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ABSTRACT 
 In order to improve the detection of climate variability patterns, we assess the impact of 

incorporating auxiliary meteorological networks into the AEMET network to produce temperature and 

precipitation maps in the Guadalquivir basin. We employ multiple linear regression and residual spatial 

interpolation to create monthly precipitation and air temperature (mean minimum, mean and mean 

maximum) maps using two different datasets: Official (only AEMET stations) and Extended (both 

AEMET and auxiliary network data). Comparison of the performance of both datasets focuses on three 

key indicators: adjusted R2, cross-validation measured with RMSE, and the percentage of significant 

independent variables. 

Overall, the results indicate that the inclusion of auxiliary networks did not consistently or 

significantly enhance regression models or reduce map inaccuracies. The extended dataset shows a slight 

decline in adjusted R2 for most of the variables, with a maximum decrease of 0.082 in R2. However, it 

allowed for the inclusion of more independent variables in the regression models. Notably, altitude, 

distance to the Atlantic Ocean, and distance to the Mediterranean Sea emerged as crucial predictor 

variables for both precipitation and temperature. The impact of auxiliary networks on the error metric 

lacked a consistent pattern. They led to decreased RMSE values for only half of the variables, with a 

maximum improvement of 1.24 d°C for temperature models and 6.27 dmm for precipitation models 

when using the extended dataset. 

Keywords: multiple linear regression; spatial interpolation; temperature mapping; precipitation 

mapping; meteorological stations networks.
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EVALUACIÓN DE LA CONTRIBUCIÓN DE OBSERVACIONES AUXILIARES EN 

CARTOGRAFÍA CLIMÁTICA: ESTUDIO EN LA REGIÓN DEL GUADALQUIVIR  

RESUMEN 
Con el objetivo de mejorar la detección de los patrones de variabilidad climática, se evalúa el 

impacto de incorporar redes meteorológicas auxiliares a la red de AEMET para la generación de mapas 

de temperatura y precipitación en la cuenca del Guadalquivir. Empleamos regresión lineal múltiple con 

interpolación espacial de residuos para generar mapas mensuales de precipitación y temperatura del aire 

(media de las mínimas, media y media de las máximas) utilizando dos conjuntos de datos diferentes: 

Oficial (sólo estaciones de AEMET) y Extendido (tanto datos de AEMET como de redes auxiliares). La 

comparación del rendimiento de ambos conjuntos de datos se centra en tres indicadores: R2 ajustado, 

validación cruzada con RMSE y porcentaje de variables independientes significativas. 

 Globalmente, los resultados indican que las redes auxiliares no mejoraron de forma consistente 

o significativa los modelos de regresión ni redujeron la imprecisión de los mapas. El conjunto de datos 

ampliado muestra una ligera disminución del R2 ajustado para la mayoría de las variables, con una 

disminución máxima de 0.082 en R2. Sin embargo, permitió la inclusión de más variables independientes 

explicativas en los modelos de regresión. En particular, la altitud, la distancia al Océano Atlántico y la 

distancia al Mar Mediterráneo fueron las variables predictoras cruciales tanto para la precipitación como 

para la temperatura. El impacto de las redes auxiliares sobre la métrica del error careció de un patrón 

consistente. Sólo disminuyeron los valores de RMSE para la mitad de las variables, con una mejora 

máxima de 1.24 d°C para los modelos de temperatura y de 6.27 dmm para los de precipitación en el 

conjunto de datos ampliado. 

Palabras clave: regresión lineal múltiple; interpolación espacial; cartografía de temperatura; cartografía 

de precipitación; redes de estaciones meteorológicas. 

 

1. Introduction 

Climate mapping and modeling are vital tools in unraveling the intricate dynamics of our changing 

climate. A robust understanding of climatic spatial patterns relies on accurate and comprehensive 

meteorological datasets. The Agencia Estatal de Meteorología (AEMET) in Spain has established an 

official network of weather stations that serves as a cornerstone for climate research and applications. 

The AEMET network provides well-calibrated, long-term datasets that contribute to analyses like the 

Climate Atlas of the Iberian Peninsula (Ninyerola et al., 2005). However, in order to capture the full 

spectrum of climate variability, there is a growing interest in exploring the integration of supplementary 

meteorological data sources into the official network.  

While the official AEMET network provides valuable insights, its density may not fully capture 

variations along topographic gradients and diverse land cover types. The availability of additional 

meteorological data sources, often maintained by various institutions, provides opportunities to enhance 

spatial coverage and capture local conditions. These sources, when integrated into the AEMET network, 

expand the heterogeneity of the dataset and offer a more comprehensive representation of climate 

patterns. The integration of diverse meteorological data sources, while promising, introduces challenges 

related to data quality, series continuity, and harmonization. The unique characteristics of each data 

source and the lack of data quality assurance can contribute to uncertainties, just as discontinuities in 

the time series can lead to problems in climatological modeling. These issues require a careful 

assessment of the spatial distribution and reliability of the integrated data set. This assessment is 

essential for the generation of accurate and robust climate maps. 

In the context of this research, the present study focuses on two key meteorological variables: 

monthly accumulated precipitation and monthly air temperature (mean minimum, mean and mean 

maximum). These four variables play a pivotal role in climate studies as they influence various 

ecological processes and human activities and previous studies such as Ninyerola et al., 2007a and 
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Ninyerola et al., 2007b have successfully modeled them using similar methodologies and data sets as 

those presented in this study. 

The availability of precipitation and temperature data is limited to specific ground points, recorded 

by weather station networks, so values at other point locations on the ground must be inferred from those 

nearby or from their relationship with other geographic variables (Marquı́nez et al., 2003). This leads to 

the main issue in climatological modeling: data availability. Weather stations in data networks are often 

not adequately distributed to capture the variability of temperature and precipitation patterns (Moral, 

2010). 

In this study, both climate elements share a common methodology that combines multiple linear 

regression with spatial interpolation of the residuals. This approach effectively integrates geographic 

information to interpolate climate variables. The residuals from the regression, reflecting unexplained 

variability, are then interpolated across the study area. This unified approach enables us to assess the 

contributions of supplementary networks, investigate their impact on climate variable patterns, and 

evaluate the possible improvements introduced by their integration. 

This research delves into this integration of complementary meteorological networks with the 

AEMET network. It undertakes a comparative analysis of the two datasets: the official dataset, 

consisting of the AEMET network alone, and an extended dataset that incorporates additional 

meteorological networks, focusing on the evaluation of the regression model and the quantification of 

uncertainty in the resulting spatial maps. This evaluation uses the adjusted coefficient of determination 

(R2) to measure model performance, considering the number of predictors in the model (Harel, 2009), 

the selection of predictor variables to assess the captured variability and the root mean square error 

(RMSE) to measure map uncertainty. The results provide insight into model effectiveness and map 

reliability and highlight the benefits and challenges of integrating additional data sources, to determine 

the extent to which these supplementary networks positively influence the accuracy and reliability of 

climate models. 

 

2 Study Area 

The study area is located in the south of Spain and consists of the hydrographic basin of the 

Guadalquivir River. It is defined by the following UTM-30 N coordinates (in km and datum ETRS89): 

165 (minimum X coordinate), 573 (maximum X coordinate), 4066 (minimum Y coordinate), and 4289 

(maximum Y coordinate) with a total area of approximately 58 000 km2, see Figure 1. The Guadalquivir 

River basin extends across 12 provinces belonging to four autonomous communities, with Andalusia 

accounting for more than 90 % of the basin's area (Confederación Hidrográfica del Guadalquivir, n.d.). 

This area experiences a Mediterranean climate characterized by its warm and temperate nature (average 

annual air temperature of 16.8°C) and highly irregular precipitation (annual average of 550 mm). Due 

to its exposure to the Atlantic Ocean, intense southwesterly winds of subtropical character easily 

penetrate the territory, associated with storms that bring heavy rainfall (García de Pedraza, 1976). These 

winds result in a southwest to northeast distribution of precipitation, peaking in the highest peaks that 

delimit the watershed. These factors create a dry summer climate, with up to five months experiencing 

minimal or even no rainfall, in stark contrast to the winter months, which are characterized by torrential 

rains. 

Although the study area focuses on this specific region, a buffer of 50 km around the basin has 

also been considered. This buffer ensures that the interpolation process performed is not affected by data 

gaps at the boundaries of the study area. 

http://www.geo-focus.org/
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Figure 1: DEM of the Study Area in the Guadalquivir basin and a 50 km buffer zone. 

 

3. Material 

3.1 Meteorological stations 

Based on SPEI drought monitoring service (Consejo Superior de Investigaciones científicas, n.d.) 

and statistical yearbook data on precipitation and temperature in the area of interest (Ministerio de 

Agricultura, P. y A., n.d.), three years have been selected for the study. The selection was made by 

identifying years wherein these parameters exhibited contrasting behaviors. The year 2003 was chosen 

as a year without significant anomalies, 2006 as a slightly dry and hot year and 2011 as a slightly wet 

and cold year. For each year data from four specific months corresponding to the solstices and 

equinoxes, namely March, June, September and December was processed. A representative random 

sampling could be sufficient to compare the results obtained with different datasets. However, we 

selected evenly spaced samples throughout each year that cover a wide range of climatic situations in 

order to test the results under different climatic conditions, while ensuring that samples contain auxiliary 

stations spatially distributed throughout the whole study area and the buffer area. 

Monthly meteorological data have been obtained from AEMET for the corresponding months and 

years. The downloaded AEMET network for temperature consists of 433 weather stations covering an 

altitude range between 3 and 1800 m, with a density in the study area of one station per 134 km2. For 

precipitation, the downloaded AEMET network consists of 846 stations covering the same altitude range 

but with a density of one station per 68.5 km2. The records of these stations were already filtered to 

ensure homogeneity with neighboring stations and continuous time series of at least 60 observations. 

Additional meteorological data have been obtained from a total of 11 auxiliary meteorological 

networks (Table 1). For temperature, a total of 283 meteorological stations belonging to auxiliary 

networks have been obtained, resulting in a spatial density of one station every 205 km2 with altitudes 

ranging between 1 and 1603 m. For precipitation, the complementary networks provided 308 stations 

between 1 and 2002 m, with a density of one station every 188.3 km2.  
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In total the spatial density of the Extended dataset for temperature is one station every 81 km2 and 

for precipitation one station every 50 km2. 

Table 1: Name and acronym of the meteorological networks for temperature and precipitation 

Network Acronym 

Agencia Estatal de Meteorología 

https://www.aemet.es/es/portada  AEMET 
Instituto de Educación Secundaria Los Pedroches 

https://ieslospedroches.com/  Pedroches 
Red de Estaciones Automáticas y Remotas de Meteorología 

https://www.juntadeandalucia.es/medioambiente/servtc5/WebClima/  EARM 
Red de Estaciones Meteorológicas 

https://www.juntadeandalucia.es/medioambiente/servtc5/WebClima/  REM 

Red de Alerta e Información Fitosanitaria 

https://www.juntadeandalucia.es/agriculturapescaaguaydesarrollorural/raif/  CAPDR 
Red del Servicio de Calidad Ambiental 

https://www.miteco.gob.es/es/calidad-y-evaluacion-ambiental/ CMAOT 
Instituto Andaluz de Investigación y Formación Agraria, Pesquera, Alimentaria y de la 

Producción Ecológica 

https://www.juntadeandalucia.es/agriculturaypesca/ifapa/web/  IFAPA 
Red Sistema de Información Agraria de Murcia 

http://siam.imida.es/apex/f?p=101:1:8443957909132639  SIAM 
Red Sistema de Información Agraria para el Regadío 

https://eportal.mapa.gob.es/websiar/Inicio.aspx  SIAR 
Red SAIH de la cuenca mediterránea andaluza 

https://www.chguadalquivir.es/saih/  SAIH 
Red de la Cuenca mediterránea Andaluza 

http://www.redhidrosurmedioambiente.es/saih/  CMA 
Red de Estaciones no Oficiales 

https://www.juntadeandalucia.es/medioambiente/servtc5/WebClima/  PAART 

In general, these additional data sources contain temporal gaps and often imprecisely calibrated 

instruments, so data filtering was an essential step prior to processing. Months with less than 29 days of 

data availability for temperature and more than one NODATA value for precipitation have been 

dismissed from the analysis to reduce potential sources of error and maintain representativeness, taking 

into account that precipitation is more sensitive to missing values than temperature. 

The auxiliary dataset also underwent a filtering process to remove data records considered to be 

outliers, as in clearly erroneous values, specifically excluding temperature values that fell outside the 

range of the absolute maximum and minimum temperatures, historically recorded by the AEMET 

network in the region from 1920 to 2023 (AEMET, n.d.), plus a small margin of 1.5 ºC according to the 

IPCC AR15 report. Precipitation values outside this historical range of the AEMET network records in 

the region (AEMET, n.d.) have also been excluded without any margin, as there were no values recorded 

by auxiliary networks close enough above this boundary to be considered potentially real rather than 

outliers. 

The total number of stations, including those for temperature and precipitation, amounts to 1371 

stations belonging to AEMET (1002) and 11 auxiliary networks (369) between 1 and 2002 m, with a 

spatial density of one station every 42.3 km2 (Figure 2). 

http://www.geo-focus.org/
https://www.aemet.es/es/portada
https://ieslospedroches.com/
https://www.juntadeandalucia.es/medioambiente/servtc5/WebClima/
https://www.juntadeandalucia.es/medioambiente/servtc5/WebClima/
https://www.juntadeandalucia.es/agriculturapescaaguaydesarrollorural/raif/
https://www.miteco.gob.es/es/calidad-y-evaluacion-ambiental/temas/atmosfera-y-calidad-del-aire/calidad-del-aire.html
https://www.juntadeandalucia.es/agriculturaypesca/ifapa/web/
http://siam.imida.es/apex/f?p=101:1:8443957909132639
https://eportal.mapa.gob.es/websiar/Inicio.aspx
https://www.chguadalquivir.es/saih/
http://www.redhidrosurmedioambiente.es/saih/
https://www.juntadeandalucia.es/medioambiente/servtc5/WebClima/
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Figure 2: Geographical location of the AEMET and Auxiliary meteorological stations.  

3.2 Independent variables 

The geographical variables used in the multiple linear regression model were raster maps, generated 

from a Digital Elevation Model derived from official PNOA data (Plan Nacional de Ortofotografía 

Aérea, n.d.), with a spatial resolution of 100 m for altitude, potential solar radiation, cosine of aspect, 

cosine of slope, quadratic distance to the Mediterranean Sea and quadratic distance to the Atlantic 

Ocean. Altitude has a substantial influence on weather (Schermerhorn, 1967), particularly on 

temperature, which typically decreases with altitude, making it an excellent statistical predictor of this 

variable (Barry & Chorley, 1968). In complex terrain, slope and aspect can significantly improve the 

climate model (Daly et al., 1993) by providing a more detailed picture of the topographic conditions and 

can also influence cloud formation or wind circulation (Tullot, 2000). In addition, the climate regime 

can be strongly influenced by the proximity of a significant body of water (Daly et al., 2002). Finally, 

solar radiation can serve as an additional predictor due to its direct relationship with air temperature 

(Shrestha et al., 2019) and its topographic information related to cloud formation (Ninyerola et al., 

2007b). 

4. Methodology 

This study aims to determine whether the description of the patterns of spatial variability of the 

variables is improved by comparing the same modeling method with two different datasets. Therefore, 

we have adopted the methodology proposed by Ninyerola et al., 2007a and Ninyerola et al., 2007b, 

which involves performing a multiple regression analysis with residual interpolation using 

meteorological station data and independent geographic variables, see Figure 3. First, a multiple linear 

regression analysis (MLR) has been conducted with 100 % of the meteorological stations and, in a 

second step, a multiple linear regression analysis with residual interpolation (MLR+I) using only 75 % 

of the AEMET stations. 
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Figure 3: Flowchart of the methodology proposed by Ninyerola et al., 2007a and Ninyerola et al., 

2007b adopted in this study. R2
a signifies adjusted regression coefficient. 

 

4.1 Multiple Linear Regression 

The multiple linear regression analysis has been conducted in the GIS MiraMon using the RegMult 

tool (Pesquer et al., 2007) twice: once using the official AEMET network as the dependent variable and 

once using the extended dataset with the official AEMET network combined with the auxiliary networks 

as the dependent variable (for each one: precipitation and min, mean and max. temperatures). These 

analyses focused on the selected years and months. The resulting adjusted R2 values, which represent 

the adjusted coefficient of determination, are presented in the 'Results' section.  

In addition, a comparison was made to determine which independent variables were deemed 

statistically significant in both the official and extended models. This analysis helped to identify the 

contribution of the auxiliary networks into the variability of the stations in the different independent 

geographical variables. 

4.2 Interpolation of residuals 

In a second phase, the residuals, which represent the differences between the predicted values 

generated by the multivariate regression model and the observed values, were calculated. These 

residuals were then subjected to interpolation using the inverse distance weighting model with a cubic 

exponent in the case of monthly temperature variables. For monthly precipitation the splines 

interpolation technique (Mitasova & Mitas, 1993) with a tension of 800 was applied. This selection was 

made following an evaluation of interpolation method outcomes, which showed that the use of splines 

was able to reduce the RMSE values compared to the inverse of the distance technique only for the 

precipitation variable. 

Unlike traditional approaches that directly interpolate climatological values, the RegMult tool 

leverages the predictive capabilities of the regression model by interpolating the residuals. Only the 

unexplained variation obtained from the multiple regression analysis is incorporated into the spatial 

interpolation process (Pons, 2004). After the calculation of the residuals, meteorological stations of the 

auxiliary networks with systematic errors, resulting in consistently extremely high residuals, were 

removed from the calculation. 

4.3 Validation 

In order to validate the developed models, a random subset of 25 % of the ground meteorological 

stations within the study area from the AEMET network was set aside. RMSE have been computed for 

each model, providing a quantitative measure of the uncertainty. The 'Results' section presents the 

RMSE analysis for each model, providing insight into the accuracy and precision of the generated 

models. 

http://www.geo-focus.org/


Trojer et al. 2024 GeoFocus, 33 

 

84 

5. Results 

For each run of the RegMult tool (flowchart Fig 3.), raster maps of monthly accumulated 

precipitation or monthly temperature with a spatial resolution of 100 m were obtained. For each of these 

maps, the effect of the auxiliary networks on the explained variability was studied by comparing the 

adjusted R2 values obtained by each dataset, the effect on the interpolation of residuals with the RMSE 

values and the captured variability by consulting the predictor selection. 

Upon examination of the results, it was found that there were no significant visual differences 

between the maps generated using the official and extended datasets (Figure 4). However, the extended 

dataset did introduce slightly more contrast in certain areas and subtle circular artifacts in some maps. 

 
Figure 4: Comparison between official (left) and extended (right) regression and 

interpolation results for each variable. 
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5.1 Adjusted R2 of the Regression Models 

5.1.1 Temperature data 

Based on the results of the multiple regression analysis, it was observed that the official dataset 

consistently achieved higher adjusted R2 values compared to the extended dataset. However, there were 

certain cases where the inclusion of auxiliary networks improved model performance, specifically in 

modeling mean minimum and mean maximum temperatures, see Figures 5 to 7. The improvements in 

adjusted R2 range from 0.001 to 0.041. In the months of March and December 2003, as well as March 

2011, the mean minimum temperature models showed slight improvements when incorporating the 

auxiliary networks alongside the official AEMET data. Similarly, for the March 2003, June 2006 and 

March 2011 mean maximum temperature models, the inclusion of auxiliary data resulted in slight 

enhancements. 

 

Figure 5: Adjusted R2 difference of mean minimum temperature MLR models between the 

official models and the extended models (left graphic) and adjusted R2 values of each model 

(right table). 

http://www.geo-focus.org/
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Figure 6: Adjusted R2 difference of mean temperature MLR models between the official models 

and the extended models (left graphic) and adjusted R2 values of each model (right table). 

 

Figure 7: Adjusted R2 difference of mean maximum temperature MLR models between the 

official models and the extended models (left graphic) and adjusted R2 values of each model 

(right table). 

5.1.2 Precipitation data 

The results of the MLR analysis using the 100 % of the meteorological stations as model input 

showed that the extended dataset obtained lower adjusted R2 values than the official dataset (Figure 8). 

Although the adjusted R2 values of the model using the extended dataset were higher in September 2011 
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and in most months of 2006, this improvement consists of much smaller increments than the decrease 

in the adjusted R2 values that occurs using this extended dataset in the remaining months. 

 
Figure 8: Adjusted R2 difference of precipitation MLR models between the official models and 

the extended models (left graphic) and adjusted R2 values of each model (right table). 

 

5.2 Predictor Selection 

When calculating the variances of the weather stations in each dataset for the independent variables 

(Table 2), it was observed that for temperature most of the extended datasets have a higher variance. For 

precipitation, only two variables have a higher variance in the extended dataset, but the differences 

between the datasets are not as large as for temperature. 

Table 2: Variance in the independent variables of the official and the extended dataset for 

temperature (T) and precipitation (P). 

MODEL 
Official 

Variance (T) 
Extended 

Variance (T) 
Official 

Variance (P) 
Extended 

Variance (P) 

Altitude (m) 105 035 113 703 112 841 113 515 

Slope (º) 21.28 25.92 26.95 26.64 

Aspect (º) 11 828 12 915 11 696 11 775 

Distance to the Atlantic (km) 2 350 2 580 2 270 2 250 

Distance to the Mediterranean (km) 432 368 412 406 

Solar Radiation (10 kJ*m-2*dia-1) 11 297 9 756 15 026 14 891 

5.2.1 Multiple Linear Regression with temperature data 

When examining the geographical variables incorporated into the MLR models, several key 

observations can be made. Altitude was identified as the most important variable, as it was included in 

100 % of both the official models and the extended models. Distance to the Mediterranean Sea was 

included in 89 % of the official models and 83 % of the extended models, highlighting its significant 

influence. Similarly, the distance to the Atlantic Ocean was considered important, appearing in 67 % of 

http://www.geo-focus.org/
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the official models and 75 % of the extended models. Aspect, representing the direction a slope faces, 

was found to be included in 64 % of the official models and 69 % of the extended models. Slope, 

indicating the steepness of the terrain, was included in 50 % of the official models and 53 % of the 

extended models, suggesting its moderate importance. Interestingly, solar radiation was deemed 

insignificant in the majority of the models, appearing in only 25 % of the official models and 22 % of 

the extended models.  

In the MLR+I run, with only 75 % of the AEMET stations, altitude emerged as the most important 

variable, being included in 100 % of both the official and the extended models. Distance to the 

Mediterranean Sea was included in 81 % of the official models and 86 % of the extended models. 

Distance to the Atlantic Ocean appeared in 61 % of the official models and 81 % of the extended models. 

Aspect was found to be included in 53 % of the official models and 67 % of the extended models. Slope 

and solar radiation were found to be the least significant independent variables, with slope being 

included in 33 % of the official models and 58 % of the extended models and solar radiation being 

involved in 47 % of the official models and 33 % of the extended models. 

In general, it can be noticed that the introduction of auxiliary networks to the regression models 

leads to a slight increase in the inclusion of predictor variables. The most substantial distinction becomes 

evident when modeling monthly mean temperatures. For further details see Appendix B. 

 

5.2.2 Multiple Linear Regression with precipitation data 

Looking at the independent variables included into the regression models, thus with 100 % of the 

AEMET stations, three of the geographical variables stood out from the rest, altitude, distance to the 

Mediterranean Sea and distance to the Atlantic Ocean being the most important. Altitude and distance 

to the Mediterranean Sea were included in 83 % of the official models and 100 % of the extended 

models, while distance to the Atlantic Ocean was included in 92 % of the official and the extended 

models. Slope showed a moderate importance, being incorporated in 100 % of the official models but 

only in 58 % of the extended models. Aspect and radiation were clearly the less important ones, with a 

similar performance. Aspect was included in only 58 % of the official models and in 67 % of the 

extended models. Meanwhile solar radiation followed the opposite pattern, being incorporated in 67 % 

of the official models and in 58 % of the extended models. 

In general, for the MLR run, the addition of the auxiliary networks did not show a significant 

improvement in terms of the geographical variables included in the regression model. In certain months, 

for some excluded variables such as altitude, the auxiliary networks allowed them to be integrated into 

the regression model, but this contribution is canceled out by the opposite effect that the extended dataset 

had on other variables such as slope, where the use of the auxiliary networks meant that slope was less 

included in the regression. 

For the MLR+I run, therefore without 25 % of the AEMET stations, distance to the Atlantic Ocean 

and distance to the Mediterranean Sea were the most important independent variables, being present in 

the same months as in the previous MLR run. On the other hand, the altitude variable, although still quite 

important, was only included in 75 % of the official models, but still 100 % of the extended models. 

Slope and aspect showed major changes in their behavior, with aspect being more present in the models, 

included in 67 % of the official models and in 83 % of the extended models and slope being more 

frequently excluded from the regression models, being in 67 % of the official and the extended models. 

Solar radiation was again the less important independent variable, included in only 50 % of the official 

models and 58 % of the extended models. 

In this case, fewer variables were included in the models when using the official dataset compared 

to the previous MLR run. However, using the extended dataset allowed more independent geographical 

variables to be included in the regression models. For further details see Appendix B. 

 



Evaluating the contribution of auxiliary observations for climate mapping in the Guadalquivir region 

 

www.geofocus.org 
89 

 

5.3 RMSE of the interpolation 

 
5.3.1 Temperature data 

Regarding the results of the MLR+I models, the inclusion of the auxiliary meteorological networks 

improved 19 of the 36 temperature models generated, see Figures 9 to 11. Particularly, in the case of 

mean minimum temperature, the addition of the complementary networks led to an improvement in nine 

out of the twelve months processed, with a lower RMSE ranging between 0.028 and 1.249 d°C. For both 

mean and maximum temperature models, five out of twelve months obtained a lower RMSE by adding 

meteorological auxiliary networks, with March 2011 being the most improved month (-0.962 d°C 

RMSE). Regarding the seasonal distribution of the results, March models improved eight out of nine 

times, June models improved five out of nine times, December models improved five out of nine times, 

and only one model for September (2006 mean minimum) obtained a lower RMSE when adding 

auxiliary meteorological networks. Looking at the processed years, the 2003 temperature models 

achieved a lower RMSE five out of twelve times, models for 2006 eight out of twelve times, and the 

error of the 2011 models decreased six out of twelve times. 

 

 
Figure 9: RMSE difference of mean minimum temperature MLR+I models between the official 

and the extended models (left graphic) and RMSE values of each model (right table). 
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Figure 10: RMSE difference of mean temperature MLR+I models between the official and the 

extended models (left graphic) and RMSE values of each model (right table). 

 

 
Figure 11: RMSE difference of mean maximum temperature MLR+I models between the official 

and the extended models (left graphic) and RMSE values of each model (right table). 

5.3.2 Precipitation data 

The results of the MLR+I models showed that the RMSE values also varied depending on the 

dataset used (Figure 12), with a predominance of lower RMSE values when using the extended dataset. 

For four months the RMSE values were lower when using the official dataset, but for the remaining 

eight months the addition of the auxiliary networks reduced the RMSE error associated with the resulting 

maps, with a RMSE reduction between -0.91 dmm and -6.27 dmm. 
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Figure 12: RMSE difference of precipitation MLR+I models between the official models and the 

extended models (left graphic) and RMSE values of each model (right table). 

 

6. Discussion 

For precipitation and in most of the temperature cases, the official model achieved higher adjusted 

R2 values than the extended models. However, there were slight improvements in the adjusted R2 when 

modeling mean minimum temperature and mean maximum temperature by including the auxiliary 

stations. In general, the auxiliary networks do not contribute positively to explain the distribution of the 

dependent variable. 

When considering the RMSE, the results were more varied. The extended models generally had a 

slightly lower RMSE score for precipitation and mean minimum temperature, and in almost half of the 

cases for mean and mean maximum temperature. The auxiliary networks provide more ground point 

locations that contribute to the spatial interpolation, which is expected to reduce the uncertainty of the 

maps. 

Regarding the selection of predictor variables, the addition of the auxiliary networks generally 

allowed slightly more independent variables to be included in the regression models. It seems that the 

addition of the auxiliary networks provided further information or variability within these geographical 

variables that was not captured by the official data alone. This assertion is supported by the variance 

calculations for station values in each geographical variable, which showed a consistent pattern where 

the inclusion of independent variables was contingent upon the variance. In general, when the inclusion 

of auxiliary data allowed for the incorporation of more independent variables into the multiple linear 

regression models, it was observed that the variance of the extended dataset in these independent 

variables was higher compared to the official dataset (Table 2). Conversely, when the inclusion of 

auxiliary data resulted in a reduction in the number of independent variables included in the model, it 

was usually observed that the variance of the geographical variables that were now excluded from the 

model was higher or similar in the official dataset. The auxiliary data contributes to a wider range of 

measurement scenarios that may capture nuances or fluctuations in the variables that the official data 

might miss. As a result, the model is better able to explain the variance in the dependent variable, leading 

to the inclusion of more independent variables. 
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7. Conclusions and future work 

The complexity of climate spatiotemporal variability makes it difficult for meteorological 

networks, limited to specific ground station locations, to capture climate variability patterns. To assess 

this data availability problem, we have worked with the inclusion of auxiliary networks of 

meteorological stations in the AEMET network for climate mapping. We aimed to study their 

contributions to the variance explained by regression models, predictor selection and map uncertainty, 

to assess whether these auxiliary networks provide crucial information or add more noise to the models. 

For all variables, the inclusion of the auxiliary networks had a light negative effect on the models' 

performance, resulting in lower adjusted R2 values, especially for mean minimum temperature and mean 

temperature. However, these networks capture more variability and allow for the inclusion of more 

independent variables in the regression models. In terms of map uncertainty, the results were more 

varied. For mean minimum temperature and precipitation, the RMSE values decreased in the vast 

majority of months with the extended dataset, but for mean and maximum temperature, the error of the 

maps decreased only in a small number of months and to a lesser extent than in the months in which it 

increased.  

Considering these results and their magnitude, which consist in a maximum adjusted R2 decrease 

of 0.082 for temperature models and 0.03 for precipitation models, and a maximum RMSE improvement 

of 1.24 d°C for temperature models and 6.27 dmm for precipitation models when using the extended 

dataset, the key takeaway message is that the incorporation of these auxiliary networks does not yield 

substantial improvements to consider their implementation in the official network for climate mapping, 

especially when considering the amount of additional work of filtering, data harmonization and 

transformation they require. Indeed, the addition of auxiliary networks provides insights for an extension 

of the AEMET network in this region: more variability on topographic features and a light reduction in 

map uncertainty.  

However, it is important to acknowledge the limitations of this study. Expanding the dataset 

with a larger sample size can provide a richer perspective in the metrics behavior. Additionally, focusing 

on geographically challenging regions like mountainous areas, where the lack of meteorological stations 

can have a serious impact on capturing climate variability patterns, the incorporation of the auxiliar 

networks can have significant effects in climate mapping.  

For future studies, it would be interesting to further explore the spatialization of map uncertainty 

to better identify conflicting areas and gain additional insight at a regional scale. It may also be important 

to conduct a similar study in different regions, where the availability of auxiliary networks is high 

compared to official data. These areas may provide a clearer perspective on the impact of auxiliary 

networks on climate models. In addition, given the potential shown by automatic learning algorithms in 

regression processes (de Burgh-Day & Leeuwenburg, 2023), these algorithms could be used within the 

methodology to compare the results with those obtained from conventional methods. 
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Appendix A: Independent Variables raster maps. 

 
Figure 1A: Digital Elevation Model (upper left), Aspect map (upper right), Slope map (middle 

left), Distance to the Atlantic Ocean (middle right) and Distance to the Mediterranean Sea 

(bottom center) of the study zone and the 50 km buffer. 
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Figure 2A: Solar radiation map for March (upper left), Solar radiation map for June (upper 

right), Solar radiation map for September (bottom left) and Solar radiation map for December 

(bottom right) of the study zone and the 50 km buffer. 
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Appendix B: Predictor Selection of the Independent Variables. 

 
Table 1B: Geographical variables that were included or excluded (X) for the mean minimum 

temperature MLR official models using 100 % of AEMET data 

(ALT = Altitude; RAD = Solar Radiation; ASP = Aspect; SLO = Slope; DIST ATL = Distance to 

the Atlantic Ocean; DIST MED = Distance to the Mediterranean Sea). 

Official Regression  
Mean Minimum 

Independent Variables 

ALT RAD ASP SLO DIST ATL DIST MED 

MARCH 2003  X     

JUNE 2003  X  X   

SEPTEMBER 2003    X X  

DECEMBER 2003    X   

MARCH 2006  X X X   

JUNE 2006  X X X  X 

SEPTEMBER 2006   X   X 

DECEMBER 2006  X X    

MARCH 2011       

JUNE 2011  X   X  

SEPTEMBER 2011  X   X  

DECEMBER 2011  X     

 

 
Table 2B: Geographical variables that were included or excluded (X) for the mean temperature 

MLR official models using 100 % of AEMET data (ALT = Altitude; RAD = Solar Radiation; 

ASP = Aspect; SLO = Slope; DIST ATL = Distance to the Atlantic Ocean; DIST MED = 

Distance to the Mediterranean Sea). 

Official Regression  
Mean  

Independent Variables 

ALT RAD ASP SLO DIST ATL DIST MED 

MARCH 2003  X X   X 

JUNE 2003  X X X   

SEPTEMBER 2003  X   X  

DECEMBER 2003  X     

MARCH 2006    X   

JUNE 2006  X X X   

SEPTEMBER 2006    X   

DECEMBER 2006  X     

MARCH 2011  X  X   

JUNE 2011  X X  X  

SEPTEMBER 2011  X X X X X 

DECEMBER 2011  X     
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Table 3B: Geographical variables that were included or excluded (X) for the mean maximum 

temperature MLR official models using 100 % of AEMET data (ALT = Altitude; RAD = Solar 

Radiation; ASP = Aspect; SLO = Slope; DIST ATL = Distance to the Atlantic Ocean; DIST 

MED = Distance to the Mediterranean Sea). 

Official Regression  
Mean Maximum 

Independent Variables 

ALT RAD ASP SLO DIST ATL DIST MED 

MARCH 2003  X X X X  

JUNE 2003  X X X   

SEPTEMBER 2003  X X X   

DECEMBER 2003  X  X   

MARCH 2006    X   

JUNE 2006   X X   

SEPTEMBER 2006   X X X  

DECEMBER 2006  X     

MARCH 2011       

JUNE 2011  X   X  

SEPTEMBER 2011  X   X  

DECEMBER 2011  X     

 
 

Table 4B: Geographical variables that were included or excluded (X) for the mean minimum 

temperature MLR extended models using 100 % of AEMET data (ALT = Altitude; RAD = Solar 

Radiation; ASP = Aspect; SLO = Slope; DIST ATL = Distance to the Atlantic Ocean; DIST 

MED = Distance to the Mediterranean Sea). 

Extended Regression  
Mean Minimum 

Independent Variables 

ALT RAD ASP SLO DIST ATL DIST MED 

MARCH 2003  X     

JUNE 2003  X    X 

SEPTEMBER 2003    X   

DECEMBER 2003  X  X   

MARCH 2006  X X X   

JUNE 2006  X  X X X 

SEPTEMBER 2006  X X  X X 

DECEMBER 2006  X X    

MARCH 2011       

JUNE 2011  X   X  

SEPTEMBER 2011     X  

DECEMBER 2011  X     
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Table 5B: Geographical variables that were included or excluded (X) for the mean temperature 

MLR extended models using 100 % of AEMET data (ALT = Altitude; RAD = Solar Radiation; 

ASP = Aspect; SLO = Slope; DIST ATL = Distance to the Atlantic Ocean; DIST MED = 

Distance to the Mediterranean Sea). 

Extended Regression 
Mean 

Independent Variables 

ALT RAD ASP SLO DIST ATL DIST MED 

MARCH 2003  X X   X 

JUNE 2003  X  X   

SEPTEMBER 2003  X     

DECEMBER 2003  X     

MARCH 2006       

JUNE 2006  X X X   

SEPTEMBER 2006    X   

DECEMBER 2006       

MARCH 2011  X     

JUNE 2011  X X    

SEPTEMBER 2011  X X X   

DECEMBER 2011  X   X X 

 
 
Table 6B: Geographical variables that were included or excluded (X) for the mean temperature 

MLR extended models using 100 % of AEMET data (ALT = Altitude; RAD = Solar Radiation; 

ASP = Aspect; SLO = Slope; DIST ATL = Distance to the Atlantic Ocean; DIST MED = 

Distance to the Mediterranean Sea). 

Extended Regression  
Mean Maximum 

Independent Variables 

ALT RAD  AS

P 
SLO DIST ATL DIST MED 

MARCH 2003  X  X   

JUNE 2003  X X X   

SEPTEMBER 2003  X X X   

DECEMBER 2003  X  X   

MARCH 2006    X   

JUNE 2006  X X X   

SEPTEMBER 2006    X   

DECEMBER 2006  X X X X  

MARCH 2011    X X X 

JUNE 2011  X     

SEPTEMBER 2011  X   X  

DECEMBER 2011  X   X  
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Table 7B: Geographical variables that were included or excluded (X) for the mean minimum 

temperature MLR+I official models using 75 % of AEMET data (ALT = Altitude; RAD = Solar 

Radiation; ASP = Aspect; SLO = Slope; DIST ATL = Distance to the Atlantic Ocean; DIST 

MED = Distance to the Mediterranean Sea). 

Official MLR+I  
Mean Minimum 

Independent Variables 

ALT RAD ASP SLO DIST ATL DIST MED 

MARCH 2003  X  X   

JUNE 2003   X X   

SEPTEMBER 2003    X X  

DECEMBER 2003    X   

MARCH 2006  X X X   

JUNE 2006   X X X X 

SEPTEMBER 2006  X X X  X 

DECEMBER 2006  X     

MARCH 2011    X   

JUNE 2011   X  X  

SEPTEMBER 2011   X  X  

DECEMBER 2011  X     

 
 

Table 8B: Geographical variables that were included or excluded (X) for the mean temperature 

MLR+I official models using 75 % of AEMET data (ALT = Altitude; RAD = Solar Radiation; 

ASP = Aspect; SLO = Slope; DIST ATL = Distance to the Atlantic Ocean; DIST MED = 

Distance to the Mediterranean Sea). 

Official MLR+I Mean  
Independent Variables 

ALT RAD ASP SLO DIST ATL DIST MED 

MARCH 2003  X  X  X 

JUNE 2003  X X   X 

SEPTEMBER 2003    X X X 

DECEMBER 2003    X   

MARCH 2006    X   

JUNE 2006  X X X   

SEPTEMBER 2006    X X  

DECEMBER 2006  X     

MARCH 2011  X X X   

JUNE 2011  X X  X X 

SEPTEMBER 2011  X X X X  

DECEMBER 2011  X     
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Table 9B: Geographical variables that were included or excluded (X) for the mean maximum 

temperature MLR+I official models using 75 % of AEMET data (ALT = Altitude; RAD = Solar 

Radiation; ASP = Aspect; SLO = Slope; DIST ATL = Distance to the Atlantic Ocean; DIST 

MED = Distance to the Mediterranean Sea). 

Official MLR+I  
Mean Maximum 

Independent Variables 

ALT RAD ASP SLO DIST ATL DIST MED 

MARCH 2003  X X X X  

JUNE 2003   X    

SEPTEMBER 2003   X X X  

DECEMBER 2003  X X X   

MARCH 2006    X   

JUNE 2006   X X   

SEPTEMBER 2006    X X  

DECEMBER 2006  X X X X  

MARCH 2011    X  X 

JUNE 2011  X   X  

SEPTEMBER 2011  X   X  

DECEMBER 2011  X     

 
 

Table 10B: Geographical variables that were included or excluded (X) for the mean minimum 

temperature MLR+I extended models using 75 % of AEMET data (ALT = Altitude; RAD = 

Solar Radiation; ASP = Aspect; SLO = Slope; DIST ATL = Distance to the Atlantic Ocean; 

DIST MED = Distance to the Mediterranean Sea). 

Extended MLR+I  
Mean Minimum 

Independent Variables 

ALT RAD ASP SLO DIST ATL DIST MED 

MARCH 2003  X     

JUNE 2003  X     

SEPTEMBER 2003       

DECEMBER 2003    X   

MARCH 2006  X X    

JUNE 2006  X   X X 

SEPTEMBER 2006  X X  X  

DECEMBER 2006  X     

MARCH 2011  X     

JUNE 2011  X   X  

SEPTEMBER 2011   X    

DECEMBER 2011  X     
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Table 11B: Geographical variables that were included or excluded (X) for the mean temperature 

MLR extended models using 75 % of AEMET data (ALT = Altitude; RAD = Solar Radiation; 

ASP = Aspect; SLO = Slope; DIST ATL = Distance to the Atlantic Ocean; DIST MED = 

Distance to the Mediterranean Sea). 

Extended MLR+I Mean  
Independent Variables 

ALT RAD ASP SLO DIST ATL DIST MED 

MARCH 2003  X X   X 

JUNE 2003  X X X   

SEPTEMBER 2003    X X X 

DECEMBER 2003  X     

MARCH 2006    X   

JUNE 2006  X X X   

SEPTEMBER 2006    X   

DECEMBER 2006  X     

MARCH 2011  X     

JUNE 2011  X X    

SEPTEMBER 2011  X X X X X 

DECEMBER 2011  X     

 
 

Table 12B: Geographical variables that were included or excluded (X) for the mean maximum 

temperature MLR extended models using 75 % of AEMET data (ALT = Altitude; RAD = Solar 

Radiation; ASP = Aspect; SLO = Slope; DIST ATL = Distance to the Atlantic Ocean; DIST 

MED = Distance to the Mediterranean Sea). 

Extended MLR+I  
Mean Maximum 

Independent Variables 

ALT RAD ASP SLO DIST ATL DIST MED 

MARCH 2003  X  X   

JUNE 2003   X    

SEPTEMBER 2003   X X   

DECEMBER 2003  X  X   

MARCH 2006    X   

JUNE 2006   X X   

SEPTEMBER 2006    X   

DECEMBER 2006  X X X X  

MARCH 2011    X X X 

JUNE 2011  X     

SEPTEMBER 2011  X     

DECEMBER 2011  X     
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Table 13B: Geographical variables that were included or excluded (X) for precipitation MLR 

official models using 100 % of AEMET data (ALT = Altitude; RAD = Solar Radiation; ASP = 

Aspect; SLO = Slope; DIST ATL = Distance to the Atlantic Ocean; DIST MED = Distance to the 

Mediterranean Sea). 
Official MLR Precipitation Models Independent Variables 

ALT RAD ASP SLO DIST ATL DIST MED 

MARCH 2003       

JUNE 2003  X     

SEPTEMBER 2003   X    

DECEMBER 2003  X X    

MARCH 2006       

JUNE 2006       

SEPTEMBER 2006  X     

DECEMBER 2006  X    X 

MARCH 2011 X      

JUNE 2011   X    

SEPTEMBER 2011 X  X  X  

DECEMBER 2011   X  X  

 

 
Table 14B: Geographical variables that were included or excluded (X) for precipitation MLR 

extended models using 100 % of AEMET data (ALT = Altitude; RAD = Solar Radiation; ASP = 

Aspect; SLO = Slope; DIST ATL = Distance to the Atlantic Ocean; DIST MED = Distance to the 

Mediterranean Sea). 
Extended  

MLR precipitation Models 
Independent Variables 

ALT RAD ASP SLO DIST ATL DIST MED 

MARCH 2003       

JUNE 2003  X  X   

SEPTEMBER 2003   X    

DECEMBER 2003  X     

MARCH 2006       

JUNE 2006       

SEPTEMBER 2006  X  X   

DECEMBER 2006  X X   X 

MARCH 2011  X     

JUNE 2011   X    

SEPTEMBER 2011    X   

DECEMBER 2011   X X   
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Table 15B: Geographical variables that were included or excluded (X) for precipitation MLR+I 

official models using 75 % of AEMET data (ALT = Altitude; RAD = Solar Radiation; ASP = 

Aspect; SLO = Slope; DIST ATL = Distance to the Atlantic Ocean; DIST MED = Distance to the 

Mediterranean Sea). 
Official MLR+I precipitation Models Independent Variables 

ALT RAD ASP SLO DIST ATL DIST MED 

MARCH 2003       

JUNE 2003  X     

SEPTEMBER 2003 X X     

DECEMBER 2003  X X    

MARCH 2006       

JUNE 2006  X  X   

SEPTEMBER 2006  X  X   

DECEMBER 2006      X 

MARCH 2011 X X X    

JUNE 2011   X    

SEPTEMBER 2011 X  X X X  

DECEMBER 2011    X X  

 

 
Table 16B: Geographical variables that were included or excluded (X) for precipitation MLR+I 

extended models using 75 % of AEMET data (ALT = Altitude; RAD = Solar Radiation; ASP = 

Aspect; SLO = Slope; DIST ATL = Distance to the Atlantic Ocean; DIST MED = Distance to the 

Mediterranean Sea). 
Extended  

MLR+I precipitationModels 
Independent Variables 

ALT RAD ASP SLO DIST ATL DIST MED 

MARCH 2003       

JUNE 2003  X     

SEPTEMBER 2003 X X     

DECEMBER 2003  X     

MARCH 2006       

JUNE 2006  X  X   

SEPTEMBER 2006  X  X   

DECEMBER 2006      X 

MARCH 2011   X    

JUNE 2011       

SEPTEMBER 2011    X   

DECEMBER 2011   X X   
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Appendix C: Regression maps 

    Precipitation 

 
Figure 1C: 2003 MLR precipitation maps using the official dataset (left) and the extended 

dataset (right). 
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 Precipitation 

 
Figure 2C: 2006 MLR precipitation maps using the official dataset (left) and the extended 

dataset (right). 
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 Precipitation 

 
Figure 3C: 2011 MLR precipitation maps using the official dataset (left) and the extended 

dataset (right). 
 

http://www.geo-focus.org/


Trojer et al. 2024 GeoFocus, 33 

 

108 

 Mean Minimum Temperature 

 
Figure 4C: 2003 MLR mean minimum temperature maps using the official dataset (left) and the 

extended dataset (right). 

 



Evaluating the contribution of auxiliary observations for climate mapping in the Guadalquivir region 

 

www.geofocus.org 
109 

 Mean Minimum Temperature 

 
Figure 5C: 2006 MLR mean minimum temperature maps using the official dataset (left) and the 

extended dataset (right). 
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 Mean Minimum Temperature 

 
Figure 6C: 2011 MLR mean minimum temperature maps using the official dataset (left) and the 

extended dataset (right). 
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 Mean Temperature 

 
Figure 7C: 2003 MLR mean temperature maps using the official dataset (left) and the extended 

dataset (right). 

 

http://www.geo-focus.org/


Trojer et al. 2024 GeoFocus, 33 

 

112 

 Mean Temperature 

 
Figure 8C: 2006 MLR mean temperature maps using the official dataset (left) and the extended 

dataset (right). 
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 Mean Temperature 

 
Figure 9C: 2011 MLR mean temperature maps using the official dataset (left) and the extended 

dataset (right). 
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 Mean Maximum Temperature 

 
Figure 10C: 2003 MLR mean maximum temperature maps using the official dataset (left) and 

the extended dataset (right). 
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Mean Maximum Temperature 

 
Figure 11C: 2006 MLR mean maximum temperature maps using the official dataset (left) and 

the extended dataset (right). 
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Mean Maximum Temperature 

 
Figure 12C: 2011 MLR mean maximum temperature maps using the official dataset (left) and 

the extended dataset (right). 
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Appendix D: Regression and Interpolation maps. 

 Precipitation 

 
Figure 1D: 2003 MLR+I precipitation maps using the official dataset (left) and the extended 

dataset (right). 
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Precipitation 

 
Figure 2D: 2006 MLR+I precipitation maps using the official dataset (left) and the extended 

dataset (right). 
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Precipitation 

 
Figure 3D: 2011 MLR+I precipitation maps using the official dataset (left) and the extended 

dataset (right). 
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Mean Minimum Temperature 

 
Figure 4D: 2003 MLR+I mean minimum temperature maps using the official dataset (left) and 

the extended dataset (right). 
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Mean Minimum Temperature 

 
Figure 5D: 2006 MLR+I mean minimum temperature maps using the official dataset (left) and 

the extended dataset (right). 
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Mean Minimum Temperature 

 
Figure 6D: 2011 MLR+I mean minimum temperature maps using the official dataset (left) and 

the extended dataset (right). 
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Mean Temperature 

 
Figure 7D: 2003 MLR+I mean temperature maps using the (left) and the extended dataset 

(right). 
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Mean Temperature 

 
Figure 8D: 2006 MLR+I mean temperature maps using the official dataset (left) and the 

extended dataset (right). 
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Mean Temperature 

 
Figure 9D: 2011 MLR+I mean temperature maps using the official dataset (left) and the 

extended dataset (right). 
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Mean Maximum Temperature 

 
Figure 10D: 2003 MLR+I mean maximum temperature maps using the official dataset (left) and 

the extended dataset (right). 
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Mean Maximum Temperature 

 
Figure 11D: 2006 MLR+I mean maximum temperature maps using the official dataset (left) and 

the extended dataset (right). 
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Mean Maximum Temperature 

 
Figure 12D: 2011 MLR+I mean maximum temperature maps using the official dataset (left) and 

the extended dataset (right). 


