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Abstract 

Black Sigatoka, caused by the fungus P. fijiensis, is the most severe disease that affects 

bananas (Musa spp). Research has projected increases in disease severity in response to 

climate change and variability, highlighting the need to analyze the relative contributions of 

climate change and immediate responses to their effects on these crops. This study aimed to 

analyze the influence of climate variability and spatiotemporal variability of soil and climatic 

conditions on Black Sigatoka. In addition, it was evaluated the use of geostatistical, 

geomatics, remote sensing, and geographic information systems techniques for disease 

detection over the past 30 years. A systematic review of 156 articles was conducted using 

bibliometric analysis, considering descriptive statistics and bibliometric mapping using 

VOSviewer. The results showcased geostatistical methods used to measure Sigatoka 

infection in banana crops and identify soil and climatic variables associated with this disease. 

It is concluded that climate change has the potential to increase Black Sigatoka infection, 

but precision agriculture could be an effective tool to mitigate the negative impact on banana 

crops. 

 

Keywords 
Banana cultivation, black sigatoka, climate change, crop monitoring, precision 

agriculture. 

 

Resumen 

La sigatoka negra producida por el hongo P. fijiensis, es la enfermedad más severa que 

afecta al banano (Musa spp). Existen investigaciones que han proyectado incrementos en la 

severidad de la enfermedad en respuesta al cambio climático y la variabilidad climática, por 

lo que es necesario analizar las contribuciones relativas de los cambios del clima y las 

respuestas inmediatas a sus efectos en este tipo de cultivos. El objetivo de este estudio fue 

analizar la influencia de la variabilidad climática y la variabilidad espaciotemporal de las 

condiciones edafoclimáticas sobre sigatoka negra. Además, se evaluó el uso de técnicas 

geoestadísticas, geomáticas, de teledetección y sistemas de información geográfica para la 

detección de la enfermedad durante los últimos 30 años. Se adoptó una revisión sistemática 

de 156 artículos mediante análisis bibliométrico considerando estadísticas descriptivas y 

mapeo bibliométrico utilizando VOSviewer. Los resultados muestran métodos geoestadísticos 

utilizados para medir la infección por Sigatoka en cultivos de banano e identifican variables 

del suelo y climáticas asociadas con esta enfermedad. Se concluye que el cambio climático 

tiene el potencial de incrementar la infección de sigatoka negra, pero la agricultura de 

precisión podría ser una herramienta eficaz para disminuir el impacto negativo en los 

cultivos de banano. 

 

Palabras clave 
Cultivo de banano, sigatoka negra, cambio climático, monitoreo de cultivos, agricultura 

de precisión. 
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1. INTRODUCTION 

 

Banana (Musa spp.) is one of the most consumed fruits in the world, with a production of 

approximately 107 million tons per year-1; it is the fourth most crucial food commodity after 

wheat, rice, and corn [1] and is responsible for feeding more than 500 million people [2], which 

represents an important economic sector worldwide. The countries with the highest 

production are India and China, with 33 and 11 million tons per year, respectively [1]; its 

consumption has spread in those countries located in tropical and subtropical regions 

(approximately 120 to 130 countries) [3]. 

It is considered among the first fruits harvested by primitive agriculture and has been 

present in various cultures and civilizations for centuries; it grows throughout the year with 

a maturity period of 11 months to 12 months, thrives best in deep and well-drained soils 

common in the tropics within temperature ranges of 20°C to 30°C and rainfall between 

1800 mm and 2500 mm per year, planting is mainly vegetative using sprouts from already 

established colonies [4]-[6]. However, banana production, mainly for domestic markets, has 

developed in many subtropical areas under less-than-optimal conditions, where water 

shortages and high temperatures exacerbate the spread of foliar diseases and reduce crop 

yields, posing significant challenges in the face of climate change for banana production 

systems [7], [8]. 

Pests and diseases are another area of concern, as they can spread and become severe, 

reducing production, with increased use of biocides with consequent food safety issues 

[9]- [11]. Black Sigatoka, caused by the fungus P. fijiensis, has been identified as the disease 

that most generates a reduction in banana production in the world [12]-[14]. In general, the 

evolution of the disease is caused by the dynamics of the export and import of black Sigatoka-

infected fruits in addition to favorable climatic and edaphic conditions [12], [15]-[18]. 

P. fijiensis restricts the photosynthetic area of banana leaves. The symptoms initially appear 

as streaks and, in later stages, can cause complete leaf necrosis. This can result in up to 

100 % yield loss, depending on the variety of the cultivar, environmental conditions, and 

severity of the disease. [2]. It also causes heavy yield drop, early fruit ripening, and 

significant economic loss [19]- [21].  

In Latin America and the Caribbean, Brazil, Ecuador, Guatemala, Costa Rica, Colombia, 

Mexico, and Peru- in this order sequence -are among the 20 countries that produce the most 

bananas, representing 26 % of production and the first positions in exports worldwide [1]. 

However, Latin America is one of the regions that provide an ideal microclimate for black 

sigatoka (P. fijiensis) infection, offering humidity and temperature (minimum 12°C, average 

27°C and maximum 36°C) suitable for the development of the disease, which occurs in many 

banana-producing areas throughout the year [14], [22]. 

Colombia, in 2021, produced approximately 2.4 million tons of bananas, of which 87 % 

were exported [1]. About 72236 hectares are destined for banana cultivation [23]. However, 

worldwide, banana production indistinctly by region, has been affected over time by fungal 

diseases such as black Sigatoka (P. fijiensis) and Fusarium R4T (Fusarium oxysporum f. sp. 

Cubense race 4 (Foc4)) [24]-[27], which limit the crop, causing considerable yield losses 

[28]-[30]. Generally, these diseases reproduce in a particular proportion due to increased 

atmospheric phenomena and climatic variability [15]. 

Black Sigatoka (P. fijiensis) , which originated in Asia, emerged in the late twentieth 

century and has recently finished spreading throughout banana-growing regions in Latin 

America and the Caribbean [15]; its spread provides an example of biotic-abiotic migration, 

where the intersection of biologically and climatically suitable regions, together with 

increasing international trade and transport have made banana production systems more 



L. M. Torres et al.  TecnoLógicas, Vol. 27, no. 61, e3158, 2024 

Página 4 | 30 

vulnerable to infection [15]. It is caused by the fungus P. fijiensis and is considered one of the 

most damaging diseases affecting banana crops. Its evolution depends on climatic conditions, 

and infection initiates in young leaves [31]. This fungus generates total leaf necrosis, sharp 

drops in production, early fruit ripening, and essential economic loss due to reduced 

production [2]. Additionally, it is primarily controlled with fungicides, but these treatments 

not only pose health risks to humans but also come with significant costs [2], [29], [32]-[34].  

The establishment and spread of black sigatoka worldwide, while driven by increased 

banana production and global trade, has also been potentially facilitated by climate change 

and global warming, which have generated favorable environmental conditions for the 

germination and increased severity of black sigatoka [15], [35]. In general, the evolution of 

the disease depends on favorable climatic conditions [31]. However, a direct relationship has 

also been reported between some nutrients and physicochemical properties of the soil and 

the severity of black Sigatoka, which reduces the defense response of plants [16], [36]. 

Detection, monitoring, and early detection of P. fijiensis are critical in banana crop 

production [37], [38]. The traditional detection method for disease management is manual, 

time-consuming, and labor-intensive, making it challenging to meet export and large-scale 

development requirements because of the health and production problems associated with 

the chemicals used [39]. In recent years, accurate and reliable disease detection has been 

facilitated by highly sophisticated and innovative methods, which relate the spatio-temporal 

distribution of this disease to environmental factors, such as soil fertility and climate. 

Modern epidemiology has used geostatistics, a technique that uses GIS, remote sensing and 

statistics through spatial analysis and the use of sensors to analyze and monitor 

environmental and agricultural processes [40]-[46]. Geostatistics uses the generated 

semivariograms to analyze the data and kriging maps to estimate values at unsampled 

locations with no trend and minimal variance [47]. 

Despite the use of these technologies, there are still challenges in detecting crop diseases 

using aerial imagery obtained from manned drones and UAVs or satellites. While many crop 

diseases can be successfully detected and mapped using satellite or drone imagery, each has 

unique detection and management characteristics [44]. Much has been studied on black 

sigatoka (P. fijiensis) infection using statistical and geostatistical techniques [2], [12], [16]- 

[18], [28], [48]-[50]; however, these methodologies have not been explored in detail, there are 

still gaps in research explaining how edaphoclimatic conditions influence disease. This study 

emphasizes the use of precision agriculture as a potential solution to the exacerbated effects 

of black sigatoka, identifying the edaphic properties and climatic variables related to its 

infection. It addresses aspects linked to the detection, mitigation, and management of black 

sigatoka. Additionally, it reports on geostatistical methods applied in the experimental 

design of sampling, which facilitate the subsequent analysis of data, including the 

visualization of results through maps, thereby providing a better understanding of the 

disease distribution in the field. In this regard, this review highlights various statistical and 

geostatistical techniques through spatial analysis and sensors used to study the infection of 

P. fijiensis and its relationship with edaphoclimatic conditions. 

 

 

2. METHODOLOGICAL ASPECTS 

 

Based on [51], the study was organized into four key stages: 1) data collection, 2) data 

filtering, 3) data analysis, and 4) conceptual discussion and recommendations for future 

research. A methodology that integrates systematic review with bibliometric analysis using 

VOSviewer 1.6.20, a tool designed for informetric, bibliometric, and scientometric analysis 



L. M. Torres et al.  TecnoLógicas, Vol. 27, no. 61, e3158, 2024 

Página 5 | 30 

[51], was employed. In this study, co-occurrence analysis was adopted for author keywords, 

titles, and abstracts, allowing for the visualization of relationships between them and 

identifying trends and patterns in the literature on P. fijiensis infection and its relationship 

with edaphic conditions, precision agriculture, and SIG approaches. Through VOSviewer, 

visual maps are generated that help in understanding the current state of research and 

highlighting areas that require more attention. Figure 1 depicts the framework of the study, 

including a diagram of the stages and their descriptions. 

 

 
Figure 1. Study flow diagram. Source: own elaboration. 
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2.1 Literature search strategy 

 

The search utilized bibliographic databases including Scopus, PubMed, and Google 

Scholar. Titles and abstracts were selected based on these criteria: (1) articles published in 

peer-reviewed journals, books, book chapters, and conference papers; (2) publications dating 

from January 1993 to September 2023; this range was selected due to its temporal relevance 

in addressing the evolution of research on black Sigatoka infection in banana crops, climate 

change, and GIS approaches over 30 years, encompassing technological advances and 

preparing for future challenges; (3) no restrictions on the country of origin of the article, 

provided that most articles were published in English; and (4) those associated with the 

application of precision agriculture in banana crops.  

Because the literature was sourced from three different databases, keyword combinations 

were meticulously crafted to encompass the study's intended scope and were applied 

consistently across all databases. The terms used are "climate change", "global warming", 

"climate", "soil", "black Sigatoka", "foliar diseases", "banana crops", "spatiotemporal 

variability", "climate variability", "spatial variability of soil", "temporal variability of soil", 

"aboveground biomass", "detection of pests and diseases", "GIS", and "geostatistics". Multiple 

combinations of these keywords ensured a comprehensive search of all relevant articles. They 

were chosen to ensure a comprehensive perspective on automated construction monitoring 

while allowing for the exclusion of unrelated articles in later stages. In total, 1800 

publications were gathered. The entire search syntax and articles collected by databases after 

applying shallow filters, including publications of the highest relevance and those for which 

no full text or access was available, are listed in Table 1. For Google Scholar, it was not 

possible to apply filters. 

 
Table 1. Synthesis of compiled publications. Source: own elaboration. 

Database Keyword combination Duration 
Initial 

results 

Exclusion 

result 

Scopus 

TITLE-ABS-KEY ("Banana" OR "Geostatistics" OR 

"Black Sigatoka" OR "Spatial variability" OR "GIS" 

OR "Kriging" OR "Climate change" OR "Soil 

properties" OR "Precision Agriculture") 

1993 to 

September 

2023 

10056 1138 

PubMed 

("Banana" OR "Geostatistics" OR "Black Sigatoka" 

OR "Spatial variability" OR "GIS" OR "Kriging" OR 

"Climate change" OR "Soil properties" OR 

"Precision Agriculture") 

3776 477 

Google 

Scholar 

Banana OR Geostatistics OR Black Sigatoka OR 

Spatial variability OR GIS OR Kriging OR Climate 

change OR Soil properties OR Precision Agriculture 

- 185 

 Total publications 1800 

 
2.2 Data filtering 

 

The filtering process was conducted rigorously across all databases. Initially, 1800 

publications were identified. A preliminary review of titles and abstracts led to the exclusion 

of 1409 publications due to lack of relevance. Next, 173 duplicate articles were removed. A 

thorough reading of the remaining 218 articles resulted in the exclusion of 62 based on their 

contributions to the study. Ultimately, 156 articles were selected for analysis. A summary of 

the filtering process is presented in Table 2. 
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Table 2. Summary of publication exclusion. Source: own elaboration. 

Database 
Collected 

studies 

Exclusions 
Relevant 

publications Surface 

review 

Repeated 

publications 

In-depth 

review 

Scopus 1.138 838 173 16 111 

PubMed 477 415  35 27 

Google Scholar 185 156  11 18 

Exclusions 0 1409 173 62  

Remaining 1800 391 218 156 156 

 
2.3 Analysis of publications 

 

In this study, bibliometric analysis and bibliometric network mapping were performed for 

156 selected publications. The analysis is explained by considering the publications by year, 

database and language, journal of publication, and network maps of author keywords that 

are most repeated among all the selected publications. In addition, network maps of the titles 

and abstracts were created. The full reference records for the chosen papers were imported 

into the Mendeley reference manager. Additional data were organized in Microsoft Excel for 

coding and analysis purposes. A standardized form was used to extract the following 

information: title, author(s), publication year, journal name, authors' keywords, and abstract. 

Subsequently, the information was migrated to R 4.3.0 for visualization and bibliographic 

analysis and to VOSviewer 1.6.20 to create a network map. 

 

 

3. RESULTS AND DISCUSSION 

 
3.1 Characterization of the selected articles 

 

In total, 107 journals published the selected articles; the top 20 journals are shown in 

Figure 2, with the top seven journals being Catena (6 articles), Sustainability (Switzerland) 

(5 articles), Plants (5 articles), Science of the Total Environment (4 articles), PLoS One 

(4 articles), Geoderma (4 articles), and Plant Disease (3 articles) together accounting for 20 % 

of the selected publications. The journals Catena, Science of the Total Environment, and 

Geoderma are affiliated with Elsevier; the journals Sustainability (Switzerland) and Plants 

are affiliated with MDPI; and the journals PLoS One and Plant Disease are affiliated with 

the Public Library of Science (PLoS) and The American Phytopathological Society, 

respectively. 

The selected articles covered 30 years of publications, mostly in English (Figure 3), 

showing increasing research interest (Figure 4). The publications are based on strategies to 

cope with climate change, considering the global expansion of Black Sigatoka and the 

incidence of climatic and edaphic variables in its occurrence in banana crops. In addition, 

this study explores the application of geostatistical techniques and GIS in its detection. In 

this sense, this article provides a comprehensive perspective, highlighting the future 

challenge of climate change in detecting this disease in banana crops. 
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Figure 2. Top 20 journals for selected article publications. Source: own elaboration. 

 

 
Figure 3. Number of selected articles by language and database. Source: own elaboration. 

 

Figure 5 illustrates the annual distribution of articles published per database from 1993 

to September 2023. The trend line indicates that researchers' interest has not waned, as it 

shows an upward trajectory each year. Overall, Scopus publishes the maximum number of 

research articles related to the detection of black Sigatoka in banana crops. 
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Figure 4. Number of selected articles by year of publication. Source: own elaboration. 

 

 
Figure 5. Summary of selected documents by databases. Source: own elaboration. 

 

In this study, a bibliometric mapping was conducted to analyze author keywords and 

keywords found in the title and abstract of the selected publications. In this regard, a co-

occurrence analysis was adopted for these keywords using VOSviewer. The co-occurrence 

analysis of keywords was conducted in the selected publications (156) by importing a data 

file in text format to VOSviewer containing only year and author keywords. In the 156 

publications, 478 author keywords were identified, with 21 of these meeting the threshold 

criterion, as the minimum number of occurrences required for a keyword was set at four. The 

top three author keywords were "Banana" (19.5 %), "Geostatistics" (13.3 %), and "Black 

Sigatoka" (10.9 %) with occurrence rates of 25, 17, and 14, respectively, for an average 
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publication year of 2018, 2013, and 2017 (Table 3). Figure 6 displays the co-occurrence author 

keyword mapping network, and a summary of the top 10 co-occurring keywords is presented 

in Table 3. The keyword mapping is divided into five groups, each illustrating the correlation 

network among the keywords. However, the terms "Banana" and "Black Sigatoka" show a 

higher correlation with each other compared to the term "Geostatistics". 

 

 
Figure 6. Author keywords co-occurrence mapping. Source: own elaboration. 

 
Table 3. Summary of the mapping of the top 10 author keywords. Source: own elaboration. 

Keyword Occurrences Percentage Links Avg. pub. year 

Banana 25 19.5 11 2018 

Geostatistics 17 13.3 8 2013 

Black sigatoka 14 10.9 9 2017 

Soil property 13 10.2 10 2017 

Spatial variability 12 9.4 6 2014 

Climate change 11 8.6 3 2017 

GIS 11 8.6 9 2015 

Musa spp 10 7.8 7 2016 

Land use 8 6.3 7 2016 

Kriging 7 5.5 8 2015 

 

Likewise, bibliometric mapping was performed using several RIS files of the studies that 

contained the details of the titles and abstracts. Thus, repeated terms or keywords were 

identified, and co-occurrence mapping was performed. In the 156 publications, 5027 terms 

were found, with 119 keywords meeting the threshold point, as the minimum number of 

occurrences for a keyword was set at 10, with the top three terms extracted from the titles 

and abstracts being the keywords Disease (17.3 %), Soil (16.2 %), and Banana (10.3 %) with 

occurrence rates of 138, 129, and 82, for an average publication year of 2017, 2015, and 2016, 

respectively (Table 4). Figure 7 shows the mapping network of keyword-related terms 

extracted from the titles and abstracts of the selected publications. A summary of the top 10 

co-occurring keywords is provided in Table 3. The keyword mapping was distributed into four 

groups, with each group illustrating the correlation network among the keywords. However, 

the terms "Disease" and "Banana" show a higher correlation with each other compared with 

the term "Soil". 
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Figure 7. Co-occurrence mapping of titles and abstracts. Source: own elaboration. 

 
Table 4. Summary of the mapping of the top 10 title and abstract terms. Source: own elaboration. 

Keyword Occurrences Percentage Links Avg. pub. year 

Disease 138 17.3 50 2017 

Soil 129 16.2 63 2015 

Banana 82 10.3 46 2016 

Soil property 79 9.9 48 2017 

Climate change 70 8.8 49 2017 

Variability 66 8.3 53 2015 

Change 62 7.8 53 2016 

Impact 61 7.7 60 2017 

Map 55 6.9 57 2015 

Spatial variability 54 6.8 48 2015 

 
3.2 Strategies to cope with climate change 

 

Climate change poses a risk to food security by affecting crop physiology and productivity 

both directly and indirectly through interactions with pests and diseases. Although the 

relationships between host plants, pathogens, and environmental factors can be complex, 

recent studies are uncovering general trends on how plant pests and diseases might further 

impact crop yields in a changing climate [52]. Major contributors to production losses include 

agricultural pests and diseases, which together account for nearly 5 % of global GDP, 

equivalent to approximately US$ 1.4 trillion [28]. 

Currently, climate change is increasingly threatening sustainability in several major 

banana growing regions, requiring responses to effective management of black sigatoka (P. 

fijiensis), which has severe direct impacts on production as well as indirect implications 

through damage to human and environmental health caused by fungicides used for its control 
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[53]. Therefore, research is needed to address the monitoring of environmental conditions 

and management of black Sigatoka to increase crop yields, reduce costs, and investigate the 

effect of fungicides on the environment and human health. 

Edaphoclimatic conditions affect banana crop yields in Colombia [24], [36], [54]. 

Edaphoclimatic conditions are influenced by dry and rainy seasons, affecting banana crop 

yield and facilitating black Sigatoka infection in cultivars [12]. Therefore, it is essential to 

study them for information that is widely used for the tropics and subtropics, providing a 

greater understanding of edaphoclimatic conditions associated with black Sigatoka infection 

and options for transferring knowledge and geospatial technologies between sites. 

In terms of production and academic contributions, quantifying optimal edaphoclimatic 

conditions for banana productivity is critical to assess seasonal crop climate variability and 

black Sigatoka incidence and, subsequently, predict the potential impacts of climate change 

on banana production systems to ensure food security [8]. Ideally, this requires collecting 

data from experiments and field trials conducted under various edaphoclimatic and sanitary 

conditions to demonstrate their influence on crop yield. 

In the last decade, the use of geostatistical methods in agriculture has increased the 

potential for developing comprehensive spatial frameworks that facilitate the establishment 

of agricultural databases and enhance both farm management and food security [44], [55]. 

These data systems enable farmers to retrieve spatially referenced agricultural information 

instantly, offering accurate location data that supports decision-making and improves the 

tracking of crop yields and the spread of pests and diseases [40], [56]–[59]. 

While the use of technologies in agriculture can help optimize crops and facilitate farm 

management decisions to solve food insecurity challenges, adopting geospatial technology 

requires large amounts of high-resolution spatial data and considerable time [44]. Therefore, 

it is crucial to have geospatial information to collect, store, integrate, query, display, and 

analyze geospatial data of soil and climatic conditions in banana crops at a temporal scale. 

 
3.3 Global expansion of the Black Sigatoka 

 

Black Sigatoka is a significant foliar disease for banana cultivation; it was detected in 

1963 in southeastern Viti Levu, 60 km from the Sigatoka valley on the island of Fiji, where 

the disease reached epidemic proportions [20], [53] and has since spread throughout the 

tropics and subtropics, perhaps encouraged by climate change [15]. However, herbarium 

specimens indicate that it was present in Taiwan in 1927 [21] and in Hawaii in 1961 [12]. 

Dispersal in Latin America began in Honduras in 1972 and then moved to Africa in Zambia 

in 1973 [10], probably with infected plants from Asia imported for a banana breeding program 

[60]. By 1980, black sigatoka had spread more widely throughout Asia and Africa; by 1999, 

it had spread to the South American continent and the Caribbean [12]. In Colombia, it was 

first detected in Urabá in 1981, and six years later, it became endemic, where more than 

600.000 infected banana boxes were reported, becoming the primary cause of production 

losses [54]. 

 
3.4 Climate and the Black Sigatoka 

 

Due to climate variability, the Black Sigatoka has become more aggressive [61]. In 

particular, [49] show that agricultural trade and climatic conditions can play essential roles 

in the spread of black Sigatoka between countries. Even with stringent import restrictions 

and safety measures in place to theoretically prevent the spread of crop diseases between 
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countries through the transfer of diseased material, the diseases can still be transmitted over 

long distances from other locations under favorable climatic conditions. 

Many studies report that climatic factors influence black Sigatoka infection (Table 5) and 

relate disease incidence and severity to rainfall [9], [12], [54], [62]. However, other authors 

have reported that other climatic variables, such as relative humidity, evapotranspiration, 

solar radiation, and leaf wetness, affect disease severity [12], [18], [49], [63], [64]. 

 
Table 5. Climatic variables associated with black sigatoka infection. Source: own elaboration. 

Climatic variables Objective of the study Authors 

Precipitation, relative 

humidity, canopy 

temperature, canopy 

humidity, evapotranspiration 

and wind velocity 

This research creates an empirical model to analyze the spread 

of black sigatoka between countries and its effects within 

individual nations, utilizing historical spread timelines, 

biophysical models, local climate data, and agricultural data at 

the country level. 

[49] 

Precipitation 
This study determined the relationship between climate, 

edaphic properties, and the incidence of black sigatoka. 
[54] 

Precipitation and 

temperature 

This study evaluates the influence of different climatic patterns 

represented by rainy and dry seasons on the effectiveness of 

biological and chemical control methods to mitigate Black 

Sigatoka disease in banana plantations, in order to identify 

more effective management strategies under different climatic 

conditions. 

[9] 

Precipitation and 

temperature 

This study evaluates the relationship between black sigatoka 

severity in different geographical areas and factors such as 

plant age, rainfall, and temperature, in order to better 

understand the patterns of disease incidence under different 

climatic conditions and growth stages of banana plants. 

[62] 

Temperature, relative 

humidity, and precipitation 

This study uses the CLIMEX model to globally map the 

distribution of black sigatoka, considering climatic variables 

and the role of irrigation to validate the model as an index of 

disease pressure. 

[12] 

Precipitation, relative 

humidity, temperature, and 

solar radiation 

This study developed a predictive model of black sigatoka 

disease severity in banana crops, integrating climatic variables 

in order to improve the scheduling and efficacy of fungicide 

application for disease control. 

[63] 

Temperature, precipitation, 

solar radiation, relative 

humidity, and wind velocity 

This study designs a wireless sensor network based on 

predictive models to monitor climatic variables associated with 

Black Sigatoka in banana crops to facilitate early scheduling of 

fungicide treatments. 

[64] 

Temperature, relative 

humidity, precipitation 

This study determines the relationship between black Sigatoka 

severity and climatic conditions by correlation analysis with 

the quantification of M. fijiensis spores in different sampling 

periods (dry and rainy seasons). 

[18] 

 
3.5 Soil and Black Sigatoka 

 

Sustainable soil management for banana crops depends on the availability of nutrients in 

the soil. It is conditioned by a nutrient balance in which the concentration, fixation, and losses 

in the production system are evaluated [65]. Plants growing in excellent and fertile edaphic 

conditions usually show a lower incidence and severity of pests and diseases than those 

growing in poorer soils [66]. Organic matter, nutrients, and soil physicochemical conditions 

have been reported to reduce disease severity and improve banana crop yields [66]-[68]. 
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Some research has shown relationships between soil fertility and black Sigatoka severity 

[16], [24], [36], [48], [54], [69]–[71] (Table 6), indicating that the higher the soil fertility level, 

the lower the severity of black Sigatoka. Fertile soils, particularly those rich in organic 

matter, encourage increased root branching. This leads to improved absorption of water and 

nutrients, resulting in more vigorous plants with more effective leaves. These plants quickly 

produce new foliage, which helps them endure less damage, experience slower progression of 

symptoms, have less leaf area affected, and enjoy a longer lifespan for their leaves [66]. Thus, 

appropriate and balanced fertilization can help minimize nutritional imbalances in banana 

plants and decrease the frequency of fungicide applications needed to manage the 

disease [48]. 

 
Table 6. Soil variables associated with black sigatoka infection. Source: own elaboration. 

Edaphic Variables Objective of the study Authors 

Mg2+, microporosity, clay 

content 

This study determined the relationship between climate, 

edaphic properties, and the incidence of black sigatoka. 
[54] 

pH, Mg2+, CIC, Cu, bulk 

density, clay content and 

microporosity 

The association between soil physical and chemical 

parameters and the average percentage of infection (PPI) 

produced by black sigatoka was studied. 

[24] 

Soil moisture 

This study uses the CLIMEX model to globally map the 

distribution of black sigatoka, considering the role of 

irrigation to validate the model as an index of disease 

pressure. 

[12] 

pH, organic carbon, total 

nitrogen, Ca2+, Mg2+, K+ 

This study determines the severity of black sigatoka in 

relation to soil fertility in two different geomorphological 

zones. 

[69] 

Sulfur 

This study characterizes the spatial variability of black 

sigatoka to examine its relationship with soil fertility in the 

Grande Naine variety. 

[16] 

 
3.6 Soil seen by spatiotemporal variability 

 

Assessing spatiotemporal variability and analyzing the distribution of soil properties are 

important prerequisites for resource and crop management in agricultural areas [72]–[75]. 

However, little is known about the spatio-temporal distribution and variability of soil 

properties at the local scale [73], [76]. Characterizing the heterogeneity of the distribution of 

soil properties is difficult because sufficient samples are required to characterize sites. 

Consequently, information on soil spatial variability is available from very few sites 

worldwide. It is usually limited to a single set of soil physicochemical characteristics [77], 

which has changed thanks to technological developments. 

Studies on the effect of soil management have shown that crops increase the potential for 

soil erosion due to the decomposition of aggregates, reduction of cohesion, and consequently, 

decreased nutrient content [73], [78], [79]–[86]. Soil properties also vary considerably 

depending on crop type and tillage intensity [73], especially in banana crops [16], [45], [68], 

[87], [88]. Therefore, characterizing the spatial variability and distribution of soil properties 

is essential for predicting the rates of agricultural processes related to climate variability and 

anthropogenic climate change [89], [90]. Mapping spatiotemporal variability allows for 

dynamic monitoring of soil properties and locating homogeneous sites that require careful 

management for crop development [73], [91]. 

Temporal variability of soil properties has been studied by several authors who have 

reported significant differences in property values [73], [92]–[97]. Some researchers included 

within their investigations temporal variability by measuring soil parameters at different 
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crop ages [94], [98], and others evaluated the effect of climatic variability on temporal 

changes in soil properties, evidencing that this variability affects moisture conditions, pH, 

salinity, organic carbon, micronutrients, and other properties [92], [99]–[101]. 

In research examining the spatial and temporal patterns of soil properties, both 

traditional statistical methods and geostatistical techniques have been extensively utilized 

[73], [79], [102]–[106]. Geostatistics uses autocorrelation and digital mapping methods to 

infer the spatial distribution of resource properties [107], [108]. Information provided in 

digital maps using geostatistical methods leads to better management decisions and a 

precision agriculture approach, aids problem-solving, and maintains soil productivity and 

sustainability [78], [109]. However, to the best of our knowledge and according to what has 

been reviewed, the implications of spatial and temporal variation of soil properties associated 

with crop management and climate variability have been little studied in the banana-

growing area of Colombia. 

 
3.6.1 Spatial variability of soils 

 

Spatial variability of edaphic properties is influenced by land use type, topography, 

formation characteristics, depth, human activities, and time [75]. Assessing spatial 

variability through sampling is an essential step in precision agriculture processes that helps 

farmers make informed decisions regarding the distribution of agricultural inputs [110]. 

Spatial analysis of soil properties can be performed using various statistical methods, 

geostatistical methods, and geographic information system (GIS) approaches that facilitate 

interpolation of geographically located data to improve interpretation accuracy and digital 

mapping of the resource [111]. 

The analysis of spatial variability in soil utilization employs pattern-based statistics, a 

type of geographic analysis also known as location analysis [111]. This approach utilizes 

geostatistical and geometrical techniques to understand spatial patterns [111]. It involves 

applying statistical and data manipulation techniques to information that can be stored in a 

local geodatabase [111]–[113]. Spatial soil analysis reveals characteristics of the sample 

location, such as whether the samples are scattered or clustered. The spatial information 

itself pertains to the position, area, shape, and size of the defined area, and this data is 

typically stored as coordinates and topology [111], [113], [114]. One key outcome of this 

spatial analysis of soil properties is the creation of digital maps. 

Digital mapping aims to identify and define soil units with some level of uniformity, 

delineated by clear boundaries. Nonetheless, soil characteristics are seldom entirely 

consistent; even within the same mapped units, there can be considerable random 

fluctuations in properties, complicating the detection of changes in average values between 

different mapping units [115], [116]. 

According to [115], [117], properties change continuously due to the impacts of climate 

variability and the effects of different soil management practices. Soil spatial variation can 

present in different patterns. For example, it might show relatively stable changes within 

certain map units but encounter sharp shifts in average values at soil boundaries. 

Alternatively, soil property variations might be smooth and continuous, with minimal and 

consistent fluctuations. Another possibility is having slight, non-random changes within soil 

units, along with either smooth or abrupt transitions in average values at boundaries. Lastly, 

soil properties might display sudden changes in variance at boundaries, whether or not there 

are changes in the average value [115]. 
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3.6.2 Temporal soil variability 

 

The properties of soil are not static; they change over time [92]–[101], [118]. This 

variability stems from both intrinsic processes, which are linked to natural phenomena, and 

extrinsic processes, which are related to human management and cultivation practices [119]. 

Geological, hydrological, and biological factors are the primary intrinsic sources that 

influence soil formation and lead to variability. In contrast, extrinsic variability often results 

from differences in cultivation techniques and management, including variations in tillage 

methods, irrigation and drainage practices, and the management of crops and crop residues 

[119]. The temporal variability of soil can be analyzed in relation to plant age and through 

annual, seasonal, or daily cycles [115]. 

Temporal variability in soil can manifest during the growing season, and it can also occur 

from year to year, month to month, or even day to day, often influenced by weather and 

climate conditions. The physical properties of soil, such as moisture content, bulk density, 

aggregate stability, and penetration resistance, are interconnected and significantly affected 

by both climatic variability and climate change [119]. Similarly, chemical properties like pH, 

salinity, and soil organic carbon content are also impacted by these climatic factors [92], 

[99] –[101].  

 
3.7 Application of geostatistical techniques and GIS for pest and disease detection 

 

GIS technology utilizes a combination of information management tools and methods that 

have enabled the administration, editing, and analysis of geospatial data on a global, 

regional, and local scale [120]. In the agricultural context, remote sensing technology uses 

data from crops and images taken from satellites, aerial remote sensors, and ground 

equipment [57], [121]. The processed data can be deconstructed into spatial layers that can 

then be processed and analyzed in a GIS in multiple ways to reveal crop conditions and 

monitor pests and diseases [44]. 

Several studies have applied GIS approaches for the detection of Black Sigatoka in 

banana crops, using images taken by hyperspectral sensors to characterize the severity of 

the disease [17], [28], [50], [122]–[124]. These studies have demonstrated that the 

implementation of hyperspectral sensors is an effective tool for early disease identification, 

capturing detailed data on leaf reflectance, which allows for the detection of subtle differences 

in crop health that are not visible to the human eye. Previous research has leveraged these 

capabilities by correlating the data with disease severity indicators, thus improving decision-

making in the management of Black Sigatoka [16], [45], [87], [125].  

These studies show that geostatistical methods have been fundamental in describing the 

spatial and temporal spread of Sigatoka in banana crops. For example, the use of kriging in 

specific studies [16], [68], [87], [88] allowed for modeling the distribution of the disease and 

generating predictive maps of the most affected areas. However, these studies demonstrate 

that the accuracy of these models depends on the density of the sampling points, the 

experimental setup, which includes the type of banana and the extent of the area to be 

studied. These factors ensure the effectiveness of the geostatistical tools. Table 7 presents 

the cited studies, detailing the geostatistical methods and the experimental setup used to 

evaluate Sigatoka infection in banana crops. 
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Table 7. Geostatistical methods applied to experimental sampling design and visualization to analyze sigatoka 

infection in banana crops. Source: own elaboration. 

Banana 

type 

Experimen-

tal area 

Sampling 

points 

Avg. distance 

between 

points 

Statistical and geostatistical 

analysis 
Type of software used Ref. 

Prata-Anã 1.2 ha 27 18m x 18m 

Pearson correlations 

Variogram analysis 

Maximum likelihood 

estimation method 

Pip effect 

Kriging interpolation 

PROC CORR in SAS 

R package using 

geoR package 

[68] 

Cavendish 

cv. Gran 

Enano 

30 ha 71 
100m x 100m 

50m x 50m 

Kruskal-Wallis test 

Shapiro-Wilk normality test 

Brown-Forsythe robustness 

test 

Modified Levene 

Normality assumption using 

the Skewness asymmetry 

coefficient. 

Empirical semivariograms 

Kappa smoothing 

Pip effect 

Ordinary Kriging 

R software using the 

kruskal function of 

the agricolae 

package, levene. test 

function of the 

lawstat package 

geoR package, 

variog.mc.env 

function, variofit 

function, 

krige.control and 

krige.conv functions. 

[87] 

Pacovan 2 ha 30 3m x 3m 

Autocorrelation analysis 

Lloyd aggregation index 

Geostatistical interpolation 

maps 

Pearson correlation 

LCOR2 Program 

morlloyd program 

(Microsoft Excel) 

Surfer program 

PROC IML program 

[88] 

Grand 

Nain 
0.09 ha 30 30m x 30m 

Determination of isotropic 

semivariograms 

Stationarity assumption of the 

intrinsic hypothesis 

Mean square error function 

Standard error of prediction 

and self-validation (jackniffe) 

Degree of spatial dependence 

Interpolation of the data by 

ordinary kriging 

Pearson correlation 

GS+ v.7.0 

Statistical Analysis 

System statistical 

software 

[16] 

 

Table 7 shows that the evolution of statistical and geostatistical methods has advanced 

over time, highlighting geostatistics as key in the spatial modeling of Sigatoka infection. The 

transition has moved from basic approaches of correlation and autocorrelation analysis to 

more complex techniques, such as semivariograms and kriging, which allow for an accurate 

representation of the disease's spread. Additionally, the use of software has shifted from GS+, 

LCOR2, Surfer, among others [16], [88], to R [68], [87], facilitating the integration of 

advanced packages to perform robust analyses, thereby improving inferences and predictions 

in the management of Sigatoka. 

In this regard, geostatistical analysis has proven to be an important tool for 

understanding the distribution and severity of Sigatoka in banana crops, as the spatial 

characterization of the disease is essential for its management. However, [88] emphasized 

the need to consider climatic variability and soil conditions that influence the incidence and 

severity of the disease. This led to studies such as [16], which applied geostatistical 

techniques to analyze the relationship between soil fertility and Black Sigatoka severity, 
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using spatial distribution maps to identify critical areas within plantations. Similarly, [68], 

through geostatistical techniques, evaluated the correlation between Sigatoka severity and 

soil properties, considering climatic variables. As a result, their study employed advanced 

spatial analyses to map the disease and relate it to soil nutritional factors, highlighting the 

need for data-driven agronomic approaches to improve disease management. Likewise, [87] 

employed spatial modeling to study Black Sigatoka in Cavendish banana cv. Gran Enano, 

revealing distribution patterns that can guide decision-making in precision agriculture. 

Nevertheless, despite these advances, the integration of new technologies, such as 

hyperspectral drones, satellite sensors, and/or machine learning techniques, remains a 

challenge for new research. These tools, combined with geostatistical analysis, would allow 

farmers to adopt more precise and efficient strategies for Sigatoka control, such as more 

targeted fungicide applications and improved monitoring programs [9], [32], [33]. Previous 

studies [17], [28], [50], [124] have shown advances in machine learning techniques and 

hyperspectral imaging applied to disease management or detection in bananas. However, 

none of those reported so far have associated these techniques with soil properties data and 

climatic variables. 

For example, [17] evaluated the use of hyperspectral images to detect the early stages of 

Sigatoka through a penalized logistic regression model (PLS-PLR), achieving 98 % accuracy. 

This advancement allows for disease identification before it becomes visible to the naked eye, 

although it still does not incorporate climatic or soil variables into its analysis. [50] also 

developed machine learning-based models, such as SVM and neural networks, for early 

Sigatoka detection, demonstrating the potential of artificial intelligence techniques in 

precision agriculture, though it still does not account for environmental factors. Similarly, 

[124] designed a hyperspectral imaging system to detect the disease presymptomatically, 

using advanced optical techniques, but without yet integrating geostatistical or soil data. 

Finally, [28] employed drones and machine learning algorithms to monitor Sigatoka, 

demonstrating that remote sensing combined with artificial intelligence can surpass 

traditional methodologies, although it did not consider the influence of climatic and soil 

variables on the spread of the disease. 

 
3.8 Climate variability and detection of Black Sigatoka in Bananas 

 

Climate variability poses challenges to water resources, diminishes crop yields, and raises 

the prevalence of pests and diseases, significantly affecting agriculture, particularly in 

tropical areas. With the imminent climate risks to agricultural output and food security, 

there is a growing emphasis on global and national programs and policies to prioritize 

adaptation strategies for agricultural production in response to climate change [126]. 

The FAO forecasts that food demand will double by 2050, posing a significant challenge 

for the scientific community to boost agricultural productivity [126]. Therefore, studying the 

influence of climate variability and the relationship between black Sigatoka and 

edaphoclimatic conditions requires an appropriate methodology. In response to the spatial 

dependence between crops and plant diseases, GIS, remote sensing, and spatial analysis 

techniques have been employed in epidemiological research in the last two decades. These 

techniques have enhanced the collection, storage, retrieval, analysis, and visualization of 

spatial data, leading to a deeper understanding of the factors that affect the emergence of 

epidemics [87], [125], [127]–[129]. This method produces more reliable results concerning the 

area's plant disease epidemiology and soil variability [125]. 

Spatial analysis through geostatistics has been commonly used to relate edaphic and 

climatic conditions to pest and disease severity [71]; some authors have studied its 
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application in banana crops to describe Sigatoka behavior, obtaining patterns of disease 

behaviors explained by edaphic conditions [16], [45], [68], [87]. Other research on GIS and 

remote sensing approaches have oriented their studies on the detection of black Sigatoka 

associated with climatic conditions using simulation models of the disease using physiological 

responses to infection given optimal climatic conditions of temperature, precipitation, 

relative humidity, evapotranspiration, solar radiation, plant leaf wetness, among others [9], 

[12], [15], [18], [49], [52], [61]–[64], [125]. 

So far, research that has used and applied GIS approaches, remote sensing, and spatial 

analysis in banana crops to detect black Sigatoka has separately studied the edaphic and 

climatic conditions associated with the disease. Few investigations have studied the 

relationship between edaphoclimatic conditions and black Sigatoka, and those that have been 

conducted have not used GIS, remote sensing, or spatial analysis approaches for disease 

detection on a spatiotemporal scale [24], [36], [54], [65]. 

 
3.9 Geostatistics and soul sampling 

 

Soil properties often display spatial autocorrelation, meaning that the values of these 

properties at nearby locations tend to be similar. Numerous studies have examined a wide 

range of soil properties, including morphological, physical, chemical, and biological 

properties, at the microscale level [16], [75], [78], [92]. However, our understanding of how 

these properties vary across both space and time at this detailed level remains limited. This 

understanding depends on the availability of field data, the application of geostatistical 

techniques, and the analysis of autocorrelation among these properties. Geostatistics, a 

branch of applied statistics, has emerged as a valuable tool for understanding and estimating 

spatial patterns in soil properties [115], [130]–[132]. 

In geostatistics, autocorrelation exists when there are relatively minor variations that are 

not entirely random in the value of a soil property [133]. In this sense, the distance between 

sampling points is a factor that influences the spatial variability of soil properties, i.e., the 

closer the sampling points are to each other, the more similar the values are, as opposed to 

values separated by more distant distances. Beyond the critical distance threshold, where 

autocorrelation is lost, soil property values no longer exhibit spatially correlated behavior 

and their relationships become random [134]. This type of spatial variation, occurring when 

the relationship between two sampling points cannot be accurately predicted based solely on 

their distance, can be quantitatively modeled using various techniques, with semivariogram 

models being the most common [115], [135]. 

The semivariogram is a technique used to study the spatial distribution of soil properties 

[136]; it helps model how the variance of soil properties changes as the separation distance 

between sampling points increases [115], [137]. In geostatistics, the semivariogram is 

essential for spatial prediction or kriging of a target geographic feature. It is derived by 

measuring the spatial correlation or covariance between sample pairs at various distances in 

a dataset to create empirical semivariograms. A graphical representation of the semivariable 

and the distance or lag corresponding to the separation of the pairs produces the 

semivariogram [115]. The procedure involves plotting the semivariable values against the 

separation distance and then applying functions–such as linear, spherical, or exponential 

models–to fit these data points [135].  
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3.10 The future challenge of climate change on the detection of Black Sigatoka in Bananas 

 

By the end of this century, climate change is projected to have a significant impact on the 

agricultural sector in developing countries due to associated damages and high adaptation 

costs, with potential results in 1.30°C to 5.70°C increase in global average temperatures, 

depending on emission scenarios, whether low or very high [138]. Some critical challenges 

include increasing frequency and intensity of extreme weather events through higher 

temperatures and more variable precipitation, including heat waves, floods, and droughts, 

which can significantly affect the agricultural sector [139]. Developing countries account for 

~70 % of the agricultural potential for climate change mitigation [140]. The agricultural 

sector is a significant contributor to global greenhouse gas (GHG) emissions, directly 

accounting for approximately 14 % of the total. Furthermore, agriculture indirectly increases 

emissions through land-use changes, particularly deforestation for agricultural expansion, 

which contributes an additional 17 % to overall GHG emissions [41], [139], [141]–[143]. 

In this context, banana crops play a key role in carbon sequestration through 

photosynthesis, contributing to mitigating climate change. However, the effectiveness of this 

sequestration can be affected by foliar diseases associated with the crop [144]–[146]. Studies 

have shown that CO2 capture in banana crops reaches 80°t/ha at the production stage [144], 

with biomass contributions of the pseudostem ranging from 75 % to 78 % and leaves from 

12°% to 17°% [5], [147]–[149]. 

Developing and implementing effective adaptation and mitigation strategies to minimize 

the impacts of climate change on crop foliar diseases is a major challenge [150]–[153]. 

Detection of foliar diseases has led researchers to work on image processing for classification 

and early detection of crop diseases; however, they face multiple challenges because the 

variability of shapes and colors in the images, together with climate change, pose an 

additional challenge in identifying multiple foliar diseases, especially when disease patterns 

are irregular [154]. State-of-the-art studies in the area indicate that challenges are related 

to noise in images caused by electronic devices and lighting effects, out-of-focus imaging, lack 

of in situ data containing images of infected leaves in crops, variability of climatic conditions, 

and selection of suitable electronic devices and images [155]–157]. With these disadvantages, 

some researchers have adopted drone cameras, but these also present limitations such as 

weather and flight time for imaging [28], [157]. Nevertheless, drone cameras are a convenient 

tool for small-scale disease monitoring and are useful for validating remote and proximate 

sensor data for crop health monitoring [158]. 

The detection of black Sigatoka in banana crops faces significant challenges under 

possible climate change scenarios. As the global climate undergoes alterations, the accurate 

identification of this disease in crops and the influences of environmental variables on its 

detection become more complex, forcing geographic information systems to constantly change 

the algorithms used. Increasing the intensity and frequency of extreme weather events, such 

as heavy rains or prolonged droughts, could favor the spread and severity of black Sigatoka, 

making timely detection even more critical. Thus, climate change poses additional challenges 

in detecting crop diseases, requiring ongoing research and adaptation strategies to ensure 

food security. Future research on the detection of black Sigatoka in banana crops should 

prioritize the development of climatically robust algorithms, autonomous detection using 

artificial intelligence methods, the establishment of real-time monitoring systems, the 

understanding of the genetic variability of the disease, the implementation of integrated 

management techniques, and all other measures that humans take to monitor the crop. 

These guidelines will help address the challenges of climate change, improve detection 

accuracy, and ensure disease and pest protection in banana crops. 
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4. CONCLUSIONS 

 

In the specialized field that links precision agriculture, geospatial analysis, and climate 

change, the number and nature of key terms appropriately reflect the essential elements of 

this nexus. The results reveal international correlation through author keywords, titles, and 

abstracts of scientific documents. The study examines the evolution of research, identifying 

recurring concepts, methods, and phenomena related to black Sigatoka monitoring in banana 

crops. It highlights key approaches of precision agriculture in times of climate change, 

agricultural management tools, and components. These elements constitute a valuable 

source of information to guide researchers and academics in research projects in this field. 

This review emphasizes the complex interaction between climate change and its elements, 

Black Sigatoka in banana crops, and soil properties. Future projections indicate that climate 

change will increase the severity of Black Sigatoka and substantially affect banana crop 

yields, particularly on farms that do not implement precision agriculture techniques. 

However, climate change mitigation and adaptation strategies can alleviate some of these 

effects, such as increasing carbon fixation and reserves and implementing precision 

agriculture on banana farms for soil and crop management. Furthermore, effective soil and 

crop management can help ensure food security. An integrated approach that combines 

efforts to address climate change and implement precision agriculture will be essential to 

reduce the severity of pests and diseases in banana crops. 

The climatic and soil variables associated with Black Sigatoka infection in banana crops require 

agricultural management and handling strategies to reduce the incidence and severity of this 

disease, thus improving productivity and sustainability of banana crops. Climatic variables include 

precipitation, evapotranspiration, relative humidity, canopy humidity, canopy temperature, wind 

speed, solar radiation, temperature, and relative humidity, which directly influence the 

microclimate of banana crops, creating favorable conditions for the proliferation of the fungus P. 

fijiensis. Soil variables include Mg2+, Ca2+, K+, pH, CIC, Cu, microporosity, clay content, bulk 

density, soil moisture, organic carbon, total nitrogen, and sulfur, which impact soil yield and reduce 

plant defense response, requiring the soil to have necessary nutrients to maintain an environment 

less favorable for disease development. 

The use of geostatistical methods to measure Black Sigatoka infection in banana crops 

demonstrates the effectiveness of various statistical and geostatistical analyses in different 

experimental setups. These methods have been applied using various software and programs, 

some of which, like SAS and Microsoft Excel, are widely used in research, while others, like 

LCOR2 and morlloyd, are considered obsolete or less common today. On the other hand, 

programs like R with packages like geoR and agricolae, as well as Surfer and GS+, represent 

modern and versatile options for spatial and geostatistical analysis in agricultural studies. 

This diversity in software use reflects the variety of approaches and tools available to 

researchers in the field of geostatistics applied to banana crops, requiring further studies for 

their application. 

Geostatistical methods, such as kriging, are used to model the spatial and temporal 

distribution of Black Sigatoka, generating effective predictive maps when field data is 

utilized. These tools enable more precise interventions in affected areas, improving disease 

management. Additionally, precision agriculture, by correlating edaphic and climatic 

variables, mitigates the effects of climate change on banana crops, using technologies like 

hyperspectral drones and satellite sensors for more adaptive strategies, such as targeted 

fungicide applications. However, research must advance in emerging technologies such as 

machine learning and artificial intelligence (AI), which have the potential to enhance early 
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detection and automate management processes. This should include data on edaphic 

properties and climatic variables associated with Black Sigatoka in banana crops. 
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