
Tecnología en Marcha. June, 2024
Vol. 37, special issue. LAEDC118

Proposal of an open-source 
accelerators library for inference 
of transformer networks in edge 
devices based on Linux
Propuesta de biblioteca de aceleradores 
de código abierto para inferencia de redes 
Transformer en dispositivos perimetrales
Alejandro Araya-Núñez1, Justin Fernández-Badilla2, 
Daniel González-Vargas3, Jimena León-Huertas4, Erick-
Andrés Obregón-Fonseca5, Danny Xie-Li6

Araya-Núñez, A; Fernández-Badilla, J; González-Vargas, D; 
León-Huertas, J; Obregón-Fonseca, E.A; Xie-Li, D. Propo-
sal of an open-source accelerators library for inference of 
transformer networks in edge devices based on Linux. Tec-
nología en Marcha. Vol. 37, special issue. June, 2024. IEEE 
Latin American Electron Devices Conference (LAEDC). Pág. 
118-125. 
 

 https://doi.org/10.18845/tm.v37i5.7225

1 Electronic Engineering School. Costa Rica Institute of Technology. Costa Rica. 
 ale6896@ieee.org 
 https://orcid.org/0009-0003-4741-303X 

2 Academic Area of Computer Engineering. Costa Rica Institute of Technology. 
Costa Rica. 

 jfernandez@ieee.org 
 https://orcid.org/0009-0000-0350-1562

3 Electronic Engineering School. Costa Rica Institute of Technology. Costa Rica. 
 danielg1010@ieee.org 
 https://orcid.org/0009-0006-0994-0578

4 Academic Area of Computer Engineering. Costa Rica Institute of Technology. 
Costa Rica. 

 mena.leon@ieee.org 
 https://orcid.org/0009-0005-2730-6282 

5 Academic Area of Computer Engineering. Costa Rica Institute of Technology. 
Costa Rica. 

 erickof@ieee.org 
 https://orcid.org/0009-0007-1046-0894

6 Computing Engineering School. Costa Rica Institute of Technology. Costa Rica. 
 dxie@ic-itcr.ac.cr 
 https://orcid.org/0000-0003-1878-9460



Tecnología en Marcha. June, 2024  
Vol. 37, special issue. . 119

Keywords
Artificial intelligence; driver; FPGA; hardware accelerator; Linux; transformers.

Abstract
Transformers networks have been a great milestone in the natural language processing field, and 
have powered technologies like ChatGPT, which are undeniably changing people’s lives. This 
article discusses the characteristics and computational complexity of Transformers networks, as 
well as, the potential for improving its performance in low-resource environments through the use 
of hardware accelerators. This research has the potential to significantly improve the performance 
of Transformers in edge and low-end devices. In addition, Edge Artificial Intelligence, Hardware 
Acceleration, and Tiny Machine Learning algorithms are explored. The proposed methodology 
includes a software and hardware layer, with a Linux-based minimal image built on top of a 
synthesized RTL. The proposal also includes a library of hardware accelerators that can be 
customized to select the desired accelerators based on the device’s resources and operations 
to be accelerated.

Palabras clave
Inteligencia artificial; driver; FPGA; acelerador por hardware; Linux; transformers.

Resumen
Las redes de Transformers han sido un gran hito en el campo del procesamiento del lenguaje 
natural y han impulsado tecnologías como ChatGPT, que indudablemente están cambiando la 
vida de las personas. Este artículo discute las características y la complejidad computacional 
de las redes de Transformers, así como el potencial para mejorar su rendimiento en entornos 
con pocos recursos mediante el uso de aceleradores de hardware. Esta investigación tiene el 
potencial de mejorar significativamente el rendimiento de los Transformers en dispositivos de 
edge y de gama baja. Además, se exploran la Inteligencia Artificial en el edge, la Aceleración 
de Hardware y los algoritmos de Tiny Machine Learning. La metodología propuesta incluye una 
capa de software y hardware, con una imagen mínima basada en Linux construida sobre un 
nivel de transferencia de registro (RTL) sintetizada. La propuesta también incluye una biblioteca 
de aceleradores de hardware que se puede personalizar para seleccionar los aceleradores 
deseados según los recursos del dispositivo y las operaciones a acelerar.

Introduction
The Transformers’ architecture has achieved dominant results in various natural language 
processing (NLP) tasks. Usually, Transformer architectures have been trained on large GPU 
clusters. However, their quadratic computational complexity limits their usage in low-resource 
environments. One of the characteristics is that they process each input in parallel. This 
means each token of a sequence is stored simultaneously, which reduces execution time. 
An embedding is used to make a numerical representation of each token and in a positional 
codification module to indicate the relative position of every token in the sequence. The previous 
information is sent sequentially to six encoders. Each of them has an attentional module, with 
three matrices involved: query, key, and value vector. Attentional modules are used to analyze 
the text sequence and find relations among various words. To know the weight of each token in 
relation to the model, sinusoidal functions and a probabilistic function called Softmax are used 
[1].



Tecnología en Marcha. June, 2024
Vol. 37, special issue. LAEDC120

Some important operations within the Transformer architecture include the scaled dot-product 
attention, which involves taking the dot product of the query, key, and value matrices within 
the attention mechanism. Transformers also require the normalization of certain data among 
the architecture, as it is used commonly in deep neural networks (DNN) to address gradient 
problems, leading to faster convergence. The multi-head attention mechanism involves the 
execution of the dot product attention among different dimensions, which allows the model to 
attend to more information given at different positions. Transformers are based on an encoder-
decoder architecture. Generative pre-trained models (GPT) can be based only on decoder-only 
architecture, although some models might be based on different approaches depending on the 
task being performed [1, 2]. It uses stacked self-attention and point-wise, fully connected layers 
for both the encoder and decoder [1], shown in Figure 1.

Figure 1. The Transformer – model architecture. Retrieved from Attention is all you need [4].

Hardware acceleration is a process where applications or systems delegate certain tasks to 
specialized hardware, giving more performance to the CPU and releasing the latter from that 
load [3]. The acceleration of DNN training is computationally expensive, requiring fast and 
efficient hardware acceleration [4]. Edge devices have limited computational capabilities, so 
energy-efficient accelerators and processors are needed. Lowering the access to external 
memory is challenging, but modern algorithms have reduced this access and others have 
focused on model parameters’ reduction, like weight quantization and pruning [5, 6, 7]. The 
biggest constraint on the performance of inference accelerators is the limited bandwidth of 



Tecnología en Marcha. June, 2024  
Vol. 37, special issue. . 121

the memory. Also, the GPU power consumption surpasses the power budget of a stand-alone 
embedded system. Since this, reductions in the precision of input data and hardware weight 
have been explored in the research field to reduce hardware accelerators’ power consumption 
[8]. Tiny machine learning (Tiny ML) algorithms are a fusion of machine learning (ML) and 
the Internet of Things (IoT). This field is mostly used in edge computing, where systems have 
constraints in memory, power consumption, and computation time. This requires the utilization of 
approximation techniques, which are grouped into three families: pruning of processing layers, 
quantization of parameters, and activations with limited precision of binary parameters [9].

Related Work

Hardware Accelerators for Transformers 
Numerous hardware accelerators have been proposed for Convolutional Neural Networks 
(CNN) model inference [14, 15]. However, there has been limited research on Transformer 
accelerators. In one study [10], authors introduced a hardware accelerator for the multi-head 
attention Resblock and the position-wise feed-forward network Resblock layers. This approach 
efficiently partitions large matrices to share hardware resources, optimizes the nonlinear 
functions, and achieves high hardware utilization using a systolic array.  The hierarchical pruning 
framework in [13] presents a hierarchical pruning framework that optimizes the sparse matrix 
storage format to reduce memory usage for FPGA implementation. The framework’s goal is to 
select the best device among multiple options for deploying a model while satisfying latency and 
accuracy constraints. 
To address the computation and memory demands of transformers, a Sparse Transformer 
accelerator has been developed [11]. This accelerator utilizes a sparsity structure and features 
a specialized computing engine capable of handling sparse matrix multiplications. It includes a 
scalable softmax module to minimize latency from off-chip data communication. In the context 
of vision applications, a row-wise scheduling technique efficiently executes the major operations 
by treating them as a single dot product primitive. This approach promotes weight sharing in 
columns, leading to data reuse and reduced memory usage. Furthermore, it leverages a low 
gate count and SRAM buffer for improved performance [12].

Hardware Back-end
The hardware where the transformer model is running take a significant role to increase the time 
response of the Edge device. Different hardware backends such as GPUs and FPGAs can help 
accelerate the DNN processing. For the present study, FPGAs are the hardware backend due 
to the architectural flexibility that allows the design to handle multiple instructions  [16].  

Methodology

Modules 
In general, the project has two layers. The first layer is the hardware layer. A minimal system is 
synthesized with memory and CPU, and the hardware accelerators selected by the user. The 
other layer is the software. A Linux-based minimal image is built on the synthesized RTL. Inside 
it, the Transformer model and API are added to the Linux image using Yocto recipes, as well 
as a driver for each synthesized accelerator instance, which is loaded in the Linux kernel. The 
model interacts directly with the API to transmit each layer’s inputs and get each output result 
from it. The API is also in charge of scheduling the data transmission between the model and 
the different hardware accelerators, in the most efficient possible way. This will distribute the 



Tecnología en Marcha. June, 2024
Vol. 37, special issue. LAEDC122

processing load in all the accelerators to take advantage of the available resources. In Figure 
1, the different components of the projects are shown, as well as in Figure 2, the tools used for 
each part are also shown.

Figure 2. Project modules for the proposed architecture.

Figure 3. Project tools for each module.

API
The API is required to initialize the run time environment or context, which starts detecting the 
available hardware accelerators and allocates the memory for each of them. To send commands 
to the hardware accelerator is a requirement to define a command queue in which the context 
and device need to be set. 



Tecnología en Marcha. June, 2024  
Vol. 37, special issue. . 123

After that, allocating memory for the inputs and outputs is needed for each layer of the Transformer 
model. For these tasks, buffer objects are created and during the process of creation, the size 
of the buffer must be specified, based on the inputs and outputs size. With a buffer created, it 
is possible to write or read from memory to the CPU. A parameter should be set as true or false 
according to the task. 
To process the data for the layer of the model, the CPU’s buffer could be copied to the hardware 
accelerator to get a result to be returned to the model by doing the same process in the opposite 
direction. The API is in charge of copying a source to a destination buffer without losing the data 
to get a result to return to the Transformer model.
For the ending of the execution, the API must deallocate memory that was previously allocated 
by buffers. Furthermore, it is necessary to release the command queue and the environment that 
was created for the instance of the accelerator.

Hardware accelerators library
The hardware accelerators library consists of several accelerator instances that can be chosen 
and synthesized from a wide range of high-end to low-end FPGAs. A hardware accelerator is 
implemented for each operation of the Transformer model. Thanks to the high parallelization of 
this network architecture, multiple instances of the same accelerator can be synthesized by the 
library. This will let the user decide which operations can have more or null accelerators, and 
prioritize resources for a wide range of FPGAs.

Linux Drivers
A Linux driver is developed per hardware accelerator, and each instance has its own driver to 
transmit the data efficiently. When the Linux image is built, the accelerator instance is added 
with its corresponding driver loaded in the kernel. The API will take care of scheduling the data 
through the different hardware accelerators to take advantage of the resources properly.

Future work
The complete implementation of the proposed architecture is planned for future work. The 
design and implementation of the hardware accelerator library will leverage the state-of-the-art 
techniques explored in this research. In addition, the definition of validation tools for RTL will be 
explored later on, covering different open-source tools for static and dynamic verification to be 
used in the best scenarios.
Additionally, an extensive exploration of optimization strategies for the hardware accelerators 
will be conducted. These optimizations aim to enhance resource utilization and minimize power 
consumption. Moreover, efforts will be made to develop efficient device drivers that reduce 
communication overhead. These optimizations will contribute to the overall performance and 
efficiency of the hardware accelerators.

References
[1] A. Vaswani et al. “Attention is All You Need”. 31st International Conference on Neural Information Processing 

Systems, Long Beach, California, 2017, pp. 6000–6010.
[2] OpenAI, “GPT-4 Technical Report,” [Online], Mar 15 2023. Available: https://doi.org/10.48550/arXiv.2303.08774
[3] U. Farooq. (2021). What Is Hardware Acceleration and When Should You Use It? [Online]. Available: https://

www.makeuseof.com/what-is-hardware-acceleration/



Tecnología en Marcha. June, 2024
Vol. 37, special issue. LAEDC124

[4] A. N. Mazumder et al. (2021, Dec). “A Survey on the Optimization of Neural Network Accelerators for Micro-AI 
On-Device Inference”. IEEE Journal on Emerging and Selected Topics in Circuits and Systems [Online]. Vol. 
11, issue 4, pp. 532-547. Available: https://doi.org/10.1109/JETCAS.2021.3129415

[5] J. Lee and H. J. Yoo. (2021, Oct). “An Overview of Energy-Efficient Hardware Accelerators for On-Device 
Deep-Neural-Network Training”. IEEE Open Journal of the Solid-State Circuits Society [Online]. Vol. 1, pp. 115-
12. Available: https://doi.org/10.1109/OJSSCS.2021.3119554

[6] H. Yang and X. Lingao. (2023). “Structured Pruning for Deep Convolutional Neural Networks: A survey” 
[Online]. Available: http://doi.org/10.48550/arXiv.2303.00566

[7] Y. Hancheng, B. Zhang, T. Chen, and J. Fan. (2023, March). “Performance-aware Approximation of Global 
Channel Pruning for Multitask CNNs” [Online]. Available: https://doi.org/10.1109/TPAMI.2023.3260903

[8] H. Park and S. Kim, “Chapter Three – Hardware accelerator systems for artificial intelligence and machine 
learning,” in Hardware Accelerator Systems for Artificial Intelligence and Machine Learning, S. Kim and G. C. 
Deka, Eds. Amsterdam: Elsevier, 2021, pp 51-95.

[9] S. Disabato and M. Roveri. (2022, Dec). “Tiny Machine Learning for Concept Drift”. IEEE Transactions on 
Neural Networks and Learning Systems [Online]. Available: https://doi.org/10.1109/TNNLS.2022.3229897

[10] S. Lu et al, “Hardware accelerator for multi-head attention and position-wise feed-forward in the transformer,” 
in 2020 IEEE 33rd International System-on-Chip Conference (SOCC), 2020, .

[11]  C. Fang et al, “An efficient hardware accelerator for sparse transformer neural networks,” in 2022 IEEE 
International Symposium on Circuits and Systems (ISCAS), 2022, .

[12]  H. Wang and T. Chang, “Row-wise accelerator for vision transformer,” in 2022 IEEE 4th International 
Conference on Artificial Intelligence Circuits and Systems (AICAS), 2022, .

[13]  P. Qi et al, “Accelerating framework of transformer by hardware design and model compression co-optimiza-
tion,” in 2021 IEEE/ACM International Conference on Computer Aided Design (ICCAD), 2021, .

[14]  L. Bai, Y. Zhao and X. Huang, “A CNN accelerator on FPGA using depthwise separable convolution,” IEEE 
Transactions on Circuits and Systems II: Express Briefs, vol. 65, (10), pp. 1415-1419, 2018.

[15]  A. Kyriakos et al, “High performance accelerator for cnn applications,” in 2019 29th International Symposium 
on Power and Timing Modeling, Optimization and Simulation (PATMOS), 2019, .

[16] Z. Azad, R. Sen, K. Park, and A. Joshi, “Hardware Acceleration for DBMS Machine Learning Scoring: Is It Worth 
the Overheads?,” presented at the - 2021 IEEE International Symposium on Performance Analysis of Systems 
and Software (ISPASS), 2021, pp. 243–253, doi: 10.1109/ISPASS51385.2021.00047.



Tecnología en Marcha. June, 2024  
Vol. 37, special issue. . 125

Hardware layer: A minimal system is synthesized with memory and CPU, allowing users to select their desired hardware accelerators.
Software layer: A Linux-based minimal image is constructed using the synthesized RTL. Within this image, the Transformer model and API are integrated via
Linux image using Yocto recipes. Additionally, a driver for each synthesized accelerator instance is loaded in the Linux kernel. The model interacts directly
with the API to transmit each layer's inputs and get the corresponding output. The API also handles the scheduling of the data transmission between the
model and the various hardware accelerators, ensuring optimal efficiency. This approach distributes the processing load across all the accelerators,
effectively utilizing the available resources.

The project consists of two layers:

1.
2.

Instituto Tecnológico de Costa Rica

FUTURE WORKI

ABSTRACT

Transformers networks have been a great milestone in the natural language processing field, and have powered technologies like ChatGPT, which are undeniably
changing people's lives. This article discusses the characteristics and computational complexity of Transformers networks, as well as, the potential for improving
its performance in low-resource environments through the use of hardware accelerators. This research has the potential to significantly improve the performance of
Transformers in edge and low-end devices. In addition, Edge Artificial Intelligence, Hardware Acceleration, and Tiny Machine Learning algorithms are explored. The
proposed methodology includes a software and hardware layer, with a Linux-based minimal image built on top of a synthesized RTL. The proposal also includes a
library of hardware accelerators that can be customized to select the desired accelerators based on the device's resources and operations to be accelerated.

III

II METHODOLOGY

Proposal of an Open-Source Accelerator 
Library for Inference of Transformer Networks

in Edge Devices based on Linux
 Araya-Nuñez Alejandro

ale6896@ieee.org
Fernández-Badilla Justin

 jfernandez@ieee.org
Obregón-Fonseca Erick

erickof@ieee.org
González-Vargas Daniel
danielg1010@ieee.org

León-Huertas Jimena
mena.leon@ieee.org

Xie-Li Danny 
dnnxl@ieee.org

[1]   A. Vaswani et al. “Attention is All You Need”. 31st International Conference on Neural Information Processing Systems, Long Beach, California, 2017, pp. 6000–6010.

2023 IEEE Latin American Electron Devices
Conference (LAEDC)

Keywords. Artificial Intelligence; Driver; FPGA; Hardware Accelerator; Linux; Transformers.

Figure 2. Project modules for the proposed architecture. Figure 3. Project tools for each module.

Multi-Head Attention is the key component
of transformer architecture. It allows the
model to attend to different parts of the
input sequence. The number of operations
required to compute the attention weights
grows quadratically with the length of the
input sequence. 

Figure 1.  Multi-head attention mechanism.
Recovered from [1].

Designing and implementing the hardware accelerator
library.
Defining validation tools and methodology for RTL.
Exploration of optimizations for the hardware accelerators
to enhance resource utilization and reduce power
consumption.
Investigating optimization techniques to minimize the
communication overhead in drivers.

INTRODUCTION

REFERENCES


