware of this importance.  

    It is therefore, in my opinion, a disservice to the Grade 13 students to not 

discuss what significance boundedness has, while at the same time include 

tasks that could clearly benefit from such a discussion. It is also likely that a 

discussion about boundedness and integrability could strengthen the 

conceptions of continuity of functions in general, another area of calculus that 
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has proved difficult conceptually for students (Hanke, 2018; Lankeit & 

Biehler, 2020). Thus, by not including boundedness, an important part of the 

FTC’s utility is left out, reducing the scope of both the set of available 

techniques, τs, and types of tasks, Ts. 

    The observations in this study and research of the organisation of the FTC 

in Matematikk R2 illustrates well the challenge of including new material in a 

textbook. The praxis block has clearly been strengthened by an explicit 

inclusion of the FTC, and not only the Newton-Leibniz formula. But with this 

inclusion, new challenges arrive. Because of an undeveloped notion of 

integrability, the textbook does not provide students with the resources to 

know the conditions for when the FTC can be applied, and why the conditions 

are as they are. The consequences can be seen in three tasks, which without a 

concept of integrability which includes boundedness, cannot be connected, 

and therefore remain as mathematical curiosities, instead of contributing to 

the FTC’s intra-mathematical and extra-mathematical utility. 

    However, the choices of the textbook authors are, just as the activities of 

students and teachers, formed by their own conditions and constraints. In this 

case, through a new curriculum reform, the requirement of introducing a more 

concrete treatment of the FTC, a constraint, was introduced, but the 

underlying concepts of integrability and boundedness has not been given the 

same attention. And with the time constraint put on the school system (Leong 

& Chick, 2011; Teig et al., 2019), balancing the size and content of the 

curriculum, and consequently also textbooks’ contents, is not an easy task. If 

one adds something, another thing must often go. In this case, though, I claim 

it is sensible to include boundedness as a criterion for integrability, since it 

provides both a more solid foundation for the FTC, and because of the insight 

it might provide into details about the concept of continuity. 

    Since the analysis here focuses on one textbook, two immediate questions 

remain. How is the concept of the FTC treated in other Grade 13 textbooks in 

Norway? What impact does this change in curriculum, and the consequent 

change in the textbooks have on students’ learning and readiness for further 

mathematics studies? The last of these questions may only be answered in a 

few years, when the first students that have been taught using this textbook, 

under the new curriculum, have arrived at the universities. 
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Notes 
 
1Figures taken from the textbook by Borge et al. (2022) are reproduced with permission from 

the publisher, Aschehoug. All figures are designed by Eirek Engmark at “Framnes Tekst & 

Bilde AS”. 
2All translations from Norwegian to English are made by the author of this article. 
3 Utforsk in Norwegian. 
4 Snakk in Norwegian. 
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