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Abstract

The growing awareness of the tremendous environmental impact of burning fossil
fuels is promoting the shift to renewable energiessources to generate energy. Solar
energy, along with wind energy, is forecasted to become one of the main energy
sources in the energy mix of the future. Among all the technologies available
to transform solar irradiation to electricity, solar photovoltaic (PV) stands out
as the most developed and promising, due to its simplicity and relative ease of
maintenance. It has witnessed an incredible reduction in prices and its efficiency
in commercial applications has rocketed. Consequently, solar PV has emerged
as a leading technology in the transition to a more sustainable future for many
countries. Because it has not reached maturity yet, there are still numerous areas
of research concerning the development of PV. This thesis deepens the study and
development of PV technology throughout its life cycle, focusing on the design
and operational stages. The thesis includes four different studies, three of them
tackling one major issue within each stage and one review of the literature.

With respect to the design and planning stage, the estimation of solar
irradiation is of great concern, since it is the main input to a PV plant. Accurate
estimates of the solar resource leads to increased revenue and a reduction of un-
certainty during operation. Given that ground measurements of solar irradiation
are scarce, we have developed a methodology using machine learning techniques
to estimate solar irradiation from other more commonly measured meteorolo-
gical variables and then geostatistical techniques were applied to obtain maps of
continuous annual irradiation values.

Regarding the operational stage of a PV plant, we have focused on two
aspects: how to increase the value of the electricity and how to increase produc-
tion. The former issue was addressed through forecasting of electricity production
from a PV plant. Improved forecasting leads to increased revenues. We studied
the value of forecasting in the electricity market and the margin for improve-
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ment. Tracking strategies were utilized to investigate how production could be
increased. During cloudy and overcast weather conditions most irradiation comes
from its diffuse component. Because of this, we analyzed the potential for irra-
diation increase derived from a tracking strategy that sets PV panels facing the
zenith when those conditions are present. Additionally, an operational algorithm
was developed to benefit from the tracking strategy proposed.

In summary, this thesis helps advance the collective knowledge surround-
ing solar technology in an effort to guide the transition towards a more sustainable
future.



Resumen

La creciente conciencia acerca del tremendo impacto ambiental causado al que-
mar combustibles fósiles está promoviendo el cambio hacia energías renovables. Se
prevee que la energía solar, junto con el viento, se convierta en uno de los contri-
buyentes principales en el mix energético del futuro. De entre todas la tecnologías
disponibles para transformar la radiación solar en electricidad, la fotovoltaica des-
taca como la más desarrollada y prometedora debido a su simplicidad y relativa
facilidad de mantenimiento. Ha experimentado una increíble reducción de precios
y su eficiencia en aplicaciones comerciales se ha disparado. Todo ello ha posiciona-
do a la energía fotovoltaica como una tecnología puntera en la transición hacia un
futuro más sostenible en muchos países. Como aún no ha alcanzado la madurez,
todavía hay numerosas áreas de investigación abiertas para su desarrollo. Esta
tesis profundiza en el estudio y avance de la tecnología fotovoltaica a lo largo de
su ciclo de vida, centrándose en las etapas de diseño y operación. La tesis incluye
cuatro estudios. Tres de ellos se centran en alguno de los problemas principales
encontrados en cada etapa y el otro es una revisión de la literatura.

Con respecto a la etapa de diseño, la estimación de la radiación solar se
presenta como un asunto esencial debido a que es el principal “combustible” de
una planta solar. Estimaciones precisas del recurso solar conducen a un incre-
mento del beneficio y a la reducción de la incertidumbre durante la operación.
Debido a que las medidas de radiación solar tomadas en tierra son escasas, hemos
desarrollado una metodología que emplea técnicas de “machine learning” para
estimar la radiación solar utilizando otras variables meteorológicas más común-
mente monitoreadas y luego aplica técnicas de geoestadística para obtener mapas
de valores anuales de radiación.

En lo que respeta a la etapa de operación, nos hemos centrado en dos
aspectos: cómo incrementar el valor de la electricidad y cómo aumentar la pro-
ducción. El primero de ellos se analizó empleando predicciones de generación
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x Resumen

de electricidad de una planta fotovoltaica. Las mejoras en las predicciones se
trasladan a los beneficios. Estudiamos el valor de las predicciones en el mercado
eléctrico y el margen de mejora. El segundo punto de estudio, aumento de la
producción, se estudió desde las técnicas de seguimiento. Durante condiciones de
cielo cubierto la mayor parte de la radiación viene de su componente difusa. Por
ello, analizamos el potencial de incremento de radiación anual de una estrategia
de seguimiento que sitúe los paneles en posición horizontal cuando se den las
condiciones descritas. Además, se ha desarrollado un algoritmo operacional para
beneficiarse de la técnica descrita.

En resumen, esta tesis presenta un análisis integral para mejorar el estado
actual de la tecnología fotovoltaica con el propósito de facilitar la transición hacia
un futuro más sostenible.
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Chapter 1

Introduction

1.1 Background

The era of abundance has come to an end. The Earth’s resources are limited and
a wise use of them is indispensable to ensure future quality of life. Fossil energy,
which fueled the development of civilization during the 20th century, has proven
finite and responsible for climate change. Anthropogenic emissions of greenhouse
gases have caused global temperature to rise to a level causing noticeable effects.

A deep concern has grown around the sustainability of the global ener-
getic model. The shift from fossil fuels to renewable energies implies a certain
complexity increase in the system (Tainter et al., 2006). Significant efforts have
been made during the last decades to develop a new set of technologies to gener-
ate electricity or heat driven by unlimited resources, mainly solar radiation and
wind, and their presence in a rising number of countries is powerful. The Paris
Agreement, which has been already ratified by 174 countries, sets the path for
the decarbonisation of the countries’ energetic markets. Country specific targets
for renewable and energy efficiency were agreed upon with the goal of keeping the
rise of global temperatures below 2 degrees Celsius, with respect to pre-industrial
levels.

Unlike fossil fuels, with the exception of coal which is abundant around
the globe, renewable resources are well distributed in the world and may allow
countries to meet their energy needs without becoming energy dependent. Re-
newable energies are the present and the future of the new energy era.
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2 Chapter 1. Introduction

Most renewable energy sources for electricity production (RES-E) are
intermittent, which adds a certain level of complexity to their management. Be-
cause electricity must be produced at the same rate as it is consumed, it is of vital
importance to maintain the balance of the grid. Traditionally, production from
power centrals (nuclear, carbon, gas, hydro) was fairly easy to predict, and errors
came mainly from the prediction of the demand. However, with the inclusion of
RES-E, the management of the grid has become more complicated, since errors
in the prediction can also come from the production side. As a result, there are
many challenges within the integration of renewable production in the grid, which
can be addressed, to name a few, in the following ways:

• Increase accuracy of prediction models in order to plan with accordance the
variations in production.

• Improve the interconnection between electricity markets to benefit from the
reduced variability of RES-E over large areas.

• Reschedule energy markets to allow updates of RES-E generation forecasts,
whose accuracy increases with decreasing time horizons.

• Encourage demand response to adjust to production from RES-E.

• Develop effective storage systems to buffer deviation in production with
respect to scheduled when demand response is not possible.

Photovoltaic (PV) energy is one of the key agents in the play and it is seen,
along with wind turbines, to star the future of electricity production. PV has
experienced an enormous growth over the last decades. Global installed capacity
amounted to a total installed capacity of at least 303 GW at the end of 2016
(REN21, 2017) and, that year, the rate of growth rocketed to 48% with respect
to the previous year. Prices have also witnessed a strong reduction. For instance,
utility scale single axis tracking systems (SATS) have lowered their prices by 80%
from 2010 to 2017 (Fu et al., 2017). PV cells efficiency have already surpassed
20% in commercial applications. This evolution has change the picture dramat-
ically. At the beginning, economic subsidies via feed-in-tariffs, feed-in-premiums,
green certificates, etc. were introduced to make this technology competitive and
boost new installations. However, price reduction and efficiency gain have made
PV competitive without economic incentives in some places, which is known as
grid parity. PV technology find applications from utility scale plants to off-grid
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installations. Its relatively ease of maintenance makes them suitable for rural or
isolated areas. As an example, Chine reached 100% electrification thanks to, in
part, off-grid solar PV (REN21, 2016). Its presence in Africa is notorious too,
although the initial investment required for it limits its expansion.

Nevertheless, this tremendous growth and development should not fool
us. PV is not an end in itself, it is a paving stone in the path towards a cleaner and
sustainable future. Thus, even if photovoltaic technology is claimed to be clean,
one should not obviate the carbon footprint associated with its production and,
to a lesser extent, to its operation. Production of PV panels is energy intensive
and their carbon footprint varies according to where they are manufactured.
Depending on the energy mix of each country, the electricity grid has a certain
amount of CO2 associated with each kWh, which will be transferred to the PV
panel. Besides, depending on the final location of PV panels, the energy/CO2

payback period will vary, obtaining very diverse values. From a sustainable point
of view, the optimum would be to produce PV panels in countries with a ’clean’
electricity grid and install them in countries with CO2 intensive grids. Besides,
when PV is coupled with storage, the impact of the batteries, which normally are
made with polluting and scarce materials, needs also to be considered. Apart from
the materials and energy used to build and ship the panels, the construction of
utility size PV plants can compete with other uses of the land, such as agriculture
in places with scarce availability of terrain. Also, it modifies the landscape, with
possible consequences over the local flora and fauna. It may as well increase the
pressure over water consumption, normally used for cleaning the PV panels, in
arid zones. Solutions for these problems are currently being investigated, such
as agricultural PV (Dinesh & Pearce, 2016) or dry cleaning (Al Shehri et al.,
2017).

All things considered, solar PV, though not totally sustainable yet, gives
hope to reach a green future. The problems associated with the deployment of
PV plants have to be considered as interesting technical challenges, but withouth
leaving aside the environmental point of view in any of the stages of their life
cycle.

1.2 Problem statement and motivation of this thesis

As presented in the Introduction, PV plants are forecasted to play a crucial
role in the production of electricity in the future. Given the implications such
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a statement entail, their optimization would lead to substantial benefits, both
economically and environmentally. The field of study and optimization of the
aspects surrounding their development is wide and multidisciplinar and can be
addressed from different perspectives: optimization of the PV plant itself, its
relationship with the environment and the challenges to integrate the production
in the grid. Each perspective covers, in turn, a large number of areas that can be
optimized. Hence, this thesis only addresses a reduced set of topics that concern
the expansion of PV plants, each one selected to represent each of the main stages
of the life cycle of a PV plant: design and operation.

The area of interest selected for the design stage is the estimation of solar
irradiation. Photovoltaic plants are blooming nowadays in many locations under
all kind of climates. Given the big investment needed to construct a utility size PV
plant, along with the environmental issues mentioned above, the location must be
chosen with care. Solar irradiation must be estimated prior to the construction of
a PV plant to foresee the future revenues that such an investment will produce.
In order to maximize revenues and reduce the CO2 payback period, solar resource
at the site must be well studied.

When well callibrated and correctly operated (avoiding shades, dust,
etc.), the most accurate measurements of solar irradiation are obtained with
pyranometers. They record the shortwave solar irradiation comprehended between
0.29 and 2.8 mm, which covers most of the solar spectrum (Urraca et al., 2017). Ir-
radiation recorded comes from its three components: direct, diffuse and reflected.
Photovoltaic cells are able to convert these three components into electricity, in
contrast to concentrating solar technologies, which can only transform the direct
component.

Pyranometers are sensitive pieces of equipment, tend to be expensive
and require expert maintenance and callibration. For this reason, only meteor-
ologic agencies and other entities devoted to the study of climate have a net of
pyranometers. Their density, though, is relatively low and normally it does not
allow to simply use their measurements for planning new utility scale plants. For
this reason, some methodologies have been developed to estimate solar irradiation
making use of, but not only, irradiation from a close or distant pyranometer. Five
main approaches exist nowadays to estimate solar irradiation:

• Parametric models: due to the reduced density of on-ground irradiance
measurements, Global horizontal irradiance (GHI) has been derived from
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more commonly monitored variables, such as meteorological, solar geometry
related or geographical. Analytical expressions are formulated, which cor-
relate the set of inputs selected with solar irradiation.

• Statistical models: they were introduced to overcome some limitations of
parametric models. They are based on advance statistical or machine learn-
ing techniques which are able to model the non-linear behavior of solar
irradiation.

• Interpolation of ground data: geostatistical techniques, such inverse dis-
tance weighting or kriging in its diverse applications, may be used to derive
irradiation values from a set of ground measurements. Best results are ob-
tained when the net of pyranometers is dense and the terrain over which
the interpolation is performed is not too complex.

• Satellite derived products: solar irradiance can also be estimated from satel-
lite images and clear sky models. Different algorithms have been proposed
to obtain cloud content and clearness of atmosphere from upwelling bright-
ness recorded in on-board satellite sensors. This technique does not count
directly on ground measurements to estimate the irradiation. Estimates of
solar irradiation are obtained applying the law of conservation of energy.

• Reanalysis: this model takes advantage of the parameterization of the ath-
mosphere used by NWP models. Instead of applying the model to predict
future situations, past meteorological records are fed to the models to de-
rived from them solar irradiation.

The evaluation of the potential of solar energy technologies not only requires
estimation at specific sites, but preferably the development of solar irradiation
maps as well. Most of these maps are based on satellite-derived estimates due to
the wide spatial and temporal coverage of satellites. However, in many cases, their
spatial resolution is in the range of kilometers (due to satellite image resolution),
which is inadvisable in those regions under micro-climatic conditions or with
complex terrain (Antonanzas-Torres et al., 2014). Furthermore, these models
require accurate estimations of aerosols, water vapor and other gases content
which are not available in high resolution for extensive areas of the planet (only
available in the range of 0.5–1º). Subsequently, these solar maps need to be
correctly validated with on-ground ancillary measurements with pyranometers.
Different approaches have been proposed to develop solar irradiation maps using
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satellite-derived irradiation estimates and digital elevation models (Bosch et al.,
2010). Geostatistical techniques have also proven useful in irradiation mapping
when many pyranometers are available.

Considering all of the above, we found that we could contribute in the
field by developing a methodology to derive point estimates and maps of daily/annual
solar irradiation obtained from a reduced set of pyranometers but counting with
a large set of other more commonly measured meteorological variables. This
method promises high applicability in regions with a limited set of pyranometers
but with a dense network of basic meteorological stations, which is indeed the
situation in many countries. Also, it can be useful to estimate solar irradiation
at a place previous to the appearance of satellite-derived methods.

A successful solar resource estimation, among many other factors, enables
the design of a PV plant. Moving further to another critical stage of the life cycle
of a PV plant, we put the focus on the operational stage, which, as in any other
business, poses some challenges to maximize revenue:

• Increase the value of the product.

• Optimize production.

Under these two broad categories, several strategies appear for the specific case
of solar PV. Regarding the former, the product of a PV plant is electricity and its
value is fixed hourly in the electricity market. To participate in that market, PV
producers must have a forecast of their generation. Deviations between forecas-
ted and actual energy injected into the grid are penalized. For this reason, final
revenues depend on the accuracy of production forecasts. PV generation fluctu-
ates along with the solar resource. Variability of the solar resource is explained
by rotational and traslational movements of the Earth around the sun, which are
precisely described by physical equations, and by the presence of clouds, which
adds errors and uncertainty in the forecasts.

Electricity markets vary in size. They can include electricity transactions
for an entire country, several countries or just a part of them. Each market
has its own regulations, time schedules and average price, so economic analysis
must be performed individually. Electricity markets are regulated by the market
operator. They consist, in turn, of different sub-markets. For the specific case
of the Iberian Peninsula, they are formed by the day-ahead market (DAM) and
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different intra-day markets (IDM). The DAM is where most energy is traded
and establishes the unit commitment. Depending on gate-closure times, energy
producers require predictions of their generation in the range of 14-38 hours ahead
to participate in the DAM. The DAM fixes electricity price, obtained as the
intersection point between the aggregated curves of production and consumption
of electricity ordered by price. After the closure of the DAM, new opportunities
are given to sellers and buyers to update their production/consumption schedules.
As the time horizon decreases, the accuracy of the forecasting models increases.
IDM allow the possibility to RES-E producers of correcting their initial generation
programs, avoiding or reducing possible penalties for not meeting them.

Although there might be other time horizons of interest to PV plant
managers, the main ones are fixed by the market operator in their region. Day-
ahead (DA) forecasts and intra-day (ID) forecasts are used for the DAM and
the IDM, respectively. Both type of forecasts can be based in the same physical
model of the PV plant or in the same statistical technique to derive power output
from a set of inputs. The main difference between them is the quality of the
input data, specially solar irradiance and temperature. In contrast to NWP from
meteorological services used for DA forecasts, ID forecasts, due to their shorter
time horizon, can count also on irradiance predictions from satellite images, which
normally show a higher accuracy. For this reason, accuracy of ID solar power
forecasts can be enhanced. A great variety of techniques have been applied in
the field, most of them covered in Antonanzas et al. (2016), in which over 150
studies were analyzed. After doing this literature review, it was observed that
there is not a clear understanding about the economic implications of forecasting.
Very few studies addressed the topic of the value of forecasting. The issue can
be approached from the system operator point of view or from a market agent
perspective. The former looks at the consequences over the entire electricity
system and the latter at the implications of an individual trader, both of them
being system specific. Focusing on the market agent point of view, some questions
needed an answer:

• Which is the value of forecasting in the Iberian electricity market?

• Which is the sensitivity of the market to solar power forecasts improve-
ments?

• Which is the added value of improved meteorological predictions?
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Hence, we decided to contribute to this topic, of clear concern to the operation
of PV plants, studying the Iberian electricity market and trying to find answer
to these questions.

The other challange detailed above found in the operation stage of a
PV plant was production increase. Production can be increased mainly by two
strategies: improving materials and manufacturing processes or improving the in-
cidence of the sun’s rays over the solar cells. The first strategy can be addressed
by searching new photovoltaic materials, such as the promising perovskites, or by
optimizing the construction of the modules, such as reducing the packing factor.
Regarding the latter strategy, the smaller the difference between the beam solar
radiation and the perpendicular to the surface of the module, the smaller the
reflectance losses will be. Thus, a trade-off between simplicity in installation and
operation and performance can be established. A variety of systems exist, which
can be classified under three broad categories: fixed-tilt, SATS and double axis
tracking systems (DATS). In the first one, modules are set in a fixed angle (latit-
ude dependent) throughout the year. If there are no construction impediments,
like being mounted on a roof, they will preferably be oriented to the South in
the Northern hemisphere (inverse in the Southern hemisphere). Some advantages
of this configuration are lower investment and operation and maintenance costs
due to their static nature, but present bigger reflectance losses. SATS can rotate
around one axis, aligned N-S, and follow the sun from sunrise to sunset. Yearly
production can be increased around 10-20% w.r.t. fixed tilt systems. On the
other hand, operation and maintenance costs increased, as well as the complex-
ity of the system. Finally, DATS have two degrees of freedom and ensure and
optimal alignment with beam radiation. Electric yield may be increased up to
25-45% compared to fixed structures. As in the previous case, complexity and
operation costs increase too with this configuration.

Because the rotational and traslational movements of the Earth around
the sun are well described by physical equations, the alignment between SATS
or DATS and the sun rays can be optimum given the limitations of each sys-
tem. However, during sunrise and sunset, solar elevation is low. Keeping a
perpendicular incidence between beam radiation and the modules would imply
the generation of large shadows that would partially cover the PV panels located
in subsequent rows (considering a PV plant with several arrays). Shadows lower
yield and produce hot-spots, whose effect in production is larger than working
with a non-optimal incidence angle. Hence, a modified tracking strategy was
developed, named backtracking, which avoids inter-array shadowing. Under this
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algorithm, PV modules start from a horizontal position. During sunrise, they
start to gain some tilt, but always under the premise that the projected shadows
do not reach the other rows of panels. Inter array distance must be optimized
considering this and other factors. As the sun gains elevation, the tilt becomes
larger, until a point is reached when no longer shadows reach the other mod-
ules. Then, a regular SATS or DATS is resumed. This process is symmetric with
respect to solar noon in the afternoon.

But this is not the only "planned misalignment" that may lead to yield
increase. Previous strategies are based on the tracking of beam solar radiation.
However, during cloudy conditions, beam radiation is scattered by clouds and
aerosols and is transformed into diffuse. Under thick clouds or overcast skies
irradiance comes with the same intensity from all the sky dome, showing an
isotropic behavior. It is then when tracking the sun position is not beneficial, as
no other angle but the horizontal is able to collect more of the isotropic diffuse
irradiance. Traditionally, PV plants were mostly installed in places with high solar
irradiation, where the frequency of overcast skies is reduced. Nevertheless, solar
PV has expanded beyond "sunny climates" and now it is installed also in areas
with high presence of clouds. For instance, most of new PV installations in Europe
were located in high-latitude countries in 2016; United Kingdom, Germany and
France were the leading markets (REN21, 2017).

Under this new scenario, an assessment of the potential yield increase
would determine the incentive to develop new tracking strategies to enhance
performance also during cloudy days.

1.3 Scope of research and objectives

The main objective of this thesis is to develop a suite of models to improve the
performance of photovoltaic plants in the main stages of their life cycles, from
planning to operation. Specific objectives are listed below:

1. Develop a spatial solar estimation model to help plan the location of a
PV plant. Insolation maps with spatial interpolation techniques will be
generated using only a reduced set of inputs.

2. Calculate the value of forecasting in the Iberian electricity market from a
market agent point of view. Determine the added value of the variables used
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in the model and establish the margin for improving forecasting. Objectives
were determined by doing a detailed review of the state of solar power
forecasting and observing the gaps in research.

3. Determine the potential generation gains of an improved tracking strategy
optimized for cloudy situations and develop a real-time operational al-
gorithm that takes advantage of the potential for improvement.

1.4 Contributions presented in the thesis

The main findings of this thesis are presented in four scientific papers, published
in Q1 journals listed in the Journal Citation Reports®:

Publication I Antonanzas et al. (2015).

Antonanzas, J., Urraca, R., Martínez-de-Pisón, F.J. & Antonanzas-Torres, F.,
2015. Solar irradiation mapping with exogenous data from support
vector machines estimations. Energy Conversion and Management
100, 380-390.

The estimation of solar irradiation is a matter of interest in many areas,
such as climatology, agriculture or the energy sector, and more specifically, in
solar PV. Solar irradiation estimations are used during the planning stage of a
new PV plant. The more accurate they are, the less uncertainty will be in the
viability study prior the construction of the plant. The most accurate way of
measuring solar irradiation is with records from pyranometers. However, these
instruments are costly and require expert maintenance. As a consequence, the
density of pyranometers over the terrain is low. Unless the future PV plant is
planned to be constructed on a location close to a pyranometer, some techniques
have to be applied to obtain irradiation records in the location of the PV plant.
Given that some other meteorological variables, such as temperature or relative
humidity, are recorded in more places compared to irradiation, it is possible to
build models that use these commonly measured variables in order to obtain
irradiation.

Hence, in this study we have used a set of pyranometers to train Support
Vector Regression (SVR) models with other meteorological variables from a dense
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network of stations to estimate solar irradiation. Parameter optimization was
performed with genetic algorithms. Besides, spatial interpolation techniques, such
as inverse distance weighting (IDW) or kriging, were used to obtain irradiation
values over Spain and yearly cummulated irradiation maps were plotted. With
the proposed method, it is possible to obtain irradiation estimates in every point
even if the closest pyranometer is not near.

The author of this thesis contributed in all stages of this study. F.
Antonanzas-Torres provided the idea and guided during the development of the
model and discussion of results. R. Urraca helped with the visual respresentation
of results and F.J. Martínez-de-Pisón assisted on the application of the machine
learning techniques.

Publication II Antonanzas et al. (2016).

Antonanzas, J., Osorio, N., Escobar, R., Urraca, R., Martínez-de-Pisón, F.J. &
Antonanzas-Torres, F., 2016. Review of photovoltaic power forecast-
ing. Solar Energy 136, 78-111

With the purpose of better understanding how PV plants operate, a com-
prehensive review of production and forecasting models was performed. Over
150 papers were studied, classified, analyzed, and summarized to make the most
up-to-date (in the moment the paper was published) review of solar power fore-
casting. Papers were analyzed with respect to the horizon of forecasting, which
fell into three categories: nowcasting or intra-hour, intra-day and day-ahead or
longer. The benefits of probabilistic forecasting were highlighted and methods
for regional forecasting were explained.

Among the various issues observed after analyzing the papers, the most
surprising one was that the value of forecasting was poorly studied and under-
stood. Very few studies addressed this topic and because of the characteristics of
electricity markets, they were market-specific. This fact motivated the research
covered in Antonanzas et al. (2017).

Another relevant issue was the low comparability of the studies due to the
different metrics used to analyzed results and because of the climatic conditions
of each case of study.
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The author of this thesis contributed in all stages of this study. N. Osorio
also contributed with the classification and analysis of the papers and visual
representation of the results. R. Escobar, R. Urraca, F.J. Martínez-de-Pisón and
F. Antonanzas-Torres helped in the different stages of the review, from guidance
on how to structure the information to the discussion of the results.

Publication III Antonanzas et al. (2017).

Antonanzas, J., Pozo-Vázquez, D., Fernández-Jiménez, L.A. &Martínez-de-Pisón,
F.J., 2017. The value of day ahead forecasting for photovoltaics in
the Spanish electricity market. Solar Energy 158, 140-146.

This paper analyzes the value of forecasting in the Spanish electricity
market. The electricity market is the place where producers and consumers meet
and through their bids of offer and demand, the price of the electricity is set.
The market runs at different schedules. The DAM takes place the day before
the electricity is actually produced and it is used for unit commitment. Then,
a series of IDM are organized, with closer time horizons, in which traders can
update their bids. Market agents must use forecasts of production to participate
in the above-mentioned markets. If actual production deviates from schedule,
they might be subjected to penalties.

Due to the inherent variability of the solar resource, solar forecasting
becomes a difficult but necessary task. A wide variety of solar forecasting tech-
niques exits, as well as sources of inputs to add to the prediction models. Most
of the papers reviewed in Antonanzas et al. (2016) did not take into account the
market characteristics of each place nor analyzed the sensitivity of the market to
forecasting improvements. In this paper, we have developed several forecasting
models, with different techniques and sources of inputs, and have applied them
to the Spanish electricity market from a market agent point of view. Deviation
penalties were charged in those hours when the bids in the market did not meet
actual energy injected into the grid. Through the analysis of the forecasting er-
rors and deviation penalties, the value of DA forecasting in the Spanish electricity
market was stated. The value of information was also analyzed, pointing out how
much money would it be advisable to invest in better NWP.

The author of this thesis contributed in all stages of this study. D.
Pozo-Vázquez helped with the modeling of the study, L.A. Fernández-Jiménez
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provided part of the data and F.J. Martínez-de-Pisón helped with development
of the machine learning models.

Publication IV Antonanzas et al. (2018).

Antonanzas, J., Urraca, R., Martínez-de-Pisón, F.J. & Antonanzas-Torres, F.,
2018. Optimal solar tracking strategy to increase irradiance in the
plane of array under cloudy conditions: a study across Europe. Solar
Energy 163, 122-130.

This paper analyzes the potential increase in solar irradiance derived
from a tracking strategy optimized for cloudy conditions. The expansion of PV
plants beyond highly irradiated places makes it necessary to adjust some work-
ing parameters in order to maximize production of electricity also during covered
skies. The first part of the paper deals with the determination of the potential in-
crease of irradiance in the plane of array (POA) under the proposed new tracking
strategy. The theory in which the study is based is that under cloudy or overcast
skies, most of the irradiance comes from the diffuse component, as a result of the
scattering processes experienced by beam irradiance through clouds and aerosols.
That diffuse irradiance shows a isotropic behavior, coming from the entire sky
dome with similar intensity. For this reason, under these circumstances, a hori-
zontal surface will receive more irradiance than a tilted one. However, current
tracking algorithms do not take into account this effect and continue tracking
the Sun’s position even under covered skies, missing part of the incoming irradi-
ance.

To cover a wide variety of climates, irradiance minute data from European
stations from the Baseline Surface Radiation Network (BSRN) were retrieved for
the year 2015. GHI was transformed to the different components in the POA.
The diffuse component was obtained with the Muneer model (Muneer, 1990). To
obtain yearly cummulated values, it was considered that the PV panel followed a
regular tracking strategy for SATS when irradiance in the POA was higher that
in the horizontal plane but switched to a horizontal position otherwise.

Following these indications, yearly cummulated values were obtained and
it was observed that the largest potential for improvement was located in north-
ern climates. For example, a 3.01% increase in irradiation could be obtained in
the northernmost station with the proposed strategy. The positive results mo-
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tivated the development of an operational tracking strategy that can work real
time to adjust the position of PV panels depending on the prevailing weather
conditions. Two strategies were investigated to address the problem. In the first
one, the possibility of predicting one day in advance the position of the PV panels
was analyzed. NWP were used but due to the inherent errors of these predic-
tions and the relatively small difference in irradiance which makes zenith facing
more benefitial than tracking the sun during cloudy conditions for PV panels,
results obtained were not satisfactory. The second strategy was designed to work
real time. For that, a model that considered the persistence of irradiance in the
previous five minutes was used to decide if the panel should be moved to a hori-
zontal position in the next minute. Yearly irradiation gains of up to 2.51% were
registered in the northernmost station and values around 1.15-1.35% took place
in central parts of Europe.

The author of this thesis contributed in all stages of this study. F.
Antonanzas-Torres provided the topic and help during the development of the
method. R. Urraca and F.J. Martinez-de-Pison contributed facilitating part of
the data and helping with the visual representation of the results.

1.4.1 Thematic unit

The thematic unit that surrounds the publications presented above is the planning
and operation of photovoltaic plants. Each of the papers described deals with a
problem found in the different stages of the life of a PV plant, from estimating
solar irradiance over large areas to help decide on the location of a PV plant and
calculate payback period to increasing the market value of the electricity produced
through the reduction of forecasting errors or optimizing solar irradiance in the
POA with a tracking algorithm that maximizes irradiance collection under all
types of atmospheric conditions. The goal of developing the suite of models
presented is to increase the presence of solar energy into the grid.

1.5 Thesis outline

This dissertation is organised in eight chapters. The present chapter includes
an introduction to renewable energies and, more specifically, to PV energy. The
motivation of the thesis, its objectives and a brief description of each paper can
also be found here. Chapters 2 through 5 contain the scientific publications
contributing to this thesis. Chapter 6 presents the most remarkable results and
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introduces a discussion of the results of each publication. Finally, Chapter 7
summarizes the main conclusions and proposes future lines to research.
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Chapter 6

Results and Discussion

This chapter summaries and discusses the most relevant results included in the
publications associated with this thesis. Each section details the results within
each publication and a general discussion about the implications and limitations
of the studies.

6.1 Results in Publication I

All results in this section are collated in the paper “Solar irradiation mapping
with exogenous data from support vector machines estimations” (Antonanzas
et al., 2015).

The objective of this study was to develop a geostatistical model for the
estimation of irradiation over large areas where the density of pyranometers is low.
The method integrates other more commonly measured meteorological variables,
such as temperature or humidity. Results are useful for the planning stage of PV
plants, given that locations witht the highest potential can be selected and the
uncertainty of irradiation records is reduced.

Figure 6.1 shows the topographical map of Spain with the stations selec-
ted for the study. Red triangles indicate the training stations, where records of
irradiation and other meteorological variables were available. Blue dots indicate
the stations where irradiation was estimated and the stations selected for testing
are represented by numbers 1–24. Using the estimates of irradiation, geostatis-
tical interpolation techniques (inverse distance weighting, ordinary and universal
kriging) were applied to obtain irradiation maps. Table 6.1 shows the average

83



84 Chapter 6. Results and Discussion

Longitude

L
a

tit
u

d
e

36°N

38°N

40°N

42°N

8°W 6°W 4°W 2°W 0° 2°E 4°E

●

●

●

●

●

●

● ●

●

●

●

●

●

●● ●●
●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●
●
●●

●
●
● ●
●

●

● ● ● ●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●●
●

●●

●

●
●

●

●

●

●

●●

●
●

●

● ●

●

●

●

●

●

●

●

● ●

●
●

●

●●
●

●

●
●

●

●
●

●

●●

●

●
●

●
●

●

●

●

●

●

●
●

●

●●

●

●
● ●●

●●●●● ●● ●●●
●● ●

●
● ●●●●

●
●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●
●

●●

●

●
●

●

●
●

●

●

●
●

●

● ● ●
●

●

●
●

●
●●

●

●●●

●●

●

●
● ●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●●

●
●

●
●

●●●
● ● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

1

2

3
4

5

6

7

8

9

10
11

12
13

14

15

16

17

18

19

20

21

22

23

24

0

500

1000

1500

2000

2500

3000

Figure 6.1: Topographical map of Spain indicating the stations selected for the study.

IDW IDWtr OK OKtr UK − lat UK − lattr UK − elev UK − elevtr
MAE 1.85 1.86 1.74 1.97 1.75 1.97 1.75 1.98

RMSE 2.63 2.70 2.47 2.83 2.47 2.82 2.49 2.83

1

Table 6.1: Comparison of errors of the geostatistical techniques used.

mean absolute error (MAE) and root mean square error (RMSE) obtained with
the spatial interpolation techniques considered in the 24 testing stations. IDW,
OK and UK denote inverse distance weighting, ordinary kriging and universal
kriging, respectively. Using exclusively data from the 35 training stations (sub-
script tr) with on-ground measurements of irradiation to interpolate, IDW was
the technique that led to the least amount of errors when no exogenous data was
used (IDWtr ), with MAE and RMSE values of 1.86 and 2.70 MJ/m2 day. It
shows that IDW is a suitable technique in areas where a low number and density
of pyranometers is available. The usage of exogenous data from SVR estimations
reduced the error in all techniques tested thanks to the increase in the density
of interpolation locations (from 35 to 400). This reduction was not as significant
with IDW as compared to OK or UK. Consequently, the best overall estimations
were obtained with OK with SVR estimations as exogenous data, with a MAE
and RMSE of 1.74 and 2.47 MJ/m2 day respectively. This error implied a sig-
nificant reduction of 13% in MAE and 15% in RMSE as compared to not using
exogenous data.
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R2 = 0.70
MBE = 0.02
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R2 = 0.77
MBE = −0.10

March

●

●

●
●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●●

●●

●

●●
●●
●

●
●
●●●

●
●

●
●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●●●●●

●

●

●
●

●

●●●

●
●
●●●

●●
●

●

●

●

●●
● ●

●

●

●

●●
●

●●
●

●
●●●●

●
●

●

●

●

●

●●
●
●●

●

●●
●

●

●●
●

● ●●

● ● ●●●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●
●

●●●●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

● ●
●

●●●

●
●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
● ●

●
●●●●

●
●

●
●

●

●
●
● ●

●

●
●

●

●

●●

●
●

●

●●●●
●

●

●
●

●

●

●

●
●

●

●
●

●●

●

●
●

●
●

●
●●●●

●
●

●

●●
●

●

●

●

●

● ●●
●

●
●●

●

● ●
●
●●

●

●

●

●

●
●

●
●
●

●

●
●

●

●

●

●
●●

●●
●

●●●

●

●●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●
●

●
●

● ●

●

●

●
●

●

●

●●

●

●

●

● ●

● ●
●

●

●
●

●

●
●

●●
●

●

●

●

●

●

●●
● ●

●

●

●

●

●

●

●

●

●

●
● ●

●

●●
●

●

●

●
●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●
●

●

●
● ●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●
●

●

●
●●

●
●●
●

●●●●●●●

●

●

●

●
●
●●

●

●●

●

●
●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●
● ● ●

●

●●

●

●

●

●

●●

●

R2 = 0.67
MBE = 0.16
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R2 = 0.66
MBE = 0.14
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R2 = 0.71
MBE = 0.63
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R2 = 0.63
MBE = 0.77
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R2 = 0.61
MBE = 0.64
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R2 = 0.66
MBE = 0.39

September
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R2 = 0.82
MBE = 0.35
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Figure 6.2: Observed irradiation vs. estimated irradiation discretized by months.



86 Chapter 6. Results and Discussion

 

 

36°N

38°N

40°N

42°N

44°N

5°W 0°

4500

5000

5500

6000

6500

7000

Figure 6.3: Map of cumulated irradiation for the year 2011.

Figure 6.2 includes the scatter plots of observed vs. estimated irradiation
values in MJ/m2 day discretized by months in the testing stations mentioned
above for the OK technique. The color scale represents the density of points
(blue to red, lower to higher density, respectively). The coefficient of determin-
ation R2 ranged between 0.54 for November and 0.82 for October. During the
summer months (June–August) the greatest mean bias errors (MBEs) were re-
corded because the model overestimated a large number of points as a result of
the difficulties encountered on cloudy summer days (high estimated values, low
observed values). Nevertheless, the winter months show low MBEs and decreased
variability in the results.

Finally, the solar irradiation map for Spain in 2011, expressed in in
MJ/m2, is presented in Figure 6.3, plotted with the OK interpolation technique.
The highest values of solar irradiation were primarily registered in the south of
Spain, whereas the Northwestern region demonstrated the lowest. The mean er-
ror between estimated and measured cumulated irradiation for 2011 was 2.69%
for all testing sites, 0.036% and 7.73% being the most extreme individual values.
The annual error was within the 5% tolerance of pyranometers in 21 out of 24
testing sites.
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6.1.1 Discussion of Publication I

The methodology presented here has proven useful for the estimation of solar
irradiation integrating measurements from different meteorological stations dis-
tributed across a large area. Several geostatistical techniques have been tested
for the interpolation of data. Depending on the availability of recorded variables,
the preferred technique varied. When the density of pyranometers is low, IDW
showed best results. If a higher density of stations is available and secondary
variables (temperature, rainfall, humidity,...) is provided, the estimation of irra-
diation can be improved and interpolation is more suitable with OK. For UK using
latitude as explanatory variable (UK-lat) or elevation (UK-elev), the results ob-
tained were similar to others found in the bibliography, such as in Gutierrez-Corea
et al. (2014). However, the greater simplicity of OK (which does not require the
explanatory variable) and its performance, makes it ideal for solar radiation map-
ping. Results showed here (MAE of 1.74 MJ/m2 day with OK) overperform those
from Moreno et al. (2011), who obtained a MAE of 2.33 MJ/m2 day including
only temperature and rainfall in their model and using OK for interpolation.

Nevertheless, our model underperforms results from satellite-derived es-
timation methods. Since their development in the late 80s a large evolution has
taken place. The resolution from Meteosat satellite images has reduced from 5 to
3 km, their temporal resolution has decreased from 30 to 15 min and the num-
ber of channels has increased from 3 to 12. The great development of satellite
imaginery systems has reduced the errors of irradiation estimates to much lower
levels than those obtained with statistical techniques. For instance, Urraca et al.
(2017) showed a MAE of 1,10 MJ/m2 day in their study in central Spain using
the SARAH satellite dataset, a 36.78% lower than the value obtained with SVR
in the study presented herein. Hence, the applicability of this technique nowa-
days is mainly restricted to areas of poor coverage of satellites (polar regions),
to estimate solar irradiation prior the development of satellite-derived methods
(before the late 80s) or during their initial stages when accuracy was not as good
and to obtain estimates of irradiation whenever there are gaps in the time series
of satellite images.

6.2 Results in Publication II

All results in this section are collated in the paper “Review of photovoltaic power
forecasting” (Antonanzas et al., 2016).
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Figure 6.4: Distribution of studies with respect to the technique used.

The purpose of this study was to review the state of art techniques for
solar power forecasting. Over 150 papers were analyzed and the general trends
of the topic were extracted. The studies were classified according to the time
horizon of their forecasts, to the techniques used, to the spatial coverage and to
the information provided in the predictions.

Figure 6.4 shows the distribution of studies analyzed regarding the tech-
nique used. As observed, the most common approach among the papers examined
is the use of statistical techniques, especially artificial neural networks, accounting
for the 24% of the studies. SVR are also among the most utilized. Hybrid tech-
niques, either combining a physical model of the plant and a statistical technique
or two or more statistical techniques are also gaining their way in the preferences
of the researchers.

Figure 6.5 shows a classification of all the studies analyzed according
to their approach and spatial scope. In the left part of the graph the papers
are classified with respect to their approach, understood as the way results are
presented. While the majority of them are deterministic, there is an increasing
number of recent publications that discuss the benefits of providing a probabil-
istic distribution of the results. Probabilistic forecasts add relevant information
about the expected values. They are especially useful for activities with implicit
uncertainty and where risk must be managed, like balancing generation and de-
mand in the electricity market. Some of the benefits of probabilistic forecasts are
the better allocation of power reserves to overcome solar power uncertainty and
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Figure 6.5: Number of publications according to their approach and spatial scope.

greater economical revenue in the DAM compared to deterministic predictions
(Alessandrini et al., 2015). Probabilistic forecasts provide a broader knowledge
of the predictions, inasmuch as a range of plausible values is determined as well
as the probability associated to each of them.

On the right side of the graph studies are grouped by the spatial scope.
Regional forecasts are normally used by the transmission system operator and
benefit from the smoothing effect. The cancellation of errors due to weather
variability in the zone of study decrease the relative error in the predictions.

With respect to the time horizon, as depicted in Figure 6.6, the most
common temporal horizon is DA. This is motivated by the operation of electricity
markets, where most of the electricity is traded under that temporal horizon.
However, as markets begin to adapt to increasing levels of renewable energy,
allowed time horizons will tend to decrease. For instance, the electricity market
operator in California (CAISO), allows trading in sub-hourly markets to optimize
penetration of renewables. Hence, intra-day and intra-hour forecasting will gain
importance in the future as they have direct application into more electricity
markets.

Apart from the classifications shown above, the review study also dis-
cussed other important issues, such as the value of forecasting and considerations
for the comparability of studies.
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Regarding the former, it was interesting to observe that there is not a
clear understanding about the value of forecasting. In spite of the important
consequences forecast accuracy may pose, only a few studies have addressed the
influence of the said accuracy on grid operation. Also, not all electricity grids
react in the same manner to improved forecasts. Behind the scarcity of studies
the following reasons can be found: complex power system modeling, difficulty of
allocating costs or benefits, relatively low solar penetration into energy portfolio,
poor understanding on how system operators can use the information provided
and variety of trading systems (Brancucci Martinez-Anido et al., 2016; Zhang
et al., 2015b). Utility companies, as well as distribution system operators, inde-
pendent system operators, etc. can profit from solar forecasts. Results show a
great potential for reduction of operating reserves in the system if accurate solar
power forecasts are introduced. Consequences of improved forecasts are system
specific since they depend on the electricity mix of each market. From the mar-
ket agent point of view, some markets apply penalties to agents for not meeting
scheduled energy in their bids. Thus, forecasting has a price. However, there
are still some electricity markets in which incorrect bids are not penalized (such
as the Chilean electricity market) and hence, the value of forecasting in those
situations would be zero (from a market agent point of view). The importance
of understanding the value of forecasting and the scarce knowledge applied to
the Spanish electricity system were the facts that motivated the research done in
Antonanzas et al. (2017).
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One section of the results was dedicated to the comparability of the
studies. It was shocking to observe that very few studies could be compared
among each other, making the benchmarking of forecasting techniques a difficult
task. Several reasons were observed:

• Metrics: every metric describes results in a different way and thus it is
advisable that results are shown using a set of different metrics that can
capture the performance under different optics. Yet, there is not a common
agreement among which of the different statistical metrics suits best for
forecasting purposes. Some efforts have been made to propose a suite of
metrics that include all the necessary information (Zhang et al., 2015a).

• Climatic variability: high climatic variability normally leads to higher fore-
cast errors than areas with a more stable climate. It is recommended to
test a same technique in different locations to know its robustness. Also,
the creation of a general database covering different climatic situations and
production of several PV plants would be desirable to allow researchers
to test their models under the same circumstances and, thus, enable fair
benchmarks between techniques.

• Day/night values and normalization: To make a fair comparison between
studies it is important to state clearly which time frame has been taken into
consideration and whether only daylight values, both day and night or only
hours in which GHI is larger than threshold have been considered. Grid
operators normally demand forecasts for all hours of the day. However,
most of the studies compiled here only considered daylight hours. Also,
another added difficulty for comparison is normalization of errors. There is
no agreement on which denominator should be used. It can be performed
with respect to the plant peak power, the average power, weighted average
or a range of measured values.

• Sample aggregation: The way samples are aggregated also affects results.
Averaging samples over larger times leads to smaller errors (Kaur et al.,
2016; Russo et al., 2014).

• Testing period: Some authors tested over a long period of time covering all
sky conditions. However, other authors tested their models on either only
sunny days or only cloudy days, which also increases difficulty to perform
comparisons.
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• Specific plant attributes: Distribution of errors along the day is different
for fixed tilt modules than for dual-axis tracker modules. For instance,
the MAE and variability of dual-axis modules is higher, especially during
mid-morning and mid-afternoon hours.

6.2.1 Discussion of Publication II

The field of solar power forecasting is advancing at a fast pace to keep up with
the needs derived from an increasing penetration of PV in the electricity mar-
kets. Many new techniques are applied to the field every year. The most relevant
previous reviews, which were used as the foundations in our study, were Inman
et al. (2013); Diagne et al. (2013); International Energy Agency (IEA) (2013),
but being three years old we considered that the area had already evolve enough
to compile all the new knowledge in a new review. Some new trends had ap-
peared, such as the focus on the economic impact of forecasting, the importance
of probabilistic forecasting and the necessity of agreement for a common suite of
performance metrics. Other more recent reviews are only focused on a specific
aspect of forecasting, such as ensemble forecasting (Ren et al., 2015) or different
forecasting techniques (Wan et al., 2015). Thus, the aim of our study was to
provide the most up to date complete overview of the techniques, horizons and
other issues related to solar power forecasting.

One limitation of the study was the initial filter used to search for the
papers to be included in the review. Two main approaches can be found in the
forecasting of PV plant production: indirect and direct. Indirect forecasts firstly
predict solar irradiation and then, using a PV performance model of the plant,
obtain the power produced. On the other hand, direct forecasts directly calcu-
late the power output of the plant. Also, many other studies only focus on the
prediction of solar irradiation, since it is the most difficult element to model and
have other applications apart from solar power forecasting. Our review was based
only on those articles that provide forecasts of the power produced by PV plants.
The reason to consider this limitation was to establish a boundary in the scope in
the scope of the study. Although at first sight it may seem that many techniques
that could be potentially used for solar power forecasting were left aside, both
forecasts, power and irradiation, are approached via similar techniques. Hence,
the number of potential techniques for solar power forecasting not included in
this review is reduced. Another limitation of the study is that it was limited to
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the study of scientific articles; the analysis of commercial forecasting tools was
out of the scope of the review too.

6.3 Results in Publication III

All results in this section are collated in the paper “The value of day ahead
forecasting for photovoltaics in the Spanish electricity market” (Antonanzas et al.,
2017).

The main goal of the present study was to determine the value of DA
forecasting for photovoltaics in the Spanish electricity market under real condi-
tions (years 2009-2010). For this purpose, several forecasting models were created
to predict power output from a 1.86 MW PV plant, using different techniques
and sets of inputs, and results were benchmarked against the two-day persistence
of production. Another objective of the study was to determine if classical error
metrics correlate with economic revenues in the DAM under the market agent
point of view. To perform this study we had to understand the operation of the
Iberian electricity market and develop solar forecasting models to generate bids
to participate in the market. What follows next is a brief summary of the method
in order to make results more understandable in this section.

Starting with the solar forecasting models, as learnt from the review
study, there exists a large variety of techniques that can be applied to solar
power forecasting. We decided to test two machine learning techniques which
have been widely applied and have shown great performance: SVR and random
forests (RF) (Breiman, 2001). Besides, we also tested different sets of inputs to
determine the added value of each source of information through the correlation
of errors in predictions to revenues in the market. We used five different sets of
inputs:

• Set 1: solar variables and actual meteorological observations. This was used
for the estimation model.

• Set 2: solar variables and two-day persistence of production.

• Set 3: solar variables, two-day persistence of production and two-day per-
sistence of meteorological observations.
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• Set 4: solar variables, two-day persistence of production and NWP vari-
ables.

• Set 5: solar variables, two-day persistence of production, NWP variables
and estimation of direct normal irradiance (DNI).

With regard to the electricity market, the operation of the Iberian electricity
market, which serves for the entire Peninsula (Spain and Portugal), is detailed
inside the paper. Here, I will only mention where the value of forecasting comes
from.

If after closure of each IDM session the expected deviations in the system
are larger than 300 MWh for any hour until the next IDM, the deviation manage-
ment market is convened. Two situations can take place: the system needs more
energy (either because of underprediction of the demand or/and overprediction of
generation) or less energy (either because of overprediction of the demand or/and
underprediction of generation). These situations will be hereafter called “short”
and “long”, respectively. They cause a non-optimal unit commitment and derive
in operational costs. The cost to solve the imbalance is distributed among the
market agents who caused the distorsion. The Iberian electricity market considers
dual imbalance pricing to solve penalties.

Once the production has been forecast using SVR and RF, and bids
generated, deviations between scheduled and actual production are calculated.
The profit generated by each model depends on market conditions at each moment
and they are difficult to forecast. Following the abovementioned concepts, there
might be short or long market situations. In each of these, the bids made by
a market agent can be deviated in favor or against the needs of the system.
Also, the system may be balanced, when no penalties apply. The final profit is
obtained by summing the revenue of each of the possible situations. The value of
forecasting (VoF) is defined as the difference between the benefit obtained with
a certain model and the two-day persistence of production, which was used as a
baseline. It assumes that the forecast of production at each hour is the value of
energy produced at the same hour but two days prior. The VoF represents the
added value of a forecast relative to persistence.

V oF = profitmodel − profitpersistence (6.1)
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Model RMSE
(kWh)

nRMSE
(%)

SS
(%)

MBE
(kWh) Profit Possible

improv.
VoF
(e)

VoF
(e/MWh)

Estimation 229 12.6 61.6 -5.8 73078 2792 4272 2.29
SVR-4 409 22.5 31.4 -23.3 71034 4835 2229 1.19
SVR-5 409 22.6 31.3 -14.9 - - - -
SVR-2 477 26.3 19.9 -46.4 69857 6013 1051 0.56
SVR-3 480 26.5 19.4 -53.3 70214 5655 1409 0.75

RF-4 419 23.1 29.6 -5.0 70235 5634 1430 0.77
RF-5 422 23.3 29.1 -3.0 - - - -
RF-2 509 28.1 14.5 -45.8 69673 6196 868 0.46
RF-3 489 27.0 17.9 -37.7 69951 5918 1146 0.61

Persistence 595 32.9 0.0 6.3 68805 7065 0 0

1

Table 6.2: Value of forecasting.

where model refers to each of the models analyzed.

The maximum revenue that a market agent could obtain reflects a situ-
ation in which all energy produced is sold at the MP. The difference between the
maximum benefit and benefit actually obtained fixes the possible improvement:

Possibleimprovement = profitmax − profitmodel (6.2)

The possible improvement with respect to the estimation model is also
an important variable, because it reflects the “true” margin for improvement in
the accuracy of data used in the input sets.

First, a power production estimation model was developed to understand
the limits of the forecast models relative to meteorological predictions. Thus, a
SVR model was trained, validated and tested using actual meteorological obser-
vations. Table 6.2 shows test results in the row Estimation. As seen, a nRMSE
of 12.6% and skill score of 61.6% were obtained. Table 6.2 also lists error metrics
of the forecast models during the test period (even weeks of 2010). The first four
metrics refer to errors of those models, while the remainder show the economic
evaluation. Models are designated by the name of the statistical model used in
the prediction and a number corresponding to the input sets described above.
The most accurate model with respect to nRMSE is SVR-4, which was trained
with NWP variables. This model had cost = 8 and g =2e−6. Inclusion of DNI
in the models did not bring any improvement, in fact, it slightly degraded the
results. Because DNI was obtained from the DIRINDEX model (Perez et al.,
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2002) from predictions of GHI, GHI and DNI were correlated and errors of both
models were added. This may be the reason for the poor performance using input
set 5. Thus, these two models (SVR-5 and RF-5) will not be discussed further.

Comparing the models created with different techniques but the same
input sets, SVR outperformed RF in all situations. The best skill score was
31.4% for SVR-4 and for RF, it was 29.6%, from model RF- 4. For input sets 2
and 3, there was no clear evidence as to which was superior. Although addition
of the persistence of records of meteorological variables increased the accuracy of
RF-3 relative to RF-2 by >1% (nRMSE), it worsened results in the SVR case,
with a much reduced effect (−0.15%). The best results for RF were from model
RF-4 (ntrees = 800). It also achieved the lowest bias, because RF stand out for
low bias predictions. Nevertheless, with the other sets of inputs, RF produced
a relative high bias, as in the analogous cases of SVR. All models tested were
overpredictive, which ultimately increased economic benefits because the electric
system also had a tendency to overpredict during 2010. Thus, because most
of the time the system had a surplus of energy, over-forecasting models caused
deviations to be in favor of the system.

Focusing again in Table 6.2, the economic consequences of forecasts can
also be appreciated. The maximum profit that the market agent could obtain is
75,870€, that is, by selling all energy produced at the pool price. This could only
occur under two unrealistic situations, either working with perfect production
forecasts or always deviating in favor of the system. This profit corresponds to
the test period, which is half the year. All quantities described refer to that pe-
riod unless stated otherwise. The annual maximum profit (adding the validation
period) would reach 148,921€. The profit obtained by a market agent is conse-
quently smaller than that value. Among the prediction models, SVR-4 gave the
maximum profit, and was also the most accurate model in terms of the metrics
presented above. It increased the value of persistence predictions by 2229€ and
yielded a profit 93.62% of the maximum (annual VoF would be 4788€). Second
was RF-4, with a value of forecasting at 1430€. It may be observed that a differ-
ence in nRMSE of just 0.61% (nRMSE of SVR-4 was 22.5% and that of RF-4 was
23.1%) translates to a profit of 798€. Nevertheless, almost the same difference in
nRMSE (0.67%) (nRMSE of RF-3 was 26.99% and that of SVR-2 was 26.32%)
made a difference in profit of only 94€. Above it was stated that there was no
clear evidence whether addition of the persistence of meteorological variables im-
proved the models, because this did improve the accuracy (slightly) for RF but
worsened it for the SVR model. However, looking at the economic impact, it
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Figure 6.7: Value of forecasting.

is clear that using meteorological observations in the input set increased profit,
278€ for RF and 357€ for SVR. As it is evident, classic model error metrics are
not sufficient to evaluate the economic impact of forecasts.

From Table 6.2, the value of NWP for use in production forecasts can
also be determined. Because profit in the estimation model was obtained using
“perfect” weather forecasts (observations), the difference between that model and
the profit of models using NWP in the input set can be attributed to accuracy
of the NWP system. Thus, value added by the NWP service used with the
SVM models was 1177€, relative to SVR- 2, and the potential improvement was
still 2043€ (annual values were 2801€ and 3877€, respectively). Because these
values are correlated with total production of the PV plant, the relative value of
forecasting with respect to total production was also calculated. Thus, the best
forecasting model, SVR-4, increased profit of the persistence model by 1.19€ for
each MWh produced.

Figure 6.7 plots the evolution of the value of forecasting with respect
to the RMSE during the test period. The points represent the accuracy of each
model described herein. The upper left point, with a value of forecasting at 4272€,
represents the estimation model. A clear trend is evident, i.e., the smaller the
RMSE, the greater the value of forecasting and of economic profit. In general, this
relationship follows a linear fit. For each 1 kWh improvement in RMSE, the value
of forecasting increased 11.66€. The situations described above, wherein small
differences of RMSE translated into large economic variations and vice versa, are
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well reflected in the plot. This plot portrays only the test period, i.e., half of the
year 2010. Validation and test results preserve the same trends and have similar
results. Thus, if validation results are included, the annual fit is obtained. Thus,
it is concluded that for each 1 kW h improvement in RMSE, the annual value of
forecasting increased 22.32€, which is, as expected, nearly double the slope of the
test period. The gap between the estimation model and best prediction models
(RMSE near 400 kWh) could be filled if better NWP were used. As observed,
the accuracy of NWP has a great influence on the value of forecasting.

6.3.1 Discussion Publication III

In the paper Antonanzas et al. (2017) we analyzed the sensitivity of the Spanish
market to solar power forecast errors and derived the value of forecasting. One
of the main limitations of the study was that only the DAM was considered. As
mentioned above, in the Iberian electricity market it is possible to update bids
during the IDM to reduce imbalances. Not only can more recently issued NWP
be used (which partially improves their accuracy), but so can other sources of
short-term solar radiation forecasting. In particular, satellite-based solar radia-
tion forecasts are more accurate than NWP based ones in the short-term (4–6 h
ahead), depending on prevailing weather conditions (Perez et al., 2010). Thus,
penalties can be reduced and revenue will increase. For this reason, the value of
forecasting presented in this study is the “lower limit” of revenue that could be
obtained. Trading in the IDM would enhance the value of forecasting. Optimizing
the participation in the IDM is not exempt of difficulties. First, IDM prices have
to be forecasted, adding a level of uncertainty to the results. Also, as explained
in the paper, the calculation of imbalance penalties depends on the situation of
the market (long/short), the position of the deviations w.r.t. schedule (in favor
or against the system) and the cost of penalties for each hour. All these three
variables have to be forecasted and taken into account to optimize the bid in the
IDM.

Also, we assumed that the market agent operated only with the subject
PV plant. This is not common practice, because market agents have a large
portfolio of plants, allowing them to reduce deviations via the smoothing ef-
fect. Under the current Spanish regulation, production errors can be balanced
with production from plants of the same technology and portfolio and under
the same remunerative scheme (Chaves-Ávila & Fernandes, 2015). Thus, market
agents face smaller percentage deviations when trading in the electricity market.
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Furthermore, the profits presented herein reflect solely the interaction between
production, deviations and the imbalance penalty system within the Iberian elec-
tricity system. No other factors were considered, such as feed-in tariffs or bilateral
contracts. Also, as expected, the value of forecasting depends on the size of a PV
plant and market conditions. Results presented herein are specific to 2009 and
2010; the value of forecasting can increase or decrease depending on conditions
in each year.
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6.4 Results in Publication IV

All results in this section are collated in the paper “Optimal solar tracking
strategy to increase irradiance in the plane of array under cloudy conditions:
a study across Europe” (Antonanzas et al., 2018).

The objectives of this study were two: calculate the potential increase of
irradiance in the POA for a SATS with a cloud-optimized strategy and develop
an operational algorithm which takes into account those situations.

Data from some European BSRN stations was collected, covering dif-
ferent climates, from mostly clear sky days (Izaña, Canary Islands) to mostly
cloudy skies (Lerwick, Scotland). As a reminder of the method applied to obtain
the potential increase in irradiation, it is recalled that during cloudy conditions,
irradiation is scattered in its way through clouds and aerosols, arriving to the
surface as diffuse irradiation. Because in those conditions it shows an isotropic
behavior, a horizontal surface receives more irradiation than one tracking the sun
rays. Hence, the potential increase in irradiation is obtained by assuming that
the tracking system positiones a PV panel facing the zenith when irradiation in
a horizontal plane is larger than in a surface tracking the sun, and it follows the
sun otherwise. After calculating the potential increase in irradiation, and due to
the promising results obtained, we tried to develop two operational algorithms
to that work real time. Model 1 was based on the persistence of irradiation and
Model 2 used NWP in order to be used in the DAM.

Table 6.3 shows annual horizontal irradiation collected with the reference
model (Gref

y ) and the potential with the proposed model (Gpot
y ). Gpot

y − Gref
y

states for the irradiation increase of the proposed SATS in comparison with the
regular tracking system.

(
Gpot

d − Gref
d

)
max

is the maximum daily increase. LER-w
and TOR-w represent those stations but considering a ground albedo of 0.8 during
winter. Subscripts y and d represent annual and daily values, respectively.

The potential increase ranged between 0.16% (Izaña) and 3.01% (Ler-
wick, albedo 0.24). Yearly gains of up to 1.67% were obtained in Camborne and
between 1.21 and 1.42% for the area of north France and Holland. Potential
improvement varied according to climate in the region. Hence, regions with more
periods of sun did not benefit as much as regions with longer cloudy periods from
the proposed tracking strategy. The effect of ground albedo on the proposed
tracking strategy can be observed. As opposite to grass, the higher reflectance
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Station Gre f
y

(kWh/m2)
Gpot

y
(kWh/m2)

Gpot
y − Gre f

y
(%)

(Gpot
d − Gre f

d )max
(%)

CAB 1363 1382 1.42 18.07
CAM 1369 1392 1.67 18.29
CAR 2127 2136 0.44 18.46
CNR 1857 1874 0.91 16.09
IZA 3186 3191 0.16 8.59
LER 845 870 3.01 17.96
LER-w 847 872 2.96 17.96
PAL 1456 1474 1.21 17.54
TOR 1225 1244 1.48 19.91
TOR-w 1228 1245 1.43 19.91

1

Table 6.3: Maximum potential increase of irradiation.

of snow makes it more convenient to track the sun, even under cloudy conditions
in winter months, to benefit from the isotropic ground reflected irradiance. This
effect was also observed by Quesada et al. (2015). However, consequences are
not large due to the reduced amount of solar irradiation during winter at those
latitudes and because of the amount of minutes compromised (720 and 1080 min
for Lerwick and Toravere, respectively). The estimated irradiation increase with
the proposed model was reduced by 0.04–0.05% under albedo 0.8 scenario. The
maximum daily irradiation increase in percentage

(
Gpot

d − Gref
d

)
max

can also be
observed. Most stations reached an increase larger than 16%, topping at 19.90%
in the Toravere station.

Gains are almost non-existent during solar noon, when both the refer-
ence and the proposed model are close to the horizontal position. This fact is
evidenced in Figure 6.8 during the highest solar elevations of each month, which
correspond to solar noon. Nevertheless, the previous and consecutive hours after
solar noon (9–11, 13–15) were the hours in which more gains were registered be-
cause of the high irradiance in those moments. Also, during overcast conditions
in those hours, the sky is brighter in the zenith, increasing the performance of the
proposed model. As seen in Figure 6.8, gains were present in all seasons except
for summer in the three southernmost stations because of the scarce cloud cover
during summer months. In the rest of stations, significant gains were obtained
all year round. Lerwick stood out for showing the largest gains during summer
months. Additionally, the effect of ground albedo can be observed. The presence
of snow on the ground limited irradiation gains in Toravere and Lerwick during
winter months.
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Figure 6.8: Annual irradiation gains for each pair of solar elevation-month.

Station Model Gpred
y

(kWh/m2)
Gpred

y − Gre f
y

(%)
hourspred
(hours)

FP
(hours)

CAB Reactionary 1378 1.13 1419 33
CAM Reactionary 1387 1.34 1616 34
CAR Reactionary 2135 0.37 766 15
CNR Reactionary 1871 0.74 1171 27
IZA Reactionary 3190 0.13 288 9
LER Reactionary 866 2.51 1908 39
LER-w Reactionary 868 2.47 1898 39
PAL Reactionary 1470 0.93 1337 32
TOR Reactionary 1240 1.18 1454 31
TOR-w Reactionary 1242 1.14 1436 31
CNR NWP 1849 -1.25 761 261

1

Table 6.4: Increase of irradiation of the operational models.
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Table 6.4 depicts results from the prediction algorithms. Starting with
the Reactionary model (Model 1), annual gains (Gpred

y −Gref
y ), as expected, were

smaller compared to the estimation analysis. However, significant increments
were still found in all stations. Lerwick stood out for the highest gains, rang-
ing 2.47–2.51% depending on the ground albedo considered. Five other stations
showed irradiation gains around 0.74–1.34%. This reduction in yield, compared to
the estimation model, is explained by three reasons. First, the number of periods
to take advantage of the higher effectice irradiation (hourspred) is reduced because
of the nature of the reactionary model, which in this case was programmed to
wait for five consecutive minutes of required conditions to move to a horizontal
position. Hence, the first five minutes of each overcast period were not used. Sec-
ond, optimal alignment was not always obtained because of the rotational speed
of the tracker. Depending on the starting tilt angle, it could take up to three
minutes to reach the horizontal position. The final reason for reduction in yield
could be attributed to the counteraction of false positives (FP ), whose number is
small but their impact is large due to the differences in irradiance. The number
of false positives ranged 1.95–2.96% of the total predicted minutes.

Performance of the NWP model (Model 2) was tested in the Cener sta-
tion. GHI predictions up to 24 h from the NWP model showed a MAE of 93.19
W/m2, with a negative MBE of 22.47 W//m2. That large error resulted in a
poor performance of the proposed forecasting model, decreasing annual irradi-
ation by 1.25% compared to the reference case. The number of false positives
increased with respect to Model 1, from 31 to 261 h, and also the magnitude of
errors, offsetting any possible gain. For these reasons, the only valid operational
prediction algorithm created was Model 1.

6.4.1 Discussion of Publication IV

The paper Antonanzas et al. (2018) revealed a large potential for irradiation
gains in the POA under a SATS coming from the optimization of the algorithm for
cloudy conditions. The strong reduction in prices of PV technology has expanded
the installation of PV plants outside regions with high annual irradiation, where
they were originally located. The low frequency of cloud cover in these places
may have been the reason for tracking strategies only been optimized for sunny
days. However, the presence of PV in high latitudes in Europe or North America,
where cloud cover is frequent, has made tracking algorithms been reconsidered.
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Results of the potential increase in irradiation reveal that in highly ir-
radiated areas original SATS adjust well to the situation, such in the case of
Izaña (Canary Islands), where the potential increase was only 0.16%. However,
other climates offer the possibility to improve tracking systems, with a potential
increase up to 3.01% in Lerwick (Scotland). Many regions in northern Europe
revealed improvement margins higher than 1%. This is in accordance with the
results presented by Kelly & Gibson (2011), where they anticipated yearly gains
in the order of 1% in their location of Milford (Michigan, USA, lat. 42º35’N),
and with the claims of Optimum Tracker, a private company that designs and
manufactures PV trackers, which situate annual gains up to 1.7% in the USA.
Also, results in terms of daily increase in irradiation were comparable to those of
Quesada et al. (2015) obtained for Montreal (Canada). There, they showed yield
increments of up to 25% during some days in spring time.Our findings situate
the increase close to 20% in the Torabere station, which is relatively close taking
into account the reduced amount of irradiation considered.

Motivated by these results, we proposed an operational algorithm based
on a SATS with backtracking but modified to adopt a zenith facing position when-
ever the meteorological conditions dictated so. Optimizing the tracking algorithm
for cloudy situations does not come at a expense of worsening the performance
under sunny conditions. The modified algorithm moves the PV array to a hori-
zontal position when irradiance in the horizontal plane exceeds the irradiance in
the POA under a SATS. However, in order to detect the differences in irradiance
in the two planes (horizontal and POA under SATS) two pyranometers are nec-
essary. This fact increases the cost and complexity of the control system. Both
pyranometers have to be well calibrated and maintained because the differences
in irradiance that trigger the switch to a horizontal position are small, averaging
11-14 W/m2, as discussed in the paper. Alternatively, measured instantaneous
output power from two PV panels under the same configuration (horizontal and
POA under SATS) can also be used to determine the optimum position. Pre-
sumably, effective gains will be smaller than those presented in the results due
to errors in the measurement of irradiance. The uncertainty of ground records
needs also to be taken into account.
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Conclusions and Future Work

This thesis has developed models to assist in the design and operational stages of
a PV plant, with the goal of advancing solar photovoltaic. The main contributions
of this thesis are the following:

1. Development of daily solar irradiation estimation techniques based on SVR
with genetic algorithm optimization. For that purpose, other more com-
monly measured meteorological variables were used to estimate solar irra-
diation in those places where pyranometers are not available.

2. Obtention of annual irradiation maps based on measurements from a lim-
ited set of pyranometers and estimates from the SVR models. Using geo-
statistical techniques, yearly acummulated irradiation maps were plotted
which showed the most convenient areas for planning a PV plant. Ordinary
kriging overperformed the other interpolation techniques studied.

3. Assessment of geostatistical techniques for interpolation. Results showed
that while IDW achieved its best performance when using just a few pyra-
nometers for interpolation, OK was able to significantly improve errors when
additional exogenous data was employed. The latter technique obtained an
annual error below 5%, which is the tolerance of pyranometers, in 21 out of
the 24 testing stations, and highest error recorded was 7.73%. The addition
of explanatory data, such as elevation or latitude, in the interpolation did
not improve results.

4. The latest advances of solar power forecasting were thoroughly presented in
the review article. The main findings of the study revealed the benefits of

105
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probabilistic forecasting, which enable a better risk assessment and decision
making. Compared to load or wind power forecasting, the state of proba-
bilistic solar power forecasting is still inmature and several challenges are
yet to be solved. There is also a poor understanding of the value of forecast-
ing in the system operator level and within the research community. The
need for a “universal” suite of metrics to evaluate forecasting performance
was highlighted.

5. Development and assessment of solar power forecasting models for a 1.86
MW PV plant. The best model used SVR trained with NWP data, yielding
an nRMSE of 22.54% and skill score of 31.29% for DA predictions.

6. The value of DA solar forecasting in the Spanish electricity system was
determined. As a general trend, it was found that smaller errors (RMSE)
generated higher incomes. The most accurate model was also the one gen-
erating maximum revenue, with an annual value of forecasting at 4788€,
a 2.94% higher than the persistence model. For each 1 kW h improve-
ment in RMSE, the annual value of forecasting increased 22.32€. Revenues
could increase up to 2.70% more if NWP improved to the point of recorded
variables, leaving ample room for improvement.

7. Improvement of regular solar tracking strategies by modifying the tracking
algorithm in order to optimize the alignment during cloudy situations. The
potential for annual irradiation increase was large in high latitude regions,
which normally count on a high percentage of cloudy days. Increments
up to 3.01% in annual effective irradiation were estimated in the northern-
most station and in large areas in Europe those rises were between 1.21
and 1.67%. In a shorter time scale, the proposed estimation model could
increase daily effective irradiation by more than 16% during certain days
in all stations (except in Izaña) or up to 264 Wh/day/m2. An operational
algorithm was developed to predict these situations and move the PV panels
accordingly, reaching irradiation increments of up to 2.51%.

With these findings, this thesis has tried to improve the state of solar PV in an
effort to accelerate the progress towards a future powered with renewable energy.
Nevertheless, due to the extensive and complicated subject matter, there are
many topics that have been out of the scope of the thesis but that should be fur-
ther researched. Following now are a few of the ideas that should be implemented
in the short term as a continuation of the studies presented above.
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Regarding the value of forecasting, future work should be performed to
analyze possible improvements derived from counting with a well distributed PV
fleet and balancing production errors between plants. Also, the possible improve-
ment in single plant predictions derived from incorporating information from
nearby PV plants into the forecasting models should be further researched. Ad-
ditionally, the value of forecasting from the system operator point of view should
be calculated. In this case, the value of forecasting comes from an optimized unit
commitment and from the reduction of balancing reserves derived from improved
production forecasts.

With respect to tracking strategies, new methods that use sky images
shoud be further analyzed in order to predict the movement of clouds and de-
termine the optimum position of a PV panel according to present sky condi-
tions, without the need of using a persistence model. Additionally, the impact of
isotropic diffuse gains over PV yield should be further investigated due to their
non-linear behavior.
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