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ABSTRACT. In this expository article we discuss the notion of summability, in a
historical context, focusing on two methods, Cesàro’s and Abel’s. We apply these
methods to Fourier series, analyzing in detail the summability results they provide.
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RESUMEN. En este artículo expositorio estudiamos la noción de sumabilidad en un
contexto histórico, concentrándonos en dos métodos, el de Cesàro y el de Abel. Además
aplicamos estos métodos a las series de Fourier, analizando en detalle los teoremas de
sumabilidad que resultan.
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1 Introduction

The purpose of this expository article is to discuss, in a historical context, two summability
methods, Cesàro’s and Abel’s, and to apply them to the Fourier series of a 2π-periodic
function that is Riemann integrable on [−π, π].

The present article continues with and extends the topics presented in [1], where we
studied results of convergence à la Cauchy, for the Fourier series of a 2π-periodic function
satisfying appropriate conditions.
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The organization is as follows: In Section 2 we collect a number of historical obser-
vations on how the treatment of series evolved over time. Section 3 is dedicated to two
summability methods, Cesàro’s and Abel’s. Their properties and the relation of one to
the other are illustrated with numerous examples. Next, we apply these two summation
methods to the Fourier series of a 2π-periodic function that is Riemann integrable on
[−π, π]. As it is the case of convergence, each summation method is associated with an
integral operator defined by an appropriate kernel, Fejér for Cesàro’s method and Poisson
for Abel’s method. To calculate these two kernels is the subject of Section 3. In Section 4
we use the notion of good kernel, discussed by Rami Shakarchi and Elias M. Stein in [18],
to prove that both, Cesàro’s method and Abel’s method, sum the Fourier series to the value
of the function, at every point of continuity. We also show that the Fejér kernel and the
Abel kernel satisfy the condition stated by Antoni Zygmund in ([21], p. 88). Finally, in
the last section, we go over a brief discussion of convergence versus summability, for a
Fourier series.

2 Convergent series and divergent series

We begin with a series
∑

j≥0 aj of real terms aj . It converges, or it is convergent, if the
sequence of its partial sums

∑
0≤j≤n aj has a finite limit as the index n goes to infinity. In

other words, if there is a real number a so that, for each ε > 0 there is N = N (ε) ≥ 1 for
which ∣∣∣∣∣∣

n∑
j=0

aj − a

∣∣∣∣∣∣ < ε, (1)

for all n ≥ Nε. If this is the case, we write∑
j≥0

aj = a

and we call a the sum of the series. The limit of a sequence, if it exists, is unique. Therefore,
when a exists, it is unique. If a does not exist, we say that the series diverges, or that it is
divergent. As a consequence of the definition of convergent series, the general term aj of a
convergent series goes to zero as j → ∞.

These definitions and results appear in Augustin-Louis Cauchy’s Analyse Algébrique,
published in Paris in 1821.

It is permissible to say, for instance, that the series
∑

j≥1 j “goes” to infinity, or
that it diverges to infinity, because its partial sums increase without bound as n increases.
However, since ∞ is not a number, the series is divergent, according to Cauchy’s definition.

The Cauchy’s condition, which appears in p. 125 of Analyse Algébrique and is part
of the Calculus canon, allows us to decide whether a series is convergent or not, without
having to identify its sum.

According to ([20], p. 11), John Wallis had already formulated, in 1655, a definition of
convergence equivalent to (1). The expression “convergent series” is due to James Gregory,
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who began to use it in 1668 ([20], p. 16). As for the expression “divergent series”, the
same source states that it was coined by Nicolaus (I) Bernoulli in 1713.

Nevertheless, Cauchy was the first to make a rigorous study of series, focused on
convergence ([17], Cauchy’s biography).

Divergent series puzzled and challenged mathematicians for many centuries. For
instance, Isaac Newton and Gottfried Wilhelm Leibniz, who were the first to manipulate
series systematically, had little inclination to deal with divergent series, although, as
Godfrey Harold Hardy puts it ([8], p. 1), “Leibniz sometimes played with them.” Still,
regardless of how careless their manipulations look today, even in Arquimedes’s time,
mathematicians had a pretty good idea of whether a series was convergent or divergent.
Moreover, the great masters just seemed to know what manipulations were “permissible”,
no matter how devoid of meaning they appeared to be. As an example, Hardy uses the
work of Leonhard Euler on the series 1− 1 + 1− 1 + · · · (see [8], p. 14):

For 0 ≤ r < 1, ∑
j≥0

(−1)
j
rj =

1

1 + r
. (2)

The right-hand side of (2) can be rightfully evaluated for r = 1. Therefore,

lim
r→1−

∑
j≥0

(−1)
j
rj =

1

2
.

Taking r = 1 on the left-hand side of (2) we have, formally, the series 1− 1 + 1− 1 + · · ·
Euler’s conclusion is that

1− 1 + 1− 1 + ... =
1

2
.

Leibniz had already this result, using “probability and metaphysics” ([8], p. 14).

Be that as it may, mathematicians of different periods did not fail to notice that reckless
manipulations of divergent series often led to interesting conclusions, which sometimes
could be verified by other means. Hardy cites Euler as saying ([8], p. 15) that “the
controversies excited by the use of divergent series are largely ‘verbal’.” Hardy goes on to
saying: “Here, as elsewhere, Euler was substantially right. The puzzles of the time about
divergent series arose mostly, not from any particular mystery in divergent series as such,
but from disinclination to give formal definitions and from the inadequacy of the current
theory of functions.”

Indeed, before Cauchy insisted on the need for explicit definitions, even the most
illustrious mathematicians were not inclined to ask “What is the definition of, say, 1− 1 +

1− · · · ?”, but rather they asked the entirely different question “What is 1− 1 + 1− · · · ?”
([8], p. 6).

After Euler, Joseph Fourier and Simeón Denis Poisson were the analysts who used
divergent series most ([8], p. 17). Nevertheless, with Cauchy’s definition, the attention
was placed on convergent series, with divergent series being gradually removed from
analysis. However, in the last quarter of the nineteenth century, they made a dramatic
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reentrance, with the works of Henri Jules Poincaré, Thomas Jan Stieltjes and Ernesto
Cesàro. Poincaré, in an article published in 1886 in Acta Mathematica, used particular
divergent series to approximate the solutions of ordinary differential equations, near
irregular points. Stieltjes, in his doctoral dissertation, published the same year in Annales
Scientifiques de l’École Normal Supérieur, showed how certain divergent series could give
excellent approximations for important special functions. It is in the work of Poincaré and
Stieltjes, that the general notion of asymptotic expansion appeared. To be sure, quite a few
mathematicians, among them Euler, Abraham de Moivre, James Stirling, Pierre-Simon
Laplace and Adrien-Marie Legendre, had used asymptotic expansions in particular cases.
Nevertheless, the formal concept of asymptotic expansion began with Stieltjes and Poincaré
([5], p. 1; [20], p. 151) and it is now used also in algebraic equations and partial differential
equations, of interest in the applied sciences.

As for Ernesto Cesàro, he worked in a completely different direction, arguing, in an
article published in 1890 in the Bulletin des Sciences Mathématiques, that summing a
divergent series could mean something altogether different from Cauchy’s definition.

It is Cesàro’s approach that is relevant in our context. We will discuss it in the next
section.

3 A divergent series can have a sum

We begin with a definition.

Definition 1. A series
∑

j≥0 aj is summable according to Cesàro’s method, or it is Cesàro
summable, if there is a number a such that

lim
n→∞

s0 + s1 + s2 + · · ·+ sn
n+ 1

= a, (3)

where sn =
∑

0≤j≤n aj for n ≥ 0.

If the series is Cesàro summable, we write∑
j≥0

aj = a (C, 1) ,

and we say that a is the Cesàro sum of the series, or the (C, 1) sum of the series.

Since a is the limit of a sequence, a is uniquely determined.

Let us observe that the average

cn =
s0 + s1 + s2 + · · ·+ sn

n+ 1

for n ≥ 0, provides a way of finding the terms of the sequence {cn}n≥0 recursively:

c0 = s0 = a0,

cn =
n

n+ 1
cn−1 +

sn
n+ 1

=
ncn−1 + sn

n+ 1
for n ≥ 1. (4)
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Example 1. The partial sums of the series
∑

j≥0 (−1)
j
= 1− 1 + 1− 1 + · · · form the

sequence {1, 0, 1, 0, . . .}, which does not converge. By using (4) with c0 = a0 = 1, we
have

n cn n cn n cn

1 1
2 3 1

2 5 1
2

2 2
3 4 3

5 6 4
7

and so on. Therefore, we guess that

cn =

{
1
2 for n = 2k + 1, k ≥ 0

k+1
2k+1 for n = 2k, k ≥ 1

,

which can be verified by a simple inductive argument on k.

Since the sequence {cn}n≥0 converges to 1
2 as n → ∞, we conclude that∑

j≥0
(−1)

j
=

1

2
(C, 1) ,

which gives a rigorous justification to Leibniz’s result.

Example 2. For the series
∑

j≥0 j, which diverges to infinity,

cn =
1

n+ 1

n∑
j=0

j =
induction

n (n+ 1)

2 (n+ 1)
=

n

2

for n ≥ 0.

Thus, cn → ∞ as n → ∞. According to Definition 1, the series
∑

j≥0 j is not (C, 1)
summable.

Example 3. We consider the series
∑

j≥0 (−1)
j
(j + 1) = 1− 2 + 3− 4 + · · ·

The sequence of its partial sums is {1,−1, 2,−2, 3,−3, . . .}, which diverges.

From the values
n cn n cn n cn

0 1 4 3
5 8 5

9

1 0 5 0 9 0

2 2
3 6 4

7 10 6
11

3 0 7 0 11 0

,

we guess that

cn =

{
k+1
2k+1 for n = 2k, k ≥ 0

0 for n = 2k + 1, k ≥ 0,

which can be verified by induction.

The sequence {c2k}k≥0 converges to 1
2 as k → ∞, while the sequence {c2k+1}k≥0

is identically zero. So, the sequence {cn}n≥0 diverges, from which we conclude that the

series
∑

j≥0 (−1)
j
(j + 1) is not (C, 1) summable.



10 J. Alvarez. Summability of a Fourier series

Hardy attributes to Cauchy the following result ([8], p. 10):

If a series
∑

j≥0 aj converges to a, the average s0+s1+···+sn
n+1 also converges to a as

n → ∞. In the context of (C, 1) summability, Cauchy’s result is stated as follows:

Theorem 1. Cesàro’s method is regular. That is, if
∑

j≥0 aj converges to a, then∑
j≥0 aj = a (C, 1).

Proof. If we fix n0 ≥ 1 and consider n > n0, we can write

|cn − a| ≤ |s0 − a|+ · · ·+ |sn0 − a|
n+ 1

+
1

n+ 1

n∑
j=n0+1

|sj − a|

≤ n0 + 1

n+ 1
max

0≤j≤n0

|sj − a|+ n− n0

n+ 1
sup

j≥n0+1
|sj − a|

≤ C
n0 + 1

n+ 1
+ sup

j≥n0+1
|sj − a| ,

where C = supj≥0 |sj − a|, which is finite because the sequence {sj}j≥0, being conver-
gent, is also bounded.

If we fix ε > 0, according to (1) there is n0 = n0 (ε) ≥ 1 so that

sup
j≥n0+1

|sj − a| ≤ ε.

Therefore,

|cn − a| ≤ C
n0 + 1

n+ 1︸ ︷︷ ︸
(i)

+ ε,

for all n > n0.

Since there is N = N (ε) > n0 such that (i) ≤ ε for n ≥ N , we can say that

|cn − a| < 2ε

for all n ≥ N .

This completes the proof of the theorem.

Cauchy’s definition of convergence can be viewed as a particular summability method,
which we call Cauchy’s method.

As we showed in Example 2, the series
∑

j≥0 j is not (C, 1) summable. Nevertheless,
it constitutes an example of the following general phenomenon ([8], p. 10):

If the series
∑

j≥0 aj diverges to infinity, then the sequence {cn}n≥0 goes to infinity
as n → ∞. That is, Cesàro’s method is regular in this extended sense, called complete
regularity.

The method also enjoys other natural and useful properties.
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Theorem 2. (for the proof, see [8], p. 95, Theorem 40).

1. The (C, 1) method is linear: If
∑

j≥0 aj = a (C, 1) and
∑

j≥0 bj = b (C, 1), then

α
∑
j≥0

aj + β
∑
j≥0

bj = αa+ βb (C, 1) ,

for all numbers α, β.

2. The (C, 1) method is stable:
∑

j≥0 aj = a (C, 1) if, and only if,
∑

j≥1 aj = a− a0
(C, 1).

As a consequence of 2) in Theorem 2, we can conclude, inductively, that∑
j≥0

aj = a (C, 1) if, and only if,
∑

j≥k+1

aj = a− a0 − · · · − ak (C, 1) , (5)

for any k ≥ 0 fixed.

The convergence of a series is linear and stable. Furthermore, the convergence of a
series and its sum, or its divergence, does not change if we “dilute” the series. That is, if
we insert any number of zeros as terms of the series, in any way ([8], p. 59, Section 3.9).

From (5), the (C, 1) summability of the series
∑

j≥0 aj does not change if we add a
finite number of zeros.

Indeed, let us suppose that the series
∑

j≥0 aj is (C, 1) summable to a and that all the
zeros are inserted before a0 and between a0 and ak for some k ≥ 0. According to (5), the
series

∑
j≥k+1 aj is (C, 1) summable to a− a0 − · · · − ak, which remains the same if we

reinsert all the zeros in the appropriate places.

However, adding an infinite number of zeros, can destroy the summability or change
the sum, of a (C, 1) summable series ([8], p. 60). For example,

Example 4. We claim that

1− 1 + 0 + 1− 1 + 0 + · · · = 1

3
(C, 1) , (6)

while we showed in Example 1 that 1− 1 + 1− 1 + · · · = 1
2 (C, 1).

To verify (6), we begin by calculating a few partial sums

n sn n sn n sn n sn

0 1 3 1 6 1 9 1

1 0 4 0 7 0 10 0

2 0 5 0 8 0 11 0

,

from which it can be proved by induction on k that

sn =


1 if n = 3k for k ≥ 0

0 if n = 3k + 1 for k ≥ 0

0 if n = 3k + 2 for k ≥ 0.



12 J. Alvarez. Summability of a Fourier series

Therefore, if n = 3k for k ≥ 0,

cn =
s0 + · · ·+ sn

n+ 1
=

k + 1

3k + 1
→

k→∞

1

3
,

if n = 3k + 1 for k ≥ 0,

cn =
s0 + · · ·+ sn

n+ 1
=

k + 1

3k + 1
→

k→∞

1

3
,

and, if n = 3k + 2 for k ≥ 0,

cn =
s0 + · · ·+ sn

n+ 1
=

k + 1

3k + 2
→

k→∞

1

3
.

The sets {3k}k≥0, {3k + 1}k≥0 and {3k + 2}k≥0 consist of the numbers that, when
divided by 3, have a remainder equal to 0, 1, and 3, respectively. That is to say, these
sets are the three congruence classes modulo 3, which, therefore, form a partition of the
natural numbers.

Hence, there is

lim
n→∞

cn =
1

3
.

Daniel Bernoulli had already applied the (C, 1) method, in 1713, to some specific type
of series ([8], p. 8). The method had also been used by Ferdinand George Frobenius in
an article published in the Journal für die reine und angewandte Mathematik (Crelle’s
Journal) in 1880 ([8], pp. 8 and 389). Actually, it was already known in Euler’s time
that averaging the terms of a sequence, could improve its behavior ([15], p. 4). Still, all
these observations were made in specific cases. The idea of defining the sum of a general
divergent series rests firmly with Cesàro.

Cesàro’s method is denoted (C, 1), rather than (C), because in its 1890 article, Cesàro
actually defines a whole family of summation methods, (C, k), by iteration. More precisely,
the method (C, k) for k ≥ 2 consists of iterating the partial sum k times, with the result
being divided by a number depending on n and k, that is equal to n+ 1 when k = 1 (see
[8], Section 5.4). Since we will restrict ourselves to the method (C, 1), no more will be
said about the (C, k) method for k ̸= 1.

Euler’s work on the series 1 − 1 + 1 − 1 + · · · suggests the following summability
method.

Definition 2. If the series
∑

j≥0 ajr
j converges for 0 ≤ r < 1 with sum f (r) and there

is limr→1− f (r) = a, we say that the series
∑

j≥0 aj is Abel summable with sum a or∑
j≥0

aj = a (A) .

For instance, ∑
j≥0

(−1)
j
(j + 1) =

1

4
(A) , (7)

which is a particular case of the following example:
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Example 5. We claim that, for each n ≥ 1,

∑
j≥0

(−1)
j
(j + 1)

n
= −

n∑
j=1

(
j∑

i=0

(−1)
i (n+1

i

)
(j − i)

n

)
(−1)

j

2n+1
(A) . (8)

For 0 < |c| < 1 we consider the series∑
j≥0

(j + 1)
n
cj =

1

c

∑
k≥1

knck.

The series
∑

k≥1 k
nck has a long and distinguished history, beginning with Euler’s

investigations on the series

−
∑
j≥0

(−1)
s

js

for s = −1,−2,−3, . . ., which was later named Dirichlet’s eta function, after the mathe-
matician Peter Gustav Lejeune-Dirichlet.

The sum of the series
∑

k≥1 k
nck, in the sense of convergence, was calculated in [2],

using purely analytic methods:

∑
k≥1

knck =

n∑
j=1

(
j∑

i=0

(−1)
i (n+1

i

)
(j − i)

n

)
cj

(1− c)
n+1 (9)

for n ≥ 1, |c| < 1.

Such a proof might not be expected. Indeed, the answer involves the so-called Euler’s
polynomials, whose coefficients have a combinatorial meaning in the context of permu-
tations, as it is explained in ([2], Section 5). Therefore, the traditional proof of (9) is
combinatorial in nature.

In any case, we do have the sum of the series and that is all we need here.

Now, we can write, for c = −r, 0 < r < 1,

∑
j≥0

(j + 1)
n
(−r)

j
= −

n∑
j=1

(
j∑

i=0

(−1)
i (n+1

i

)
(j − i)

n

)
(−r)

j

r (1 + r)
n+1 . (10)

The right-hand side of (10) has limit, when r → 1−, equal to

−

n∑
j=1

(
j∑

i=0

(−1)
i (n+1

i

)
(j − i)

n

)
(−1)

j

2n+1
.
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Therefore, we have verified (8). Finally, when n = 1, we have

n∑
j=1

(
j∑

i=0

(−1)
i

(
n+ 1

i

)
(j − i)

n

)
(−r)

j
= −

1∑
i=0

(−1)
i

(
2

i

)
(1− i)

= −1,

which gives us (7).

It seems strange that a summation method would carry the name of Niels Erik Abel, an
ardent admirer of Cauchy, and a fierce opponent to the use of divergent series.

Indeed, in Abel’s words, written in 1828, “divergent series are the invention of the
devil, and it is shameful to base on them any demonstration whatsoever.” ([8], preface by
John Edensor Littlewood).

The reason for the association is Abel’s theorem (for the proof see, for instance, [6], p.
330, Theorem 7.26 and p. 331, Corollary 7.28):

Theorem 3. If the series
∑

j≥0 aj converges, then the series
∑

j≥0 ajr
j converges for

0 ≤ r ≤ 1 and ∑
j≥0

aj = lim
r→1−

∑
j≥0

ajr
j .

Abel’s theorem guarantees that the Abel method is regular, in the sense of Theorem 1.

A result which assures the convergence of some kind of average assuming the summa-
bility of a certain series by Cauchy’s method of convergence, is called an Abelian theorem.

The converse of an Abelian theorem is usually false. In fact, a summation method for
which the converse is true is a trivial method since it only sums convergent series. However,
modified versions of the converse can be true and of great interest. As an example, we
mention a result due to Hardy.

Theorem 4. If
∑

j≥0 aj = a (C, 1) and the sequence {jaj}j≥0 is bounded, then
∑

j≥0 aj
converges to a.

Hardy proves Theorem 4 in [8] as a particular case of a more general result ([8], p.
121, Theorem 63).

A proof of Theorem 4 attributed to Littlewood, is given in ([20], p. 156).

Modified converses of Abelian theorems are called Tauberian theorems, because it was
the mathematician Alfred Tauber who proved the first one:

Theorem 5. If
∑

j≥0 aj = a (A) and the sequence {jaj}j≥0 converges to zero as j → ∞,
then

∑
j≥0 aj converges to a.

A proof of this result is in ([8], p. 149, Theorem 85).

Examples 3 and 5 show that there are (A) summable series that are not (C, 1) summable.
On the other hand,
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Theorem 6. (for the proof see, for instance, [8], p. 108, Section 5.12) Cesàro summability
(C, 1) implies Abel summability (A), with the same sum.

That is, (A) summability is strictly stronger that (C, 1) summability, meaning that it
sums more series.

Having investigated the two methods that interest us, it is now time to turn our attention
to Fourier series, as an excellent ground where to test them. To be sure, much more can be
said about summation methods, for which we refer to [8], as well as to the book by Lloyd
Leroy Smail [19] which discusses every one of the many results on summability published
up to 1925.

For completeness, we begin our discussion of Fourier series recounting briefly the
genesis of the subject and the first convergence result (for more details, see [1]).

4 Fourier series and Dirichlet’s result

Before Joseph Fourier, the nature of heat was not well understood. Indeed, in 1736, the
French Academy called for essays on the topic “The nature and the propagation of ‘fire’”,
where the word ‘fire’ was meant to signify ‘heat’. All the submissions, including Euler’s,
missed the point and attempted to explain how fires develop ([10], p. 5).

Nevertheless, according to Umberto Bottazzini ([3], p. 59), by the end of the eighteenth
century, heat was starting to be perceived as a form of energy that could aid in production.
There was an ever increasing use of steam engines in industrial processes, particularly
in England and France. “But if it is the practical interests that are best expressed in the
English textile mills, it is the theoretical aspects that particularly engaged the French
scientists.” ([3], p. 59).

Under the title The Analytical Theory of Heat, Fourier published in 1822 two pieces,
written in 1807 and 1811. In a radical departure from the work of others, Fourier developed
a mathematical model for the propagation of heat, a differential equation known as heat
equation.

To solve the heat equation, Fourier used certain series, now called Fourier series. At
the time, the heat equation was viewed as Fourier’s crowning achievement, while the series
“were considered a disgrace.” ([10], p. 6).

The topic of Fourier series basically rests upon the formulas

f (x) = a0 +
∑
n≥1

(an cosnx+ bn sinnx) , (11)

a0 =
1

2π

∫ π

−π

f (x) dx, (12)

an =
1

π

∫ π

−π

f (x) cosnx dx, n ̸= 0, (13)

bn =
1

π

∫ π

−π

f (x) sinnx dx, n ̸= 0. (14)
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Fourier shows in several particular cases, that the series converges to the function f ,
meaning that the series converges pointwise to f (x), for each x. Then, he proceeds to state
that “all the series converge”. Later on, he says “we must remark that our demonstration
applies to an entirely arbitrary function.” ([10], p. 12).

In spite of these rather exuberant statements, the following question persisted: Does
the series on the right hand side of (11) really converge to f (x) for all x? After several
mathematicians of the time, including Cauchy, produced more or less faulty proofs,
Dirichlet showed pointwise convergence under rather general conditions. His work was
published in 1829 in Journal für die reine und angewandte Mathematik (Crelle’s Journal).

In Jean-Pierre Kahane’s words ([10], p. 31), “The article of Dirichlet on Fourier series
is a turning point in the theory and also in the way mathematical analysis is approached
and written. Its intention is simply to give a correct statement and a correct proof of the
convergence of Fourier series. The result is a paradigm of what is correctness in analysis.”

Kahane reproduces the full article in pages 36 to 46 of [10]. A discussion of Dirichlet’s
work, and much more, is found in the 2009 reprint of a monograph by Henri Lebesgue [16].
It makes for an instructive reading, since “[the] book reproduces the text of the original
edition. The content and language reflect the beliefs, practices and terminology of their
time, and have not been updated.”

Here is Dirichlet’s result (for the proof see, for instance, [15], Theorem 16.4, p. 61):

Theorem 7. (Dirichlet) Let f : R → R be a 2π-periodic function that is continuous and
has a bounded continuous derivative, except, possibly, at a finite number of points in each
interval of length 2π. Then, the equality (11) holds at every x ∈ R where f is continuous.

That is to say, under these assumptions, the Fourier series of f is summable to f in
the sense of pointwise convergence, what we called before, Cauchy’s method. This result
and its ramifications, were discussed at length in [1], so we proceed now to the core of our
work.

5 Fejér and Abel meet Fourier

For quite sometime after Dirichlet proved his convergence result, there was hope that the
hypotheses could be weaken to the extent of proving the convergence of the Fourier series
at any point of continuity.

However, these hopes were dashed in 1873, when Paul du Bois-Reymond constructed
a 2π-periodic and continuous function whose Fourier series does not converge at zero (for
the details see, for instance, [15], Chapter 18). Consequently, a new question was posed: If
a function is 2π-periodic and continuous, is there a way of recovering the function from
the coefficients an and bn given by (12), (13) and (14)?

At the tender age of nineteen, Leopold Fejér showed, in a note published in 1900 in
the Comptes-Rendus de l’Académie des Sciences de Paris, that the answer is yes. The full
article appeared in Mathematische Annalen in 1904.
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Theorem 8. (Fejér) Let f : R → R be a 2π-periodic function that is Riemann integrable
on [−π, π]. Then,

a0 +
∑
n≥1

(an cosnx+ bn sinnx) = f (x) (C, 1) ,

at every x ∈ R where f is continuous.

If f is continuous on R, the convergence of the Cesàro means {Ck (x)}k≥0 to f (x) is
uniform on x ∈ R. That is,

sup
x∈R

|Ck (x)− f (x)| →
k→∞

0.

Theorem 6 gives us immediately the following result:

Theorem 9. Let f : R → R be a 2π-periodic function that is Riemann integrable on
[−π, π]. Then,

a0 +
∑
n≥1

(an cosnx+ bn sinnx) = f (x) (A) ,

at every x ∈ R where f is continuous.

As in the case of Dirichlet’s convergence result, the proof of Theorem 8 rests upon
the possibility of having a convenient representation for the Cesàro means, as an integral
operator of the form

f →
∫ π

−π

Kn (x− t) f (t) dt. (15)

Likewise, a direct proof of Theorem 9 depends on having a similar representation for
the Abel means.

Remark 1. The function Kn : R → R is called the kernel of the operator (15). Later on,
we will be able to work under the assumption that, for each n = 0, 1, 2, . . ., the kernel Kn

is 2π-periodic, and, at least, continuous. So, from now on, we will make such assumption.
In doing so, we follow Yitzhak Katznelson (see [12], p. 9, Definition 2.2).

We state now a lemma concerning the formula appearing in (15).

Lemma 1. The following statements hold:

1. Let F : R → R be 2π-periodic. Then, for each k ∈ Z different from zero, 2kπ is also
a period.

2. Let F : R → R be 2π-periodic, and Riemann integrable on [−π, π]. If x ∈ R is fixed,
the function y → F (x− y) is 2π-periodic, and Riemann integrable on [−π, π].

3. Let F : R → R be 2π-periodic. Then, F takes the same values on any interval of
length 2π.
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4. Let F : R → R be 2π-periodic, and Riemann integrable on [−π, π]. Then,∫ π

−π

F (y) dy =

∫ π

−π

F (x− y) dy

for every x ∈ R fixed.

5. Let f, g : R → R be 2π-periodic functions that are Riemann integrable on [−π, π].
Then, for each x ∈ R fixed, the functions y → f (x− y) g (y) and y → f (y) g (x− y)

are Riemann integrable on [−π, π] and∫ π

−π

f (x− y) g (y) dy =

∫ π

−π

f (y) g (x− y) dy.

The statements made in Lemma 1 about Riemann integrability, can be found in many
textbooks (for instance, see [7], Chapter 5, and [18], Appendix, pp. 280-288). As for the
other statements, we sketch the proof next.

Proof. By the 2π-periodicity of F , if y ∈ R,

F (y) = F (y − 2π + 2π) = F (y − 2π) ,

F (y + 2kπ) = F (y + 2 (k − 1)π + 2π) = F (y + 2 (k − 1)π)

for k = 2, 3, . . ., and

F (y + 2kπ) = F (y + 2 (k + 1)π − 2π) = F (y + 2 (k + 1)π)

for k = −2,−3, . . .

Therefore, 1) follows by induction. As for 2), if x ∈ R is fixed,

F (x− (y + 2π)) = F (x− y − 2π) = F (x− y) .

So, we have 2).

For 3), we fix an arbitrary interval [−π + a, π + a] for a ∈ R fixed. We only need to
observe that given t ∈ [−π + a, π + a], there is y ∈ [−π, π] so that F (t) = F (y) and
reciprocally.

To prove 4), we fix x ∈ R. Then,∫ π

−π

F (y) dy =
(i)

∫ π+x

−π+x

F (y) dy =
y→s=−y

−
∫ −π−x

π−x

F (−s) ds

=

∫ π−x

−π−x

F (−s) ds =
s→y=x+s

∫ π

−π

F (x− y) dy,

where we have used 3) in (i).
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Finally, if x ∈ R is fixed, let F : R → R be the function y → f (x− y) g (y). As we
proved in 4), ∫ π

−π

F (y) dy =

∫ π

−π

F (x− y) dy,

or ∫ π

−π

f (x− y) g (y) dy =

∫ π

−π

f (y) g (x− y) dy

which is 5).

This completes the proof of the lemma.

Part 5) in Lemma 1, shows that the operation

(f, g) →
∫ π

−π

f (x− y) g (y) dy

is commutative. It is called the periodic convolution of f and g. It gives a function, denoted
f ∗g, which is 2π-periodic, and continuous from R into R (see [18], pp. 45-48, Proposition
3.1 (v), Lemma 3.2). Under the assumptions in Remark 1, Lemma 1 applies to the formula
appearing in (15).

6 The Fejér kernel and the Poisson kernel

Let us recall that the nth partial sum Sn in Cauchy’s method for the series in (11) is

Sn (x) = a0 +

n∑
j=1

(aj cos jx+ bj sin jx) ,

where the coefficients are given by the formulas (12), (13) and (14), with f : R → R a
2π-periodic function, Riemann integrable on [−π, π].

For convenience, we will use complex exponentials, although “they were not used in
Fourier series until well into the twentieth century” ([10], p. 2). The identities

cos jx =
eijx + e−ijx

2
,

sin jx =
eijx − e−ijx

2i

give

Sn (x) =

n∑
j=0

1

2

(
aj +

bj
i

)
eijx +

n∑
j=0

1

2

(
aj −

bj
i

)
e−ijx,

where
1

2

(
aj +

bj
i

)
=

1

2π

∫ π

−π

e−ijtf (t) dt,

1

2

(
aj −

bj
i

)
=

1

2π

∫ π

−π

eijtf (t) dt,

for j ≥ 1.
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Therefore,

Sn (x) =

∫ π

−π

 1

2π

n∑
j=−n

eij(x−t)

 f (t) , (16)

As it was proved in [1], manipulating the expression 1
2π

∑n
j=−n e

ij(x−t) we can write

Sn (x) =

∫ π

−π

Dn (x− t) f (t) dt

where the real function Dn (t), called the Dirichlet kernel, is

1
2π

sin(n+ 1
2 )t

sin t
2

if t ̸= 0
2n+1
2π if t = 0.

(17)

Definition 3. We state here the definition of partial sum for each of the two summation
methods, Cesàro’s and Abel’s.

1. The nth partial sum Cn in Cesàro’s method is

Cn (x) =
1

n+ 1

n∑
j=0

Sj (x) .

2. Abel’s method is a little different. The partial sum is defined as

Ar (x) = a0 +
∑
j≥1

(aj cos jx+ bj sin jx) r
j ,

indexed by a continuous parameter r, 0 ≤ r < 1. As we will see, this difference does
not cause any trouble and actually can be avoided.

Now, we are ready to prove that each of these partial sums can be written as an integral
operator of the form (15). We will assume that the function f : R → R is 2π-periodic and
Riemann integrable on [−π, π].

Lemma 2. The nth partial sum Cn in Cesàro’s method can be written as

Cn (x) =

∫ π

−π

Fn (x− t) f (t) dt,

where the real function Fn (t), called Fejér kernel, is, for |t| ≤ π,

Fn (t) =

{
1

2π(n+1)
1−cos(n+1)t

1−cos t if t ̸= 0
n+1
2π if t = 0

(18)

or, equivalently,

Fn (t) =

{
1

2π(n+1)

sin2 n+1
2 t

sin2 t
2

if t ̸= 0
n+1
2π if t = 0.

(19)
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Proof. We have, for 0 < |t| ≤ π,

Fn (t) =
1

n+ 1

n∑
j=0

Dj (t) =
1

2π (n+ 1)

n∑
j=0

sin
(
j + 1

2

)
t

sin t
2

.

Using the identity

cos (α+ β)− cos (α− β) = −2 sinα sinβ

with α =
(
j + 1

2

)
t and β = t

2 , we can write

1

2π (n+ 1)

n∑
j=0

sin
(
j + 1

2

)
t

sin t
2

=
1

2π (n+ 1)

n∑
j=0

sin
(
j + 1

2

)
t sin t

2

sin2 t
2

= − 1

4π (n+ 1) sin2 t
2

n∑
j=0

(cos (j + 1) t− cos jt)

=
1

4π (n+ 1)

1− cos (n+ 1) t

sin2 t
2

.

Since

cos t = cos

(
t

2
+

t

2

)
= cos2

t

2
− sin2

t

2
= 1− 2 sin2

t

2
,

we have

Fn (t) =
1

2π (n+ 1)

1− cos (n+ 1) t

1− cos t
.

Alternatively, if we write

cos (n+ 1) t = cos

(
n+ 1

2
t+

n+ 1

2
t

)
= 1− 2 sin2

n+ 1

2
t,

we have

Fn (t) =
1

2π (n+ 1)

sin2 n+1
2 t

sin2 t
2

.

By L’Hôpital’s rule, we define

Fn (0) = lim
t→0

Fn (t) =
n+ 1

2π
.

The proof of the lemma is complete.

Remark 2. Extended by periodicity, the function Fn, from R to R, is 2π-periodic, non-
negative, even, and it is continuous with continuous derivatives of all orders.
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Lemma 3. The partial sum Ar in Abel’s method can be written as

Ar (x) =

∫ π

−π

Pr (x− t) f (t) dt,

where the real function Pr (t), called Poisson kernel after the mathematician Siméon Denis
Poisson, is, for |t| ≤ π,

Pr (t) =
1

2π

1− r2

1− 2r cos t+ r2
.

Proof. Using (16), we write, for 0 ≤ r < 1,

Ar (x) =
∑
j≥0

(aj cos jx+ bj sin jx) r
j =

1

2π

∫ π

−π

f (t) dt (20)

+
∑
j≥1

rj

2π

∫ π

−π

e−ij(x−t)f (t) dt+
∑
j≥1

rj

2π

∫ π

−π

eij(x−t)f (t) dt.

The general term of each series is bounded by Brj , uniformly on t, where

B = sup
|t|≤π

|f (t)| . (21)

Therefore, using Weierstrass’s M-test ( see, for instance, [7], p. 219, Theorem 7.2), we can
interchange the series with the integral. Thus,

Ar (x) =

∫ π

−π

1

2π

∑
j≥1

e−ij(x−t)rj +
∑
j≥0

eij(x−t)rj

 f (t) dt

=
(i)

∫ π

−π

1

2π

(
re−i(x−t)

1− re−i(x−t)
+

1

1− rei(x−t)

)
f (t) dt

=

∫ π

−π

1

2π

re−i(x−t)
(
1− rei(x−t)

)
+ 1− re−i(x−t)(

1− re−i(x−t)
) (

1− rei(x−t)
) f (t) dt

=

∫ π

−π

1

2π

1− r2

1− 2r cos (x− t) + r2
f (t) dt,

where we have used in (i) the formula for the sum of a geometric series.

This completes the proof of the lemma.

Remark 3. Extended by periodicity, the function Pn, from R to R, is 2π-periodic, positive,
even, and it is continuous with continuous derivatives of all orders.

In the next section we introduce the notion of good kernel, discussed by Rami Shakarchi
and Elias M. Stein in [18], and investigate its importance.
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7 Good kernels

We begin with the following definition:

Definition 4. ([18], p. 48) Given an integral operator of the form (15), the kernel Kn is
called a good kernel if it satisfies the following conditions:

1. ∫ π

−π

Kn (t) dt = 1

for all n ≥ 0.

2. There is C > 0 so that ∫ π

−π

|Kn (t)| dt ≤ C

for all n ≥ 0.

3. For each 0 < δ < π fixed, there is

lim
n→∞

∫
δ≤|t|≤π

|Kn (t)| dt = 0.

The significance of Definition 4 is shown in the result that follows.

Theorem 10. ([18], p. 49, Theorem 4.1) Let f : R → R be a 2π-periodic function that is
Riemann integrable on [−π, π]. Then,

a) if Kn is a good kernel, there is

lim
n→∞

∫ π

−π

Kn (x− t) f (t) dt = f (x)

at each x ∈ R where the function f is continuous, and

b) the limit is uniform on x ∈ R, when f is continuous everywhere.

Proof. According to Lemma 1,∫ π

−π

Kn (x− t) f (t) dt =
t→s=x−t

−
∫ x−π

x+π

Kn (s) f (x− s) ds

=

∫ x+π

x−π

Kn (s) f (x− s) ds,

Also by Lemma 1, the above is equal to∫ π

−π

Kn (s) f (x− s) ds. (22)
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Therefore,∣∣∣∣∫ π

−π

Kn (x− t) f (t) dt− f (x)

∣∣∣∣ =(ii)
∣∣∣∣∫ π

−π

Kn (s) f (x− s) ds− f (x)

∫ π

−π

Kn (s) ds

∣∣∣∣
=

∣∣∣∣∫ π

−π

Kn (s) (f (x− s)− f (x)) ds

∣∣∣∣ ,
where we have used 1) in Definition 4, in (ii).

If the function f is continuous at x, given ε > 0, there is δ = δ (x, ε) > 0, which we
can choose smaller than π, so that

|f (x− s)− f (x)| ≤ ε

for |s| < δ.

Then, we can write∣∣∣∣∫ π

−π

Kn (s) (f (x− s)− f (x)) ds

∣∣∣∣ ≤ ε

∫
|s|<δ

|Kn (s)| ds

+2 sup
|t|≤π

|f (t)|
∫
δ≤|t|≤π

|Kn (s)| ds

≤
(iii)

Cε+ 2B

∫
δ≤|t|≤π

|Kn (s)| ds,

where B = sup|t|≤π |f (t)| and we have used 2) in Definition 4, in the first term of (iii).

Finally, 3) tells us that there is N = N (ε) ≥ 1 so that∫
δ≤|t|≤π

|Kn (s)| ds ≤ ε

for n ≥ N .

This completes the proof of a).

As for b), we only need to observe that when f is continuous everywhere, it is uniformly
continuous on [−π, π], and also on R because f is periodic. Then, δ can be chosen
independently of x and, therefore,

sup
x∈R

∣∣∣∣∫ π

−π

Kn (s) (f (x− s)− f (x)) ds

∣∣∣∣ ≤ (C + 2B) ε.

So, we have proved b).

This completes the proof of the theorem.

Remark 4. The three conditions in Definition 4, only require that the function Kn is
Riemann integrable on [−π, π]. In fact, that is the only assumption made by Shakarchi
and Stein, with no reference to periodicity. As a consequence, they are forced to define the
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convolution as in (22), which is no longer a commutative operation. In our setting, under
the assumptions stated in Remark 1, the expression (22) is an easy consequence of how the
convolution Kn ∗ f is defined.

The conditions in Definition 4, are already considered in ([12], p. 9), where kernels
satisfying those conditions are called summability kernels. In ([21], pp. 85-86), the third
condition in Definition 4, appears in the following form:

For each 0 < δ < π fixed, there is

lim
n→∞

sup
δ≤|t|≤π

|Kn (t)| = 0. (23)

Actually, in [12], 3) in Definition 4 is written in the following manner:

For each 0 < δ < π fixed, there is

lim
n→∞

∫ 2π−δ

δ

|Kn (t)| dt = 0.

We claim that for each 0 < δ < π fixed,∫
δ≤|t|≤π

|Kn (t)| dt =
∫ 2π−δ

δ

|Kn (t)| dt

assuming, as we have done, that Kn is 2π-periodic. Indeed,∫
δ≤|t|≤π

|Kn (t)| dt =

∫ π

−π

|Kn (t)| dt−
∫
|t|<δ

|Kn (t)| dt

=
(iv)

∫ π+π−δ

−π+π−δ

|Kn (t)| dt−
∫
|t|<δ

|Kn (t)| dt

=

∫ 2π−δ

−δ

|Kn (t)| dt−
∫ δ

−δ

|Kn (t)| dt

=

∫ 2π−δ

δ

|Kn (t)| dt,

where we have used Lemma 1 in (iv).

In view of Theorem 10, it will be of interest to test Definition 4, on each of the kernels
Fn and Pr.

Lemma 4. The kernel Fn is a good kernel.

Proof. We start by observing that the kernel Dn satisfies 1) in Definition 4. Indeed, when
the function f is identically equal to one,

Sn (t) = a0
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for every n ≥ 0. Since

a0 =
1

2π

∫ π

−π

dt = 1,

we have ∫ π

−π

Dn (t) dt = 1 (24)

for every n ≥ 0.

Hence,∫ π

−π

Fn (t) dt =

∫ π

−π

1

n+ 1

n∑
j=0

Dj (t) dt =
1

n+ 1

n∑
j=0

∫ π

−π

Dj (t) dt =
(i)

1,

where we have used (24), in (i). Therefore, the kernel Fn satisfies 1). Since Fn is a
non-negative function, 2) follows.

As for 3), if we fix 0 < δ < π, we have cos t ≤ cos δ for δ ≤ |t| ≤ π.

Using (18),

0 ≤ Fn (t) ≤
1

2π (1− cos δ)

1

(n+ 1)
(25)

for δ ≤ |t| ≤ π. So, ∫
δ≤|t|≤π

Fn (t) dt ≤
2

(1− cos δ)

1

n+ 1
→

n→∞
0

and 3) holds.

This completes the proof of the lemma.

Lemma 5. The kernel Pr is a good kernel.

Proof. Since the definition of good kernel has been formulated for kernels depending on a
discrete parameter n, a clarification is in order. We can proceed in two ways:

We could make an obvious reinterpretation of Definition 4 and Theorem 10 in terms
of the parameter r, for 0 ≤ r < 1. Or, we could fix an arbitrary sequence {rn}n≥1 with
0 ≤ rn < 1 for all n, converging to one as n → ∞, testing Definition 4 on the kernel Prn .

We choose the first option.

According to (20), the partial sum Ar is identically one when f is identically one. So,

1 =

∫ π

−π

1

2π

1− r2

1− 2r cos (x− t) + r2
dt =

∫ π

−π

Pr (x− t) dt =

∫ π

−π

Pr (t) dt.

Therefore, 1) is satisfied. Since Pr is positive, 2) is satisfied as well.
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To verify 3), we begin by observing that

Pr (t) ≤ Pr (δ) (26)

for δ ≤ t ≤ π. Indeed,

P ′
r (t) = −

(
1− r2

)
2r sin t

(1− 2r cos t+ r2)
2 ,

which is non-positive, for δ ≤ t ≤ π.

Since Pr is an even function, (26) is true for δ ≤ |t| ≤ π.

Furthermore, there is
lim

r→1−
Pr (t) = 0, (27)

for each 0 < |t| < π.

Because (26) holds for δ ≤ |t| ≤ π, the limit in (27) is uniform on δ ≤ |t| ≤ π. So,
we can take the limit under the integral sign, and 3) holds.

This completes the proof of the lemma.

The fact that Dn is not a good kernel while Fn and Pr are, sets pointwise convergence
apart from Cesàro summability and Abel summability.

Remark 5. If Kn is a good kernel, given 0 < δ < π fixed,∫ δ

0

|Kn (t)| dt =
∫ π

0

|Kn (t)| dt−
∫ π

δ

|Kn (t)| dt

can be made arbitrarily close to C
2 , for n large enough, where C is the constant in 2) of

Definition 4.

This observation applies, in particular, to the kernels Fn and Pr but, as observed in
([1], Remark 4), it does not apply to the kernel Dn.

Remark 6. A careful perusal of Lemma 4, specifically of estimate (25), would reveal that
the kernel Fn satisfies (23). That is,

For each 0 < δ < π, there is

lim
n→∞

sup
δ≤|t|≤π

|Fn (t)| = 0. (28)

Likewise, since Pr is even, using (26) in Lemma 5, there is, for each 0 < δ < π,

lim
r→1−

sup
δ≤|t|≤π

|Pr (t)| = 0. (29)

It should be clear that each of (28) and (29) implies the appropriate version of 3) in
Definition 4.



28 J. Alvarez. Summability of a Fourier series

Lemma 4 and Lemma 5 tell us that the kernels Fn and Pn satisfy the conclusion of
Theorem 10, therefore proving Theorem 8 and Theorem 9.

Theorem 4 (resp. Theorem 5) provides a qualified converse for Theorem 8 (resp.
Theorem 9).

Theorem 10 can be extended to certain points of discontinuity. More precisely,

Definition 5. A 2π-periodic function f : R → R is piecewise continuous if, on each
interval of length 2π, is continuous except at a finite number of points, and at each of the
points x of discontinuity, the limt→x− f (t) and the limt→x+f (t) exist, with finite values
denoted f (x−) and f (x+), respectively.

It is plain that a 2π-periodic and piecewise continuous function f : R → R is bounded,
and it is Riemann integrable on [−π,π] and, of course, on any interval of length 2π.

Here is the version of Theorem 10 that goes with Definition 5. It should be clear that it
holds true for the kernels Fn and Pr.

Theorem 11. Let f : R → R be a 2π-periodic and piecewise continuous function.

A) Let Kn : R → R be a good kernel that is also even and non-negative.
Then, there is

lim
n→∞

∫ π

−π

Kn (x− t) f (t) dt =
f (x−) + f (x+)

2
(30)

at each x ∈ R.

b) The limit is uniform on x ∈ R, when f is continuous everywhere.

Proof. It should be clear that A) implies a) in Theorem 10, at each point x where the
function f is continuous. Moreover, b) has already been proved, as part of Theorem 10.
So, we fix a point x ∈ R where f is discontinuous in the sense of Definition 5.

The parity of the kernel implies that∫ 0

−π

Kn (t) dt =

∫ π

0

Kn (t) dt =
1

2
,

so,∣∣∣∣∫ π

−π

Kn (x− t) f (t) dt− f (x−) + f (x+)

2

∣∣∣∣ =

∣∣∣∣∫ 0

−π

Kn (t)
(
f (x− t)− f

(
x+
))

dt

+

∫ π

0

Kn (t)
(
f (x− t)− f

(
x−)) dt∣∣∣∣

≤
∫ 0

−π

Kn (t)
∣∣f (x− t)− f

(
x+
)∣∣ dt

+

∫ π

0

Kn (t)
∣∣f (x− t)− f

(
x−)∣∣ dt = (i) + (ii) .
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For 0 < δ < π fixed, we write

(i) =

(∫ −δ

−π

+

∫ 0

−δ

)
Kn (t)

∣∣f (x− t)− f
(
x+
)∣∣ dt,

where ∣∣∣∣∫ 0

−δ

Kn (t)
∣∣f (x− t)− f

(
x+
)∣∣ dt∣∣∣∣ = ∫ δ

0

Kn (t)
∣∣f (x+ t)− f

(
x+
)∣∣ dt.

Given ε > 0, there is δ = δ (x, ε) > 0 so that |f (x+ t)− f (x+)| ≤ ε when
0 < t < δ. Therefore, for this value of δ, we can write∫ δ

0

Kn (t)
∣∣f (x+ t)− f

(
x+
)∣∣ dt ≤ ε.

Since f is bounded, using 3) in Definition 4,∫ −δ

−π

Kn (t)
∣∣f (x− t)− f

(
x+
)∣∣ dt

≤ 2 sup
t∈R

|f (t)|
∫
δ≤|t|≤π

Kn (t) dt →
n→0

0.

Hence, there is N = N (ε) ≥ 1 such that∫ −δ

−π

Kn (t)
∣∣f (x− t)− f

(
x+
)∣∣ dt ≤ 2 sup

t∈R
|f (t)| ε,

for n ≥ N .

With a very similar argument,

(ii) ≤
(
1 + 2 sup

t∈R
|f (t)|

)
ε

for n ≥ N .

This completes the proof of the theorem.

Remark 7. If we assign to f the value
f(x−)+f(x+)

2 at each point x of discontinuity, we
can say that the limit in (30) is f (x), for every x ∈ R.

8 Summability versus convergence

As we have seen, that the kernels Fn and Pn are good in the sense of Definition 4, implies
that Theorems 8 and 9 have fairly straightforward proofs as particular cases of Theorem
10. On the other hand, it was proved in [1] that the Dirichlet kernel does not satisfy 2)
nor 3) in Definition 4, therefore showing that Dn is definitely not a good kernel. This
badness justifies the difficulty, that persisted for a very long time, of establishing pointwise
convergence results for the Fourier series, under minimal conditions. The problem was
settled by Lennart Carleson, in the 1960s.
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Theorem 12. [4] Let f : [−π, π] → R be a Lebesgue square integrable function on
[−π, π]. Then, there is a set E ⊂ [−π, π] of Lebesgue measure zero so that

a0 +
∑
n≥1

(an cosnx+ bn sinnx) = f (x)

for x ∈ [−π, π] \E.

In the Mathematical Reviews, MR 199631, Kahane refers to the results in Carleson’s
article as “spectacular” and catalogs the proofs as “very difficult” and “very delicate”.
Carleson’s result was extended to p-integrable functions on [−π, π], for 1 < p ≤ ∞, by
Richard A. Hunt [9]. Let us observe that Hölder’s inequality reduces the case 2 < p ≤ ∞
to Carleson’s theorem.

As for the case p = 1, Andrey Kolmogorov had constructed already in [14] a function,
Lebesgue integrable on [−π, π], whose Fourier series diverges almost everywhere. Kol-
mogorov’s result was improved by Yitzhak Katznelson (see [12], p. 59), who constructed a
function, Lebesgue integrable on [−π, π], for which the Fourier series diverges everywhere.

It is natural to wonder about the nature of the null sets where the Fourier series of
2π-periodic and continuous functions can diverge. In this respect, Katznelson [13], and
Kahane and Katznelson [11], proved that given E ⊂ [−π, π] of Lebesgue measure zero,
there is a function f : R → R, 2π-periodic and continuous, whose Fourier series diverges
at every point of E.

In closing, we refer to ([21], Chapter VIII) for other results and examples on the
divergence of Fourier series.
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