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ABSTRACT. We show that some published “counterexamples” to a theorem of R. Mat-
thews are in fact not counterexamples, and the relevant theorem is true. We also provide
a survey of known results and examples that are related to Matthews’ result.
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RESUMEN. Mostramos que algunos “contraejemplos” a un teorema de R. Matthews
que han sido publicados en realidad no son contraejemplos, y que el teorema relevante es
válido. También incluimos un resumen de resultados y ejemplos conocidos relacionados
con el resultado de Matthews.
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For any positive integer n, write

En(X) :=

⌊n/2⌋∑
i=0

(
n− i

i

)
(−1)iXn−2i.

This polynomial En(X) is called the Dickson polynomial of the second kind, and is closely
related to the classical Chebyshev polynomial of the second kind [15]. Crucially, En(X)

has integer coefficients, so for any prime power q the function c 7→ En(c) maps Fq → Fq .
Several authors have studied when this function is bijective. The first result on this topic is
as follows [16, Thm. 2.5].
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Proposition 1. If q is a power of an odd prime p, and n is a positive integer satisfying the
three congruences

n+ 1 ≡ ±2 (mod p)

n+ 1 ≡ ±2
(

mod
q − 1

2

)
n+ 1 ≡ ±2

(
mod

q + 1

2

)
,

then En(X) permutes each set {a,−a} with a ∈ Fq , so that in addition En(X) permutes
Fq .

The paper [1] purports to give two counterexamples to Proposition 1. In order to help
future readers avoid confusion, we show here that those “counterexamples” are not actually
counterexamples. In fact, Proposition 1 is true, and its proof is quite simple; this proof
appears in each of [6, 9, 13, 16].

The paper [1] claims that the pairs (q, n) = (5, 11) and (q, n) = (9, 17) are counterex-
amples to Proposition 1. However, if (q, n) = (5, 11) then n+ 1 ̸≡ ±2 (mod (q+ 1)/2),
and if (q, n) = (9, 17) then n + 1 ̸≡ ±2 (mod p). Thus the pairs (q, n) = (5, 11) and
(q, n) = (9, 17) do not satisfy the hypotheses of Proposition 1, so they are not counterex-
amples to Proposition 1.

The mistake in [1] appears to be that its author interpreted the hypothesis of Propo-
sition 1 to be that at least one of the three congruences holds, rather than that all three
congruences hold. However, we note that there is no ambiguity on this issue, since the
requirement that all three congruences hold is stated clearly in both [16] and in many
subsequent references, including [2–15, 17–19].

It has been conjectured repeatedly that, if En(X) permutes Fq where q = pk for some
prime p > 5, then the three congruences in Proposition 1 must hold [2, 11, 12, 14, 17, 18].
This conjecture was proved in [4] when k ≤ 2 (building on and correcting [3, 5, 6]). It
remains open when k > 2. Examples in [9] show that the condition p > 5 is crucial in this
conjecture.
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