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Abstract

PV system simulations are used to estimate the energy yield of new in-

stallations and assess the performance of PV materials in different regions.
This thesis focuses on reducing the uncertainty of these simulations by

quantifying and decreasing the uncertainty in solar radiation data, which

currently accounts for around 50% of the total uncertainty.

Simulations seldom use solar radiation measurements due to the

scarcity of ground sensors. However, the uncertainty in measurements is

the basis of most solar radiation studies. We found that low-cost photodi-

odes present substantially larger uncertainties than thermopile pyranome-

ters if they are inadequately calibrated. The uncertainty further increased

due to operational failures, which were very common in regional and agri-

cultural networks, leading to uncertainties in measurements higher than

those of the best radiation databases. Moreover, these defects were not

detected by the most widely used QC methods, such as the BSRN tests.

Hence, we developed a new QC procedure, the BQC, that identified most

operational defects and some equipment errors by analyzing the stability

of the deviations between several radiation databases and measurements.

Solar radiation estimations are customarily used to assess PV systems

due to their extensive spatiotemporal coverage and high resolution. We

verified that databases from geostationary satellites, such as SARAH or

NSRDB, should be preferred to assess the solar resource because they

present the smallest bias and uncertainty. We have also evaluated the po-

tential of reanalyses to complement satellite-based data in high latitudes.

We confirmed that former ERA-Interim and MERRA reanalyses should be

avoided, but we found that ERA5 and COSMO-REA6 are valid alternatives

to satellite-based databases. These results validated the incorporation of

both reanalyses in the online simulator PVGIS. However, users should take

into account their limitations; primarily the strong dependence of their de-

viations on the atmospheric transmissivity due to the incorrect modeling

of clouds. The analysis of the uncertainty propagation through PV simu-

lations confirmed that SARAH should be preferred to assess PV systems

in Central and South Europe, whereas it revealed that ERA5 is the best

alternative in Northern Europe. We also found that cloud-related errors

in reanalyses amplified the bias through the simulations. These amplifica-

tions should be accounted for selecting databases because their magnitude

is sometimes larger than the bias of solar radiation estimations.
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Resumen

Las simulaciones de sistemas fotovoltaicos sirven para estimar la produc-

ción en nuevas instalaciones y evaluar la eficiencia de los materiales en

distintas zonas geográficas. El principal objetivo de esta tesis es la dismin-

ución de la incertidumbre en estas simulaciones a través de la reducción

de la incertidumbre en los datos de radiación solar, ya que éstos aportan

actualmente alrededor de un 50% de la incertidumbre total.

Las simulaciones no se suelen realizarse con mediciones de radiación

solar debido a la escasez de estaciones con piranómetros. Sin embargo,

la incertidumbre de estas mediciones es fundamental en la mayor parte

de estudios de radiación solar. Hemos observado que la incertidumbre de

los fotodiodos de silicio es muy superior a la de los piranómetros térmicos

cuando no son calibrados adecuadamente. Esta incertidumbre puede ser

incluso superior a la de las mejores bases de datos de radiación debido a la

aparición de fallos operacionales en las estaciones, los cuales son muy co-

munes en redes regionales y agrícolas como SIAR. Los métodos de control

de calidad más utilizados, como los que propone la BSRN, no son capaces

de detectar este tipo de errores. Por tanto, hemos desarrollado un nuevo

método de control de calidad, denominado BQC, que es capaz de detectar

defectos operacionales y de equipo analizando la estabilidad de las desvia-

ciones entre varias bases de datos de radiación y las mediciones del sensor.

Las simulaciones de sistemas fotovoltaicos utilizan generalmente es-

timaciones obtenidas a partir de imágenes de satélite debido a su alta

resolución espacial y temporal. Hemos verificado que las bases de datos

obtenidas a partir de satélites geoestacionarios, como SARAH y NSRDB,

proporcionan los datos con el menor bias e incertidumbre. También hemos

evaluado el potencial de los datos de reanálisis para complementar a los

modelos de satélite en las regiones polares. Los resultados obtenidos

confirman que no es recomendable el uso de versiones antiguas como

ERA-Interim o MERRA, pero revelan que nuevos modelos como ERA5 o

COSMO-REA6 son una alternativa válida. Estos resultados llevaron a la

inclusión de ambas bases de datos en el simulador online PVGIS. Sin em-

bargo, los usuarios de estos productos deben tener en cuenta sus limita-

ciones; especialmente la variación de sus errores con el grado de claridad

del cielo debido a una deficiente predicción de nubes. El análisis de la

propagación del bias en las simulaciones confirmó que SARAH es la mejor

base de datos para modelar sistemas fotovoltaicos en la mayor parte de

Europa, mientras que ERA5 es la mejor alternativa en el norte de Europa.

Este estudio también reveló que los errores en la predicción de nubes am-

plifican el bias de los datos de reanálisis en las simulaciones. Estas ampli-

ficaciones son a veces superiores al bias de las estimaciones de radiación
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solar por lo que deben ser consideradas al seleccionar bases de datos para

la simulación de sistemas fotovoltaicos.
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Chapter 1

Introduction

1.1 Background

The Paris Agreement aims to hold the increase in global average temper-

ature below 2◦C above pre-industrial levels, pursuing efforts to limit the

increase to 1.5◦C. The agreement came into force on 4th November 2016,

but the Nationally Determined Contributions (NDCs) proposed by each

country are still insufficient to meet Paris climate objectives. For instance,

the European Union (EU) has set a binding target of a 40% cut in green-

house emissions by 2030 with respect 1990, but carbon neutrality should

be reached by the second half of the century to meet Paris targets.

The decarbonization of our energy supply is essential to achieve carbon

neutrality since 68% of the world’s CO2 emissions currently come from

burning fossil fuels for energy consumption [1]. More specifically, elec-

tricity generation produces 38% of the emissions accounting just for 18.5%

of energy consumption [2]. Therefore, most countries are currently work-

ing on the development of carbon-free and renewable electricity sources

that not only will have to increase their electricity production share but

also provide the additional electricity required to electrify sectors such as

transportation or heating. The EU target for 2030 specifies that 27% of the

final energy consumption should be provided by renewables. This value

was increased up to a 35% by the European Parliament [3]. The current

share of renewables is 17% in the EU gross energy consumption and 29.6%

in the EU electricity generated [4]. These statistics are similar in Spain with

17.3% of the energy consumed and 36.6% of the electricity generated pro-

duced by renewable energies.

The policies proposed by EU and Spain emphasize in a massive de-

ployment of wind and solar energies. In this line, Spain’s Commission

of Experts has recently published a series of recommendations to gener-

ate 62% of the electricity from renewable sources by 2030 [5]. The re-

port pointed out that almost all Spanish coal-fired power plants should
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be closed. The wind capacity of Spain should increase 35% including re-

powering old wind turbines. However, the major boost should come from

solar energy, and more specifically from photovoltaics (PV). Spain does

not plan to increase its thermal solar capacity by 2030 despite being a pi-

oneering country in this technology. Solar thermal facilities can store the

energy produced more easily, but their production is limited in regions

with clouds or haze. Besides, solar thermal is currently more costly than

solar PV excluding storage costs [6]. On the contrary, Spain’s Commission

of Experts foresees an increase of the PV capacity from the current 4.5 GW

to 40-50 GW that corresponds to a rise in the electricity share from 3.1%

to 26-28%.

Despite the Paris Agreement has accelerated the development of PV

technology, solar PV was already one of the fastest growing industries. So-

lar energy took in 2017 for the 7th year in a row the largest share of new

investments in renewable energies with 57% of the total investment (EUR

103.4 billion) [3]. The main reasons are the introduction of favorable poli-

cies such as feed-in tariffs (FITs) or net metering (NM) schemes, and the

improved price competitiveness of solar technology. The price of PV pan-

els sharply dropped over 85% between 2009-2017 in most mature markets

[3], leaving the current costs of new PV systems around 1300 EUR/kWp.

Hence, solar PV not only has become one of the cheapest renewable sources

but also a competitive technology against traditional energy sources. The

competitiveness of renewables is assessed with the grid parity concept. It

occurs when the levelized cost of energy (LCOE) of PV generation is equal

to or less than the price of purchasing energy power. Assessing grid par-

ity is not simply because it varies geographically due to differences in the

solar resource, installation costs, governmental regulations and electricity

prices. However, several studies claim that PV has already hit grid parity

in several markets, meaning that it is competitive without subsidies.

Grid parity is not reached simultaneously by utility-scale facilities and

residential rooftop installations. The LCOE of the prior is compared with

the wholesale electricity price whereas the LCOE of the latter is compared

with the retail electricity price, which is substantially greater. Hence, resi-

dential PV should hit grid parity before utility-scale systems, despite its

larger LCOE. This has already occurred in countries such as Germany

(LCOE = 0.12 EUR/kWh) or Spain (LCOE = 0.067-0.1 EUR/kWh) [7], with

retail electricity prices of 0.308 EUR/kWh and 0.208 EUR/kWh in 2017,

respectively [8]. Another indicator of grid parity is that current FITs of-

fered by the German government for new residential PV systems (∼0.12
EUR/kWh) are well below the retail electricity price (0.308 EUR/kWh).

One of the advantages of residential systems is that they provide a better

match between generation and consumption as they bring the generation
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closer to the demand. Besides, residential systems help in the electrifica-

tion of energy sectors such as transportation or heating. A study made by

Huld et al. [1] highlighted that the space required by residential PV is not a

limitation. Only a quarter of the total roof area suitable for PV over Europe

would be needed to meet the EU 2030 target of a 35% share for renewables

using residential PV alone.

Utility-scale facilities take advantage of the economy of scale showing

lower LCOEs. Their global weighted LCOE was 0.08 EUR/kWh in 2017 [7]

while the wholesale electricity price for Europe during the same year was

on average 0.06 EUR/kWh [8]. Therefore, utility-scale PV is approaching

grid parity as well. Grid parity of utility-scale PV can be assessed based

on the latest renewable energy auctions, which are replacing FITs for in-

stalling new utility-scale PV capacity in most countries. Compared to FITs,

auctions are a competitive scheme that establishes with a bidding system

the electricity price and capacity installed from each technology. Electric-

ity revenues set in latest auctions were typically below the wholesale elec-

tricity price. Some low-records bids in Saudi Arabia (0.0149 EUR/kWh)

and Mexico (0.0148 EUR/kWh) were even under the LCOE of fossil-fuels

based technologies. In Spain, solar PV obtained 3.9 GW during the last

renewable energy auction compared to the 1.1 GW of wind energy. This

energy will be sold at price market with a price floor of 0.032 EUR/kWh.

Another indication that utility-scale PV is reaching grid parity in high ir-

radiation regions is that Spain has even several subsidy-free projects in

process accounting for 20 GW.

Future efforts to increase the penetration of solar PV should be ori-

ented to keep with the cost reduction. Particular attention should be given

to reduce balance-of-system (BoS) and soft costs, which currently account

for around 50% of total costs. Efforts should be also made in improving

the efficiency of PV materials. Crystalline silicon (c-Si) modules currently

account for around 90% of the systems installed, with efficiencies around

16-20%. New researches not only focus on improving current c-Si materi-

als but also on finding new materials with higher efficiency limits, lower

production costs, and better integrability into buildings.

The main drawback for higher penetration of solar PV is the intermit-

tency of the energy generated. This is a direct consequence of the variabil-

ity of solar radiation. Different solutions are being explored such as the

use of storage systems, the complementarity with other renewable sources

[9], and the adaptation of electricity consumption patterns. Besides being

intermittent, solar PV is highly unpredictable. The variability of solar ra-

diation is composed by a deterministic component due to solar position

changes and by a stochastic part caused by atmospheric processes such
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as cloud formation. These atmospheric stochastic processes are not eas-

ily predictable hindering the modeling of both solar radiation and energy

produced by PV systems. Therefore, the development of accurate PV sys-

tem models, and especially the estimation of the solar resource available

at each site, is essential to reduce the uncertainty in PV system modeling

and help in the deployment of solar PV globally.

1.2 Problem statement and motivation

Long-term predictions of the total energy yield (YAC ) expected from new

PV installations are one of the most important simulations made during

the system lifetime. Yield predictions are made during the planning stage

to select the best sites, evaluate the feasibility of the project, and calculate

the cash flows. The uncertainty in the annual energy yield estimations is

around 10% (80-95% level of confidence) [10, 11, 12, 13]. Reducing this

uncertainty is fundamental to obtainmore accurate bankable data andmit-

igate the financial risks. The uncertainty of yield predictions is primarily

driven by the large uncertainty in solar radiation data, currently account-

ing for around 50% of total uncertainty [14, 11, 15, 13]. Yield predictions

are made using solar radiation data from the past (at least 10 years) to esti-

mate the solar resource during the system lifetime (next 20-30 years). Even

though part of this uncertainty may be caused by long-term changes in the

solar resource [16], most of it originates from solar resource assessment

in past years. Either solar radiation measurements or estimations can be

used. However, the variable routinely provided in both cases is the global

horizontal irradiance (GH ), requiring the use of transposition models to

calculate the irradiance in the plane of the array (GPOA) and increasing,

even more, the uncertainty related to solar radiation data.

Solar radiation measurements are the most accurate source of radiation

data for PV simulations when using high-quality and strictly-maintained

sensors. This is the case of data from the Baseline Surface Radiation Net-

work (BSRN) that reports annual uncertainties below ±2%with a 95% level

of confidence [17]. However, long-term measurements are rarely available

to make yield predictions. Pyranometers are installed at utility-scale facil-

ities during the planning stage of the system, so measured data is generally

not longer than one year. Measurements made by nearby weather stations

can be also used, but stations measuring GH are sparsely distributed. In

practice, the use of solar radiation measurements for planning purposes

is limited to correcting the bias of estimations with site-adaptation tech-

niques [18].

Nonetheless, the uncertainty in solar radiation measurements is the ba-

sis for almost all solar radiation studies. Measurements can be used not
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only to directly feed PV system simulations but also to correct the bias of

estimations, to validate modeling techniques [19], and to analyze climate

trends [20], among others. The high quality of measurements is generally

taken for granted by some users. However, the accuracy of measurements

substantially decreases due to a poor placement of the stations, deficient

maintenance or low-quality sensors such as photodiodes. All these factors

introduce operational and equipment defects that increase the uncertainty

in measured data. Moreover, most common quality control (QC) proce-

dures cannot detect these defects as they introduce low-magnitude devia-

tions that are plausible from a physical and even a statistical perspective.

Therefore, developing more efficient QC methods to identify these types

of defects and quantifying the real uncertainty in solar radiation measure-

ments is essential to reduce the uncertainty in measured data.

Satellite-based databases are the most common choice to generate yield

predictions because they allow evaluating the solar resource in almost ev-

ery region in mid-latitudes with acceptable accuracy. They provide long-

term and spatially continuous estimations of solar radiation with resolu-

tions up to 3 km and 30 min [19]. Satellite-based estimations currently

show biases below ±2% and annual uncertainties around ±5% due to the

significant progress achieved during the last decades [19]. This is the

reason because popular online PV simulators such as PVGIS, PVWatts or

PV*SOL integrate satellite-based databases such as SARAH, NSRDB, and

Meteonorm, respectively. However, these databases are derived from im-

ages taken by geostationary satellites, limiting their spatial coverage to the

satellite field of view. Databases from different geostationary satellites can

be combined to achieve global coverage at equatorial latitudes, but geosta-

tionary satellites cannot provide valid data in latitudes above ±65◦. Be-

sides, the quality of estimations decreases substantially near the edge of

the satellite disk due to the shallow viewing geometries [21], and over

snow-covered surfaces [22], among others. Therefore, other alternatives

are being explored to assess the solar resource.

Atmospheric reanalyses, which are based on numerical weather pre-

diction (NWP), have global coverage and similar temporal resolutions to

satellite-based databases. NWP models estimate many other variables re-

quired to simulate PV systems such as ambient temperature and wind

speed. This makes reanalyses an attractive alternative to satellite-based

data because they could be used as the single source of climatic data to

predict the expected energy yield in any part of the world. However, the

accuracy of the most used reanalyses such as ERA-Interim or MERRA is

substantially lower than that of satellite-based databases, mainly due to

their coarse resolution (50-80 km) and incorrect modeling of clouds. These

reanalyses show biases above 5% and large annual uncertainties, and their
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use for solar resource assessment is generally not recommended [23, 24].

Nonetheless, the advent of a new generation of reanalyses such as ERA5 or

COSMO-REA6, with many improved features such as higher spatial res-

olutions (5-30 km), may reduce the accuracy gap between reanalysis and

satellite-based databases. The new reanalyses may have the potential to

complement satellite-based databases for simulating PV systems in regions

not covered by geostationary satellites.

Radiation databases used for simulating PV systems are primarily cho-

sen based on the bias and annual uncertainty in GH . The bias in GH is gen-

erally the most important indicator because it conveys proportionally to

YAC . This is because simulation models are basically a series of multiplica-

tive derating factors accounting for different types of loses [11]. The uncer-
tainty in annual GH also propagates directly to YAC , accounting for around

50% of the total uncertainty. Therefore, selecting radiation data with low

uncertainty is also essential to increase the confidence of yield predictions.

The interdependency between bias and uncertainty is generally ignored,

but large intra-annual deviations in solar radiation data may amplify both

bias and annual uncertainty through the modeling chain. These changes

are caused by the dependence of some sub-models on the irradiance re-

ceived by the panel. Cole et al. [25] estimated that intra-annual deviations

may change the bias around ±2% through the simulations. However, a

more accurate quantification of these effects is needed to improve the se-

lection of radiation databases for PV system modeling.

1.3 Objectives

The main objective of the thesis is the reduction of the uncertainty in solar

radiation data to enhance the confidence in yield predictions. The specific

objectives focus on the reduction and quantification of uncertainty in solar

radiation data:

1. Quantify uncertainty in solar radiation measurements, differentiat-
ing between the uncertainty of pyranometers due to equipment er-

rors and the additional uncertainty added by operational defects.

This objective includes the development of new QC procedures to

detect low-magnitude defects, making possible to estimate the un-

certainty added by each type of defect.

2. Quantify uncertainty of estimations from satellite-based and reanal-

ysis databases. We will assess whether the latest reanalysis databases

(ERA5 and COSMO-REA6) can close the accuracy gap with satellite-

based data.
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3. Compare the uncertainty and bias in annual GH of solar radiation

measurements and estimations under a common framework. More

specifically, benchmark the uncertainty of estimations (satellite-

based and reanalysis data), the uncertainty of measurements (ther-

mopile and photodiode pyranometers) and the uncertainty added by

operational errors.

The last objective is to analyze the propagation of uncertainty in so-

lar radiation data through PV simulations to improve the selection of ra-

diation databases for yield predictions. In this context, we also plan to

evaluate the suitability of new reanalyses to complement satellite-based

databases for simulating PV systems in Northern Europe.
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Chapter 2

State of the art

2.1 Solar radiation measuring

The total amount of short-wave incoming irradiance [290 - 4000 nm]

reaching the Earth’s surface is known as global irradiance (G) or broadband

irradiance. Global irradiance can be measured on any arbitrary plane, but

it is routinely measured on a horizontal plane, also known as global hori-

zontal irradiance (GH ). Three different components integrate G:

G = B+D +R (2.1)

• Beam/direct irradiance (B). Solar radiation coming from the sun disk

without interacting with the atmosphere. The quantity measured is

the beam irradiance on a plane always normal to sun rays, or beam

normal irradiance (BN ). It is the irradiance used by concentrating

systems.

• Diffuse irradiance (D). Solar radiation scattered by aerosols (Mie

scattering), atmospheric molecules (Rayleigh scattering) and clouds.

The quantity measured is the diffuse irradiance on a horizontal

plane, or diffuse horizontal irradiance (DH ).

• Reflected irradiance (R). Solar radiation reflected from the ground,

sometimes treated as a fraction of diffuse irradiance. The quantity

typically used is the ground albedo (ρg ), a dimensionless coefficient

that gives the fraction of GH reflected by ground.

As the contribution of reflected irradiance on a horizontal plane is zero,

the geometric relationship between the radiation components on a hori-

zontal plane is:

GH = BH +DH = BN · cosθs +DH (2.2)

where θs is the solar zenith angle and BH the beam horizontal irradiance,

i.e., the geometric projection of BN on a horizontal plane.
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The variable commonly measured at weather and radiometric stations

is GH because it includes the contribution of all radiation components. Be-

sides, measuring GH is easier than other components because it does not

require moving parts in the radiometer. Diffuse and beam irradiances are

only measured at specialized stations such as those from national services,

while reflected irradiance measurements are even rarer. Therefore, several

empirical models known as separation or decomposition models have been

developed to obtain diffuse and beam irradiances from GH . These models

are not universal and increase the uncertainty of irradiance [26]. Reflected

irradiance is generally estimated assuming an isotropic distribution of the

irradiance and using an empirically-derived ρg value for each type of sur-

face.

2.1.1 Radiometers

Instruments to measure solar radiation are known as radiometers. The two

most common radiometers are pyranometers, which are used to measure

global, diffuse or reflected irradiance, and pyrheliometers, which measure

beam irradiance. The electrical signal of radiometers is related to the ir-

radiance quantity measured with a calibration factor (inverse of respon-

sivity). Besides, both radiometers can use two types of detectors: thermo-

electric detectors (thermopiles), which produce an electrical signal based

on a thermal difference, and photoelectric sensors (photodiodes), which

produce an electrical signal based on the photovoltaic effect. The main

characteristics of pyranometers, pyrheliometers, and other radiometers are

outlined in the following sections.

Pyrheliometers

Pyrheliometers measure beam normal irradiance (BN ). Theoretically, BN

only includes sun rays not interacting with the atmosphere. This strict

definition of BN can be applied by solar modeling techniques but not by

ground radiometers because it is not possible to determine if a photon

coming from the sun disk has been scattered or not. Therefore, this defini-

tion is relaxed for measuring BN by considering BN as the radiation coming

from a small disk centered around the sun. The magnitude of this disk is

defined by the field of view (FOV) of the instrument. The World Meteo-

rological Organization (WMO) [27] recommends that the FOV should not

exceed 2.5◦ (half-angle), which is roughly 10 times larger than the sun disk

to reduce tracking errors. Consequently, pyrheliometers measure not only

irradiance coming from the sun but also that coming from the circumsolar

region, i.e., the bright annulus around the sun. Significant deviations up to
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2% can be found between pyrheliometers with different FOVs that should
be taken into account when using BN data from different instruments [19].

Absolute cavity radiometers (Fig. 2.1a) are the most accurate type of

pyrheliometer. They are self-calibrating (absolute) instruments that com-

pensate the thermal difference created by solar radiation with electrical

power. They are not used for field measurements but to calibrate other

radiometers. In this regard, the World Radiometric Reference (WRR) is

defined by a group of absolute cavity radiometers known as the World

Standard Group (WSG), which are maintained by the World Radiation

Center (WRC) at Davos. Every terrestrial radiometer must be traceable

to the WRR. For that, absolute cavity radiometers from national and insti-

tutional organizations are compared against the WSG every five years at

International Pyrheliometer Comparisons (IPCs). These organizations use

these radiometers to calibrate field instruments, which are then considered

WRR-traceable.

Figure 2.1: Types of pyrheliometers.

(a) Absolute cavity radiometer. Source: Silpakorn University (http://www.calibrationsu.com).
(b) Field pyrheliometer (First class Middleton DN5). Source: Middleton Solar (http://www.
middletonsolar.com).

Field pyrheliometers (Fig. 2.1b) include an automatic solar tracker to

follow the sun path and an optical device to check the alignment of the

instrument. Following WMO recommendations [27], all modern pyrhe-

liometers should have a 2.5◦ FOV (half-angle). Both ISO and WMO es-

tablish different qualities of pyrheliometers. From highest to lowest qual-

ity, the Commission for Instruments and Methods of Observation (CIMO)

guide [27] classifies pyrheliometers in (i) high quality and (ii) medium

quality, while ISO 9060:1990 [28] distinguishes between (i) secondary

standard, (ii) first class and (iii) second class. ISO highest quality is named
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secondary standard because absolute cavity radiometers are considered the

primary standard. Pyrheliometers are calibrated using side-by-side mea-

surements against a WRR-traceable absolute cavity radiometer, or against

a WRR-traceable pyrheliometer [27].

Pyranometers

Pyranometers have a 360◦ FOV and are installed horizontally to measure

global horizontal irradiance (GH ). The detector is protected from environ-

mental factors with a dome (thermoelectric sensors) or a diffuser (photo-
electric sensors). Pyranometers can be ventilated to reduce and prevent the

accumulation of dust, snow and other particles over the instrument. Some

ventilators include integrated heaters to help in melting snow and ice.

Figure 2.2: Types of pyranometers.

(a) Thermopile pyranometer (Hukseflux ISO 9060 secondary standard). Source: http://
ritmindustry.com. (b) Photodiode pyranometer (LI-COR LI-200SZ). Source: http://www.
lpebumi.com. (c) Solar reference cell (SRC-2020). Source: http://solarmer.com.

Pyranometers include either thermoelectric or photoelectric detec-

tors. Thermoelectric pyranometers, or thermopiles (Fig. 2.2a), produce

the highest-quality records and are the only one compliant with ISO-9060,

which classifies them in (i) secondary standard (ii) first class and (iii) sec-

ond class. The corresponding WMO quality levels are (i) high quality, (ii)

medium quality, (iii) low quality. All-black pyranometers and black-and-

white pyranometers are the most common thermopile pyranometers. The

negative aspects of thermopile pyranometers are their high cost, the high
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maintenance required to keep their high-quality, and their slow temporal

response (Table 2.1).

Table 2.1: Main features of thermopile and photodiode

pyranometers.

Thermopile Photodiode

Principle Thermolectric effect Photovoltaic effect

Response timea 1-30 s ∼ 1 μs

Spectral response
Flat response

(96% broadband irrad.)

Wavelength dependent response

(70-75% broadband irrad.)

Spectral range 300-3000 nm 400-1100 nm

ISO-9060 Compliant Non Compliant

Cost ∼2000 EUR ∼300 EUR

Maintenance High Low

Use
High-quality stations

ex. national agencies

Remote stations,

secondary networks

a time to reach 95% of the final value.

Photodiodes and solar reference cells are the two main types of pho-

toelectric pyranometers. Solar reference cells are used indoors for testing

PV cells under solar simulators. They are made of the same material as

the PV cell tested and are used to measure the exact amount of irradiance

received by the cell. Photodiodes are the low-cost option to measure GH

outdoors. In addition, they require less maintenance and have lower affin-

ity to soiling than thermopiles, which make them an attractive option for

remote stations or agricultural networks. They are also used for real-time

applications due to their fast response time. However, photodiodes have

lower quality than thermopile pyranometers. They are not compliant with

the ISO 9060:1990, mainly because they present a narrow [400 - 1100 nm]

and wavelength dependent spectral response that accounts for 70-75% of

broadband irradiance. Besides, other systematic errors such as the cosine

error are more accentuated in photodiodes than in thermopiles (Subsec-

tion 2.1.2).

The most accurate method to obtainGH is by adding independent mea-

surements of diffuse and beam irradiance. Hence, one of the most com-

mon methods for calibrating pyranometers is by comparison with a stan-

dard pyrheliometer and a reference shaded pyranometer. If no reference

pyranometers are available, pyranometers can be calibrated against a stan-

dard pyrheliometer by successively shading and unshading the pyranome-

ter with a disk. Another common but less accurate method is to compare
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the pyranometer against another reference pyranometer either under nat-

ural or laboratory conditions. We refer to WMO [27] for more information

on calibrating methods.

Figure 2.3: Types of shading mechanisms for measuring

diffuse irradiance.

(a) Shading balls. Source: https://www.niwa.co.nz. (b) Shading discs. Source: http://www.

eppleylab.com. (c) Shading ring/band. Source: https://www.volker-quaschning.de.

Shaded pyranometers Pyranometers installed horizontally can measure

diffuse horizontal irradiance (DH ) by screening the beam irradiance with

shading balls, shading disks or shading rings (Fig. 2.3). Shading balls

and rings track the sun covering a small annulus around the sun disk,

which similarly to pyrheliometers has an angle of around 2.5◦ (half angle).
Shadow rings cover the whole daily sun path and have to be manually ad-

justed every other day. Besides, they screen part of the diffuse irradiance,

so different corrections need to be applied to obtain valid measurements

of diffuse irradiance.
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Downwards pyranometers A pyranometer installed horizontally look-

ing downwards measures reflected irradiance. The ground albedo (ρg ) is
obtained as the ratio between reflected and global horizontal irradiance.

Tilted pyranometers Pyranometers can be installed at any arbitrary in-

clination for measuring irradiance on an inclined plane, also known in the

PV field as in-plane irradiance or plane-of-the-array irradiance (GPOA). In-

plane irradiance is required formodeling inclined PVmodules but is rarely

measured at weather stations. This quantity is monitored just by some re-

search organizations, and by utility-scale plants for planning and opera-

tional purposes. Thus, transposition models are commonly used to obtain

in-plane irradiance from horizontal irradiance measurements.

Multi-pyranometers Multi-pyranometers measure simultaneously

global, diffuse, and beam irradiance. They generally measure two of these

variables and calculate the third one based on solar geometry. Some of the

most used multi-pyranometers are RSIs, SPN1s or SCAPPs.

Figure 2.4: Types of multi-pyranometers.

(a) RSI with a photoelectric detector. Source: https://midcdmz.nrel.gov. (b) SPN1 (Delta-T De-
vices, Ltd.). Source: http://www.wind-pgc.com. (c) SCAPP (DWD). Source: https://www.wmo.int.

Rotating shadowband irradiometers (RSIs) (Fig. 2.4a) are also known as

rotating shadowband pyranometers or radiometers (RSPs or RSRs) [19]. A

shadowband rotates around the detector, which measures diffuse irradi-

ance when the shadowband blocks the detector and global irradiance in

the remaining positions. There are two types of RSIs. RSIs with continuous

rotation are the most extended ones. A shadowband rotates with a constant

angular velocity (∼1 Hz) while irradiance is recorded at a high frequency

(∼1 kHz), which makes necessary using photoelectric detectors. DH and

GH are obtained through curve analysis algorithms. RSIs with discontinu-

ous rotation only measure four points per rotation, one for measuring GH

and three for determining DH . The shadowband remains immobile during
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eachmeasurement, so the response time of the detectors is not an issue and

thermoelectric sensors can be used. However, this increases the measure-

ments uncertainty because the atmospheric conditions can change between

measurements. Besides, using just four points per rotation makes critical

the correct positioning of the shadowband.

SPN1 (Fig. 2.4b) measures DH and GH with seven thermopile detectors

distributed in a hexagonal pattern under a particular shadow mask. For

any sun position, at least one detector is shaded from the sun while at

least another one is exposed to the sun. The minimum and the maximum

readings of the detectors are used to derive DH and GH , respectively [19].

Scanning Pyrheliometer and Pyranometer (SCAPP) (Fig. 2.4c) is a low-

cost instrument for measuring GH and DH using a photoelectric detector

[29]. It was developed by DWD and manufactured by Siggelkow, and it is

currently used operationally at few DWD stations.

Other sensors

All radiometers mentioned above measure the broadband short-wave ir-

radiance. Measurements of irradiance received at a particular short-wave

range can be made with sunphotometers, whereas the irradiance received

by at each short-wave band, i.e., the solar spectrum, is measured with

spectrometers or spectroradiometers. Sunphotometers are used to deter-

mine the atmospheric turbidity or the aerosol optical depth, among others.

Spectral measurements can be made of either direct or global irradiance.

They give valuable information about the composition of the atmosphere

because each atmospheric component absorbs and scatters radiation at a

specific wavelength. For instance, the solar spectrum is used to assess

PV materials because each technology has a particular wavelength depen-

dent response whereas the solar spectrum varies spatially and temporally.

Therefore, the performance of PV materials may improve or worsen at

some regions due to these spectral effects [30].
Apart from the short-wave irradiance emitted by the sun, the Earth also

emits long-wave or thermal irradiance in the infrared range [3000 - 300000

nm] that is measured with pyrgeometers. Pyrgeometers can be installed

upwards or downwards to measure downwelling or upwelling long-wave

irradiance, respectively. For instance, long-wave measurements are useful

for correcting the thermal offset of pyranometers. The sum of short-wave

and long-wave irradiances is known as total irradiance and is measured

by a pyrradiometers. Pyrradiometers are composed of a short-wave and a

long-wave radiometer because there are nomaterials with constant respon-

sivity from 300 to 300000 nm. The difference between total downwelling

and upwelling irradiance is known as net irradiance and is measured by
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net radiometers. Similarly to pyrradiometers, net radiometers are com-

posed of four independent instruments. These quantities are very relevant

for studying the global energy balance.

2.1.2 Uncertainty in solar radiation measurements

Measuring surface irradiance is technically more difficult than other me-

teorological variables such as temperature or precipitation, making solar

radiation measurements more prone to errors and increasing their uncer-

tainty [31, 32]. Uncertainty varies depending on the quantity to be mea-

sured. BN measurements present the lowest uncertainty, especially if they

come from absolute cavity radiometers. GH and DH measurements have

larger uncertainties because measuring diffuse irradiance is more complex

than recording beam irradiance alone. Besides, pyrheliometers track the

sun keeping the incidence angle barely constant, which eliminates the co-

sine error. The uncertainty of DH is somewhat larger than that of GH due

to the tracking and shading systems required for measuring diffuse irra-

diance. For instance, the BSRN uncertainty targets with a 95% level of

confidence for 1-min measurements are 0.5% or 1.5 W/m2 for BN , 2% or 5

W/m2 for GH , and 2% or 3 W/m2 for DH [17].

Measuring errors are classified according to WMO [33] in systematic er-

rors that add a bias in measurements, random errors that are symmetrically

distributed around zero and cause the variance of measurements, large er-

rors that are mainly caused by malfunctions of the devices and errors in

data acquisition and processing, and micrometeorological errors that refer

to incoherences of the ground records compared to the surrounding re-

gions. However, the most extended classification is the one proposed by

Younes et al. [34], who differentiated between equipment and operational

defects based on the source of the error. This classification applies to er-

rors in both pyrheliometers and pyranometers. However, in the following

paragraphs, we focus on measuring errors in pyranometers because they

are the most extended type of sensors at weather stations.

Equipment errors

Equipment errors originate from the limitations of pyranometers and con-

stitute the own uncertainty of the sensor. Equipment errors are inherent to

the type of pyranometer and its calibration. Thus, they persist if the same

sensor is installed at different sites, although some equipment errors can

worsen under specific climatic conditions. The most common equipment

errors are:
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• Directional response (cosine error): responsivity variation with the

incidence angle. Larger errors are obtained at shallow incidence an-

gles. The semi-spherical dome of thermopile pyranometers is de-

signed tominimize this error. The diffusers of photodiode pyranome-

ters are also designed with different shapes to approach the direc-

tional response of thermopile pyranometers, but their cosine error is

generally larger.

• Non-linearity: responsivity variation with irradiance. It is mea-

sured as the deviation from the responsivity at 500 W/m2 due to any

change of irradiance from 100 to 1000 W/m2.

• Spectral response: responsivity variation with the wavelength of in-

coming solar radiation. The spectral response is the main difference
between thermopile and photodiode detectors. Thermopile detec-

tors have a constant or flat response over the whole short-wave range

(300-3000 nm). Conversely, photodiodes present a wavelength-

dependent response over a narrower range (350-1100 nm) that rep-

resents around 70-75% of broadband short-wave irradiance.

• Temperature response: responsivity variation with temperature.

Thermopile detectors present a more non-linear dependence with

temperature than photodiode sensors. Temperature dependence can

be corrected if the pyranometer includes a temperature sensor.

• Zero offset A (dark offset): long-wave energy loss that produces neg-

ative measurements at night. It only affects thermopile detectors.

Dark offsets can be mitigated by ventilating the pyranometers and

can be corrected using long-wave irradiance measurements from col-

located pyrgeometers.

• Zero offset B: variation in the output due to changes in the pyra-

nometer body temperature. They are specified as the change due to

a variation of ambient temperature of 5 K/h. Zero offset B can be

corrected by anti-series arrangement of a second sensor not exposed

to sunlight.

• Stability: responsivity drifts. They are usually evaluated in annual

terms and may require to adjust the calibration constant.

Equipment errors depend on the type of detector (thermopile or pho-

todiode) and the quality of the sensor, which is mainly related to its price.

The consequences of equipment errors can be aggravated if the pyranome-

ter is not calibrated correctly. Calibrating a pyranometer not only con-

sists on finding the calibration constant (inverse of responsivity), which
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transforms the electric output of the pyranometer into irradiance. Some

of the abovementioned errors introduce systematic deviations that can be

corrected with empirical correction factors. Thus, the calibration constant

is not strictly a constant but depends on many factors such as incidence

angle, temperature, irradiance, and long-wave irradiance, among others.

Corrections must be applied taking into account the specific climatic con-

ditions of the site. Besides, sensors should be re-calibrated periodically to

correct responsivity drifts.

The uncertainty values specified by manufacturers can be only as-

sumed if the pyranometer has been properly calibrated. Several authors

have studied the individual uncertainty added by each of the previous

equipment errors. Driesse et al. [35, 36], Driesse and Zaaiman [37] evalu-

ated linearity, spectral response, temperature dependence and directional

response of photodiode and thermopile pyranometers indoors and out-

doors. Sengupta et al. [38] also evaluated errors due to the narrow spectral

response of photodiode pyranometers. Reda [39] estimated the contribu-

tion of equipment errors in the final uncertainty of pyranometers follow-

ing the Guide to the expression of Uncertainty in Measurement (GUM).

The overall uncertainty in thermopile pyranometers has been evaluated

by comparison with collocated reference instruments [40, 41]. Photodi-

odes have also been extensively analyzed due to the appealing features of

these sensors. Geuder et al. [42], Wilbert et al. [43], Al-Rasheedi et al. [44]

estimated the uncertainty in RSIs with photoelectric detectors by compar-

ison with reference thermopile detectors. They found that the uncertainty

of uncorrected photodiodes doubles that of those with adequate correc-

tions for cosine error, temperature dependence, and spectral response. On

the contrary, the uncertainty of adequately corrected photodiodes is just

slightly larger than most thermopile pyranometers.

A comparison of uncertainty estimates provided by each of these au-

thors is hindered by the different temporal resolution of the data. Uncer-

tainty decreases with a decreasing temporal resolution due to the compen-

sation of systematic deviations. Uncertainty intervals can be calculated

with different levels of confidence, though a 95% confidence level is gen-

erally used. Finally, the uncertainty may increase due to the particular cli-

matic conditions at the site where the estimation was made. For instance,

a high frequency of low solar elevation situations or cloudy situations may

aggravate some equipment errors such as the cosine error increasing the

total uncertainty of the sensors.
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Operational errors

The uncertainty in measurements can increase due to operation-related is-

sues. Operational errors depend on the location of the sensors, the opera-

tion conditions (e.g., maintenance protocols), and the influence of external

factors. However, they are independent of the quality of the pyranome-

ter. Operational errors involve different factors such as shading by nearby

objects, accumulation of dew, frost, snow or dust (soiling) on the sensors,

incorrect leveling of the pryanometer, station shut-downs, electric fields

in the vicinity of cables, and any failure in the ancillary equipment (data

logger, sun trackers, data processing system), among others [34].

Operational errors can be prevented by selecting adequate sites, using

high-quality equipment and implementing strict maintenance protocols.

Pyranometers should be installed at locations with a horizon free of obsta-

cles and far from any potential source of dust or pollution. In addition,

ventilating the pyranometers reduces the accumulation of snow, dew or

dust. Besides, pyranometers should be inspected and cleaned at least ev-

ery day. We refer to McArthur [17] for more detailed information about

site selection and maintenance protocols.

2.1.3 Quality control

The best QC strategy is to minimize the number of defects by using high-

quality equipment and following strict measurement guidelines. Time

series with defects can be corrected, and those with gaps can be recon-

structed, but the resulting values will not reach the quality of valid mea-

surements. Defects can still arise even with stringent protocols. Thus,

applying QC procedures is essential to identify and remove those records

from the time series.

WMO [33] proposed a classification of QC procedures between basic

and extended QC according to their automation level and the point of the

data flow where the QC method is applied. Basic QC, also known as tech-

nical control, includes different automatic tests to detect gross errors, ana-

lyze the time consistency of the data (rates of change), and the consistency

between variables. Basic QC tests are directly applied at weather stations

either to raw signals (level I data) or processed values (level II data, 1-10

min averages). Extended QC includes more elaborated methods applied

at data processing centers of meteorological agencies or directly by end

users. They are generally semi-automatic tests that require expert decision

to determine whether the value flagged is a true defect. The majority of

QC methods for solar radiation measurements in the literature fall within

this group. Some of these methods are developed by meteorological agen-

cies to guarantee the quality of their data. For example, the BSRN tests
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[45], NREL SERI QC [46] or the QC tests of the Royal Meteorological In-

stitute of Belgium (RMIB) [32]. Other scientists and organizations have

also proposed their alternative methodologies such is the case of the AQC

web service [47], the web-based service from MINES ParisTech [48], or the

MESoR project [49], among others.

A second classification of QC procedures can be made according to

their restriction level. More restrictive methods detect a higher number

of defects at the expense of reducing the degree of automation because

they require expert decision to remove flagged samples. Ohmura et al. [50]

enumerated five groups of QC procedures or levels, organized from less to

more restrictive as follows: 1) physically possible ranges, 2) extremely rare

ranges, 3) across quantities relationships, 4) model comparison, 5) time

series examination.

1) Physically possible and 2) Extremely rare ranges Range checks ver-

ify if measurements fall within a particular interval defined by physically

or statistically possible limits. They are the most widely used QC method,

being included by most QC procedures as the first stage of quality level

[51, 49, 46, 52, 32, 45]. The least restrictive intervals are those based on

physically possible limits. The upper limit is usually set as a function of

the extraterrestrial irradiance while the lower one generally lies between -4

to 0W/m2 [51, 49, 52]. Statistical ranges are more restrictive than physical

ranges because they flag possible but unlikely samples. They are some-

times calculated similarly to physical ranges, but including an empirical

or statistical coefficient that narrows the interval. The lower limit can be

increased by using the clearness index (KT ) or the modified clearness in-

dex (K ′T ) [53], e.g., discarding samples with KT < 0.03 [48]. Climatological

values are also used to adapt the intervals to the conditions of the site [52].

Range checking can also evaluate the time consistency of the data, i.e.,

the rate of change between two consecutive samples. These checks have to

be applied with high temporal resolution data as the correlation between

the adjacent samples increases with the sampling rate [32]. However and

compared to other meteorological variables, the plausible rate of change

of surface irradiance can be very high due to clouds motion reducing the

number of errors detected by these checks. For instance, WMO [33] spec-

ifies that rates of change for GH values should be below 800 W/m2 for

sub-minutely data, and below 1000 W/m2 for 2- to 10-min data. A vari-

ant of consistency checking is persistence tests, which flag either constant

or highly variable values based on the standard deviation of consecutive

samples.
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3) Across quantities relationships The BSRN recommends to measure

redundant variables (GH , DH , BN ) and employ redundant instruments for

measuring the same variable to reduce the uncertainty of measurements.

The majority of QC procedures include consistency tests based on solar

geometry relationships [51, 45, 32, 49] when GH , DH , and BN are simulta-

neouslymeasured. Across quantities relationships can also be applied with

dimensionless indexes such as the clearness index (KT ), the beam transmit-

tance (KN = BH/EH ), the effective diffuse transmittance (KD = DH/EH ), or

the diffuse ratio (K = GH/DH ). Some QC procedures use these indexes in

envelope tests that analyze the whole time series in the K −KT and KN −KT

spaces [34, 32, 46, 54] instead of applying range tests. The detection of

errors with envelope tests is generally performed by inspecting visually

the plots generated, but it can be semi-automatized by setting empirical or

statistical limits in the dimensionless spaces.

The relationship between solar radiation and other variables such re-

flected irradiance, long-wave irradiance or sunshine duration can also be

analyzed. For instance, sunshine duration has been widely used to quality

control solar radiation because it has been historically measured at many

weather stations [32, 31]. In this line, one of the most obvious relationships

between sunshine duration and irradiance is the definition of sunshine du-

ration given by WMO: time during which BN > 120 W/m2.

4) Model comparisons Range tests discussed so far can be narrowed by

using estimations from solar radiation models to define the interval lim-

its. The upper limit can be made more restrictive with estimations from

clear-sky models such as ESRA model [48, 32], Page model [34] or Bird

model [49, 32]. These estimations are made under clean atmospheric con-

ditions setting aerosols andwater vapor to 0 or Linke turbidity to 1, includ-

ing a weighting coefficient of around 1.1 [32, 55]. The lower limit can be

increased with the estimations for overcast conditions (Page overcast-sky

model [34]) or by using the Rayleigh limit [56].

Measurements can be directly compared against estimations instead

of using them to narrow range tests. For instance, empirical models can

be applied when other variables besides solar radiation are measured at

the weather station [47]. The drawback is that empirical models present

their own uncertainty, which can be sometimes greater than the uncer-

tainty added by some of the defects. Estimations can also be obtained by

spatial interpolations from nearby stations, also known as spatial consis-

tency tests [32]. These tests can be applied at low-lying areas where the

spatial variability of surface irradiance is low. Besides, they should be ap-

plied with averaged data (daily or monthly) because the instantaneous at-

mospheric conditions vary in small distances.
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5) Time series examination Themost reliable QC procedure is the visual

examination of the time series. None of the methods described can replace

an expert eye. The visual inspection of instantaneous time series is use-

ful to detect defects such as snow, shadows or soiling. Inspecting monthly

time series is more appropriate to find calibration drifts. Nonetheless, in-

specting the complete time series of each variable at each location is very

time-consuming. Thus, graphical methods requiring visual inspection are

only used to analyze doubtful cases or as a complementary tool to evalu-

ate the flags generated. For instance, the detection of defects with envelope

tests is based on finding unusual patterns in the K−KT and KN −KT spaces.

Another example is the QC procedure proposed by Moreno-Tejada et al.

[57], which consists of plotting color-coded BSRN quality flags during one

year of data (daily observations vs. days of the year). Visual inspection

was also proposed by Ineichen [58] to detect timestamp issues. Ineichen’s

method analyzes the symmetry between morning and afternoon samples

by plotting GH and BN against the sin of αS under clear-sky days. If the

timestamp is correct, morning and afternoon samples lie over the same

line.

2.2 Solar radiation modeling

Measurements from ground radiometers are the most accurate source of

surface irradiance data when high-quality equipment and strict protocols

are used. However, the acquisition, operation, and maintenance costs of

these stations are high. Thus, ground measurements are sparsely dis-

tributed, even those of GH which is the quantity routinely monitored at

weather stations from meteorological agencies. The number of reliable

measurements obtained with high-quality and well-maintained equip-

ment is even more scarce. Besides, the temporal coverage of ground mea-

surements is sometimes insufficient for specific applications and may con-

tain long periods of missing values. Therefore, different estimation meth-

ods have been developed to generate long-term and spatially-uniform es-

timates of the solar resource.

According to their spatial coverage, solar radiation models are classi-

fied into point and spatial estimations. Point estimations have been histor-

ically used as they are computationally less demanding. Solar radiation is

estimated from other meteorological measurements using empirical, sta-

tistical, or physical approaches. The inputs and sometimes the own model

are adapted to the particular conditions of the location assessed to reduce

the estimation errors. However, point estimations have similar constraints

to ground measurements because they are representative of a small area
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around the estimation site. On the other hand, spatial or gridded estima-

tions are spatially-continuous estimates of surface irradiance in the form

of irradiance maps. They cover large areas, even the whole globe, and span

several years. This makes them the most widely used option for solar re-

source assessment. The most representative examples are satellite-based

models, atmospheric reanalyses and interpolation techniques [23, 59]. A

general overview of the most common modeling approaches will be given

in the following sections.

2.2.1 Point estimations

Empirical models

Empirical models estimate GH from other meteorological variables com-

monly measured at weather stations such as precipitation and tempera-

ture. Some of them include additional deterministic variables such as ge-

ographical and solar geometry parameters, and other less common ones

such as aerosol content, cloud coverage and the concentration of atmo-

spheric gases [60]. Regardless of the inputs selected, two distinct group

of models are differentiated: parametric models, which are analytic ex-

pressions based on a finite number of parameters, and statistical models,

which encompass a diverse group of generally non-linear techniques from

statistics, artificial intelligence, and machine learning fields.

Parametric models are the simplest estimation methods and have been

historically used since early 20th century to estimate solar radiation. Given

the fact that the extraterrestrial irradiance (E) can be calculated determin-

istically, most empirical models attempt to predict the atmospheric trans-

missivity, i.e., the relation between EH and GH , from meteorological vari-

ables. Parametric models are classified according to variable correlated

with solar radiation. Models using sunshine duration or cloud cover gen-

erally produce the most accurate estimations due to their high correlation

with atmospheric transmissivity [60]. Models based on sunshine duration

derive from the Angström-Prescott equation [61, 62] and comprise one of

the largest groups. Some examples of models based on cloud cover are

those proposed by Black [63] and Supit and van Kappel [64]. Despite the

high correlation of sunshine duration and cloud cover with atmospheric

transmissivity, these variables are measured by few weather stations and

may contain multiple gaps due to the necessity of human intervention in

the measurement process. Therefore, other models have been proposed

incorporating more extensively measured variables, particularly temper-

ature and precipitation. Two of the most well-known temperature-based

models are the ones proposed by Bristow and Campbell [65] and Harg-

reaves and Samani [66]. Examples of precipitation-based models are those
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proposed by de Jong and Stewart [67] and Liu and Scott [68]. With the

spread of automatic stations, other meteorological variables such as wind

speed or relative humidity have also been used [69]. The reader is referred

to recent literature [60, 69] for further information about parametric mod-

els.

Parametric models generally present a low generalization capacity be-

cause they have to be locally calibrated to obtain acceptable estimations.

Besides, the use of simple linear correlations limits the accuracy of the

predictions obtained. Statistical models emerged in the late 90s to over-

come some of these limitations, combining several input variables in more

complex non-linear relationships. Different techniques have been tested to

estimate solar radiation: artificial neural networks (ANN) [70, 71, 72, 73],

support vector machines (SVM) [74, 75, 76], regression trees [77] or fuzzy

logic [78], among others. Besides, meta-heuristics such as genetic algo-

rithms (GA) [79, 80] have been used to optimize and automate the calibra-

tion of these techniques.

The main shortcoming of both parametric and statistical models in par-

ticular, and point estimations in general, is that the estimations are only

valid in a small area around the location of the predictions. What is worse,

the majority of empirical models present similar or greater errors than

other modeling techniques such as satellite-based models even at the own

location of the point estimation [59]. This is mainly due to the low correla-

tion between meteorological variables such as temperature, precipitation

or humidity with the atmospheric transmissivity. Despite models based

on sunshine or cloud cover show lower estimation errors, their use is con-

strained by the few stations measuring these variables. Overall, empirical

models currently have historical interest, and their use for solar resource

assessment should be generally avoided [19].

Clear-sky models

One of the fundamental parts in solar radiation models is the knowledge

the irradiance under clear conditions, which is the practical upper limit of

surface irradiance. Clear-sky models are extensively included by estima-

tion (solar resource assessment) and forecastingmodels. For instance, most

satellite-based models calculate cloud properties from satellite images and

combine this information with the clear-sky irradiance to obtain surface

irradiance. Some examples of clear-sky models implemented by current

satellite-based databases are REST2 (NSRDB-PSM) [81], McClear (MACC-

RAD) [82], MAGIC (SARAH-2) [83], and SOLIS (SolarGIS) [84]. Similarly,

clear-sky models are used for short-term forecastings coupled with cloud

predictions from satellite images and sky imagers [85]. Clear-sky models
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are also the basis for the calculation of the clear-sky index (KCS ), which is

a common estimator of the atmospheric transmissivity used by many ap-

plications such as quality control methods, decomposition models [26], or

baseline forecasting models, among others.

Clear-sky models can be broadly classified into empirical and physi-

cal [86]. Empirical models are simplified parameterizations of the atmo-

spheric attenuation that provide analytical expressions to estimate clear-

sky irradiance using some atmospheric components as inputs. On the

other hand, physical models include radiative transfer models (RTM) to

simulate the attenuation of the irradiance throughout the different lay-

ers of the atmosphere. They provide a more detailed analysis of the at-

mospheric processes and can easily integrate the effects of the different
atmospheric components. However, physical models are computationally

more expensive and require a more detailed description of the atmospheric

constituents. MAGIC [83], McClear [87], and SOLIS [88] are examples of

physical models based on the libRadtran equations [89].

Some physical models (MAGIC or McClear) implement a hybrid ap-

proach that combines the benefits of empirical and physical approaches.

RTM calculations are made with a limited set of atmospheric conditions

and saved into look-up tables (LUTs). The clear-sky irradiance is then ob-

tained by interpolating in the LUTswith the actual atmospheric conditions.

This approach considerably reduces the computation cost of physical mod-

els enabling their implementation at large-scale geographical information

systems (GIS). Some variations of these models are also able to predict

all-sky irradiance by solving radiative transfer equations under all type

of conditions when supplied with information of cloud properties; such is

the case of FARMS andMcCloud model. Both clear-sky and all-sky models

are the basis of satellite imagery since they can produce gridded datasets

when using as inputs satellite-derived estimates of cloud properties and

other atmospheric components.

2.2.2 Spatial estimations

Satellite-based models

Satellite-based methods have reached a high degree of maturity and are

becoming the most common option to evaluate solar radiation [18, 19].

They provide consistent estimations since the 1980s with resolutions up

to 15 min and a few kilometers. Models can employ images from either

geostationary or polar-orbiting satellites.

Geostationary satellites orbit in the equatorial plane synchronous with

Earth’s rotation providing continuous coverage of a specific terrestrial re-

gion. They orbit high enough (∼36000 km) to gather a full-disk view,
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but the FOV usable for solar radiation modeling is limited to around

65◦ due to the shallow viewing angles in higher latitudes. Different or-
ganizations have launched several series of meteorological geostationary

satellites: GOES-West (135◦W) and GOES-East (75◦W) from the National

Oceanic and Atmospheric Administration (NOAA), Meteosat Prime (0◦)
and Meteosat East (41.5◦E) from the European Organisation for the Ex-

ploitation of Meteorological Satellites (EUMETSAT), Elektro (76◦E) from
ROSCOSMOS, INSAT (70-95◦E) from the Indian Space Research Organi-

zation (ISRO), Fengyun-2 (105◦E) from China’s National Satellite Meteo-

rological Centre, and GMS/Himawari (140◦E) from Japan Meteorological

Agency (JMA), among others. Global coverage at mid and low latitudes can

be achieved by combining images from different geostationary satellites as

their FOV overlap. However, no geostationary satellites cover latitudes

above 65◦ (Fig. 2.5). Thus, irradiance estimations derived from geostation-

ary images show high temporal resolution (15-30 min) but limited spatial

coverage.

Figure 2.5: Spatial coverage of several geostationary satel-

lites.

Source: UCAR/NCARR (https://www.rap.ucar.edu).

Polar-orbiting satellites scan the whole Earth every day. They are placed

at sun-synchronous orbits at an altitude of around 700-800 km. Thus,

each satellite crosses the equator at a constant local solar time throughout

the year keeping constant the illumination conditions during the scanning

process. In the equatorial region, each polar-orbiting satellite produces

just two observations, one diurnal and another complementary observa-

tion 12 h later at night. Some examples of meteorological polar-orbiting

satellites are Metop series from EUMETSAT and NOAA series. Currently,

several polar-orbiting satellites from different organizations are available

and distributed at different observation nodes, providing images at differ-
ent diurnal times. However, the number of diurnal images is too low to
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produce sub-daily estimations. Contrary to geostationary satellites, esti-

mations derived from polar-orbiting satellites have global coverage, but

their temporal resolution is limited to daily coverage. The scan swatch of

each satellite is around 3000 km, and the orbits overlap with increasing

latitude. Therefore, polar-orbiting satellites provide higher spatial resolu-

tions in the polar region, which by contrast is poorly covered by geosta-

tionary satellites.

Figure 2.6: Spatial coverage of a sun-synchronous polar-

orbiting satellite.

(a) Ground path of one revolution of a polar-orbiting satellite. (b) Ground paths
of all the revolutions made by a polar-orbiting satellite during one day. Source:
UCAR/NCARR (https://www.rap.ucar.edu).

Regardless of the type of satellite selected, surface irradiance can be

estimated from the reflected irradiance measured by satellites with three

types of modeling approaches: empirical, semi-empirical, and physical

models [19]. Empirical models have been historically used due to their

low computational cost, facilitating the processing of satellite images at

the beginning of the satellite imagery era. GH is calculated from the re-

flectance recorded by the satellite visible channels using empirical corre-

lations. The most widespread empirical model is Heliosat [90, 91, 92],
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further improved with the release of Heliosat-2 [93] and Heliosat-3 [88].

In a first stage, Heliosat-based models calculate the cloud index, i.e., the

normalized atmospheric reflectance seen by the satellite:

cloud index =
ρ − ρg
ρc − ρg (2.3)

where ρ is the reflectance recorded by the satellite, the minimum re-

flectance is the ground albedo (ρg ), and the maximum reflectance is the

cloud albedo (ρc). Different empirical and statistical correlations are then

used to estimate the atmospheric transmissivity from the cloud index

[94, 95]. The first empirical models calculated the clearness index (KT ) and

combined it with the extraterrestrial irradiance to obtain GH as follows:

KT = a · cloud index + b (2.4)

where a and b are two statistically derived coefficients. Newest empiri-

cal models calculate the clear-sky index (KCS ) instead of the KT , and then

combined it with predictions from clear-sky models as:

KCS ≈ 1− cloud index (2.5)

One of the shortcomings of empirical models is that they only esti-

mate GH . Thus, empirical decomposition models are required to calcu-

late diffuse and direct irradiance from GH , increasing the uncertainty of

the estimations. Besides, pure empirical models can exploit neither the

newest estimations of atmospheric constituents (mainly water vapor and

aerosols) nor the information provided by infrared channels. Therefore,

most satellite-based models have evolved to a semi-empirical approach by

including physical computations.

Semi-empirical models mostly implement the Heliosat-based approach.

They still estimate the cloud index with an empirical approach, and the

main change from pure empirical models is that they include RTMs in

the clear-sky model. One of the most common choices is to use physical

clear-sky models based on LUTs to reduce the computational cost. Semi-

empirical models generally provide both GH and its components, while

physical clear-sky models can include newest estimations of aerosols and

water vapor. Still, these models cannot include information from infrared

channels that are useful in detecting snow and calculating specific cloud

properties besides the cloud index.

Physical models solve radiative-transfer equations at the different layers
of the atmosphere. They are the most computationally intensive models

and require precise knowledge of the atmospheric composition. In turn,

they can take advantage not only of new ancillary datasets but also of the
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information provided by all channels of the new satellites. Physical models

are classified into broadband and spectral, depending if they solve for the

whole short-wave spectrum or each spectral band, respectively. According

to the modeling approach, they can also be classified into one-step or two-

step models. One-step models derive ground observations directly from

satellite observations with RTMs. Two-step models first calculate cloud

properties, aerosol, and water vapor from satellite observations and then

use these estimations to derive GH with RTMs. Some of the new satellite-

based databases have already switched to a fully physical approach thanks

to the advances in the computational field. However, the majority of the

methods keep a semi-empirical approach since semi-empirical models are

computationally less intensive and can integratemore easily data from old-

est satellite versions. This facilitates the production of long-term and sta-

ble databases from the 80s demanded in the analysis of climate trends.

Databases generated with modeling approaches mentioned above can

be classified into climatological or operational depending on the end use

of the data. Climatological datasets are the result of processing long periods

of satellite images with the same model and set of inputs. They are par-

ticularly designed for the analysis of climate trends [96] with the objective

of keeping a high temporal consistency. In contrast, operational products

provide almost real-time estimates prioritizing accuracy above temporal

coverage or stability. Operational models are constantly evolving and may

undergo upgrades in some of the inputs or in the model itself.

There is a wide number of satellite-based databases available.

Databases based on geostationary satellites and using a semi-empirical

modeling approach are the most common ones. Some examples include

SARAH from CM SAF [97], HelioClim from MINES ParisTech and avail-

able via the SODA Service [98], HelioMont fromMeteoSwiss [99], SOLEMI

and DLR-ISIS datasets from the DLR [100], the NASA/GEWEX Surface

Radiation Budget (SRB) [101], and SolarGis [84]. The NSRDB from NREL

[81] andMACC-RAD product based on the newHeliosat-4 from theMACC

project and the Copernicus program [82] also used geostationary satellites

but implementing a purely physical approach. One example of a database

using polar-orbiting satellites is the CLARA series produced by CM SAF.

The quality of satellite-based databases is generally validated against high-

quality measurements by the own organizations producing the databases

or by independent researchers: SARAH [102, 21, 22], CLARA [102, 103],

NSRDB [81], HelioMont [99], HelioClim [104], MAC-RADD [82], or Solar-

Gis [84] among others. The reader is referred to some recent reviews for a

more detailed analysis of the available resources [105, 106, 107, 18].
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Atmospheric reanalysis

Atmospheric reanalyses combine estimations from numerical weather pre-

diction (NWP) models with ground and satellite observations [108]. The

core of a reanalysis model is the data assimilation model, which uses past

observations to limit and guide the predictions of a NWP model. This en-

ables the extrapolation of the variables in space and time [109], generating

a coherent set of atmospheric parameters that in some databases exceeds

100 variables. Reanalysis estimations cover the whole Earth (global reanal-

ysis) from the stratosphere to the ground with temporal resolutions up to

hourly and spatial resolutions around 30-80 km. Variables assimilated (an-

alyzed fields) typically include air temperature, wind speed, pressure, or

relative humidity, but the NWP model also produces a vast list of parame-

ters that are not directly observed and are just outputs of the NWP model

(forecast fields). This is the case of the incoming short-wave irradiance,

which is obtained with a RTM that simulates the attenuation of the irra-

diance from the top of the atmosphere to the ground. The quality of sur-

face radiation estimations depends on the RTM used and on the elements

that attenuate the irradiance. Note that global reanalyses do not generally

assimilate cloud, aerosol, or water vapor data, increasing the uncertainty

around the surface irradiance estimates [110, 111].

Reanalysis products can be classified into two groups, global and re-

gional, reflecting their different spatial extent. Global reanalyses are the

most common type. Some of the currently available datasets are ERA-

Interim [112] from the European Centre for Medium-range Weather Fore-

cast (ECMWF), MERRA-2 from NASA’s Global Modeling and Assimilation

Office (NASA’s GMAO), JRA-55 [113] from JMA, and CFSR [114] from Na-

tional Centers for Environmental Prediction (NCEP). The ECMWF has re-

cently released the first batch (2010-2016) of the new ERA5 [115], which

will replace ERA-Interim by the end of 2019. On the other hand, regional

reanalyses cover a specific region of the Earth with higher spatial reso-

lutions (5-10 km). They are generated with a regional NWP model in

a high-resolution grid that uses global reanalysis estimates as boundary

conditions. Some examples are COSMO-REA6 [116] produced for Europe

by the Hans-Ertel-Centre for Weather Research of Deutscher Wetterdienst

(HErZ/DWD), the NARR (NCEP) [117] for North America, and the ASR

[118] produced by the Polar Research Group for the Arctic.

The two most widely used reanalyses are probably ERA-Interim and

MERRA with several validations published about their surface irradiance

values. The quality of ERA-Interim has been evaluated against ground

stations in Europe [23], Spain [59], and the Eastern Mediterranean [119].

ERA-Interim was also compared against CM SAF satellite-based products
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[120, 23], and the CERES-EBAF dataset [119]. Most validations of NASA’s

GMAO reanalyses [121, 111, 122] focused on the former MERRA [123] as

the new MERRA-2 was fully released in 2016. Only a few works have

already assessed the changes in surface irradiance data from MERRA to

MERRA-2 [124, 125]. Boilley and Wald [24] directly compared MERRA

and ERA-Interim. We refer to Wang and Zeng [126], Decker et al. [127],

and Zhang et al. [109] for more general validations that compare global

reanalysis from different organizations.
All these studies found high bias in GH estimates from MERRA,

MERRA-2, and ERA-Interim. The average bias worldwide was positive

for MERRA and ERA-Interim [127, 109] with a strong overestimation over

Europe, Asia, and North America. This positive bias was related to an

underestimation of the cloud fraction [111, 109], although the opposite,

small negative biases under clear-skies, was reported by Boilley and Wald

[24]. The dependence of the bias on cloudiness evidences the limitations

of reanalyses when modeling cloud patterns [120, 121, 119]. The biases

under clear conditions were also related to aerosols and water vapor data

[109], but it is generally a secondary defect compared to clouds. Some

authors have attempted to correct these biases [111, 128], but there is no

method able to make a posteriori corrections of the large and highly vari-

able errors caused by poor modeling of clouds [24]. Hence, ERA-Interim

and MERRA are generally not recommended for solar resource assessment

[120, 24, 23, 59], and its use is limited to filling gaps in times series [23]

or providing gross estimates in low-cloudiness areas [24]. New reanaly-

sis databases such as ERA5 and COSMO-REA6 present many new features

that may improve the accuracy of former reanalysis. However, their perfor-

mance has still not been evaluated against high-quality ground measure-

ments.

Interpolation methods

Interpolation or spatial prediction techniques are used to produce gridded

estimations from point values. Two main groups are differentiated, de-
terministic (non-geostatistical) and geostatistical. Both groups predict the

output variable at unknown locations by weighting the observations made

at known sites, differing in the method used to calculate the weights.

Deterministic techniques compute the weights based on similarity and

distance-related measurements using techniques such as splines, inverse

distance weighting (IDW), linear models (LM), or radial basis functions

(RBF). On the contrary, geostatistical techniques are based on the spatial

autocorrelation of points to calculate the weights. The main geostatisti-

cal technique is kriging, which in turn a group of techniques. The most
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common implementations are ordinary kriging (OK) and universal krig-

ing (UK). OK assumes an unknown constant mean throughout the area

of study, whereas UK considers that an underlying trend exists, and thus,

this trend can be modeled as a function of the spatial coordinates and ad-

ditional explanatory variables.

Interpolation has been extensively applied not only with solar radiation

but also withmany other fields. A straight implementation is to interpolate

ground measurements [129, 130], because these are the point values with

the lowest uncertainty. Interpolation techniques such as UK can account

for the influence of external variables such as altitude [129, 75], clear-

sky estimations [130], continentality, or satellite-based estimates [131] to

smooth the interpolation errors. Dahmani et al. [72] reported that interpo-

lated values are valid in a radius of 30 km around the stations, and Urraca

et al. [59] showed that satellite-based models improve interpolated mea-

surements for distances greater than 20-30 km from the station. These

values may be even lower in areas with high irradiance variability such

as mountainous regions. Therefore, interpolated values from station mea-

surements should be only used in regions with a high density of stations

separated by no more than 30 km.

Interpolation can also be used with point estimations from empirical

models, or with a combination of observed and estimated values to in-

crease the density of point values [132, 133, 134, 135, 23]. However, this

generally increases the uncertainty of predictions because the errors of em-

pirical and interpolation models add up. Interpolating estimations from

empirical methods is generally not recommended because these models

obtained larger errors than satellite-based models even at the locations

where the empirical model is calibrated. Another method when combin-

ing interpolation with other modeling techniques is to interpolate first the

inputs (e.g., temperatures), and then apply the estimation technique with

the interpolated inputs [136, 75]. However, these methodologies have the

same constraints than interpolated values from empirical methods.

The most interesting application of interpolation is the downscaling of

either the inputs or the final estimations from satellite-based or reanaly-

sis models. For example, satellite-based databases frequently downscale

aerosols or water vapor because ancillary datasets generally have coarser

resolutions than satellite images [22]. Besides, the final estimations from

satellite-based or reanalysis methods are downscaled to enhance their per-

formance in some particular regions. For instance, digital elevationmodels

(DEM) are used to improve the performance of spatial estimations in areas

with steep irradiance gradients such as mountainous regions [137, 138].
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2.3 PV system modeling

PV system modeling is required at different phases during the installation

lifetime. Simulations have different time horizons at each project stage

due to their different objectives. Long-term simulations (yield prediction)

are made for planning utility-scale and residential systems, whereas sim-

ulations of the current state of the system and short-term forecasts are re-

quired during the operation of utility-scale plants. The uncertainty of solar

radiation data is one of the main concerns in most simulations because it is

generally the main contributor to the uncertainty of the predictions. The

availability and accuracy of solar radiation data vary for each type of sim-

ulation as it depends on the time horizon, the project stage, and the size of

the system.

Simulations of the current and future state of the systems are made

during the operational stage of utility-scale facilities. The evaluation of

the current state of the system, also known as performance assessment,

serves to detect operational defects. It is made by comparing the expected

and actual energy yields in terms of the performance ratio (PR). The uncer-

tainty of solar radiation data in performance assessments is generally low

because utility-scale plants typically have pyranometers to measure solar

radiation on horizontal and inclined planes [13].

Short-term forecasts are required by plant managers to plan the elec-

tricity sale on the markets, and by grid operators to combine different en-
ergy sources with the demand. Intra-day and day-ahead forecasts are used

to sell energy in the different electricity markets. Independently of the

time horizon, two modeling approaches are differentiated: feed forecast ir-

radiance into a PV simulation model or directly forecast the energy output

using statistical techniques [139]. Short-term forecasts are the simulations

with the largest uncertainty due to the highly unpredictable behavior of

the atmospheric processes in the near future.

Predictions of the total energy yield produced during the system life-

time (next 20-30 years) are required for planning new PV installations.

[10, 140]. Yield predictions serve to select the best sites, assess the feasibil-

ity of the project, and calculate cash flows and financial risks. Long-term

yield predictions are made using solar radiation data from past years (ref-

erence period). Thereby, simulation models for yield prediction comprise

[141] (i) the estimation of the solar resource in the reference period, (ii) the

estimation of the energy yield in the reference period, and (iii) the estima-

tion of the energy yield in the prediction period. Typically, solar radiation

covering at least the last 10 years or typical meteorological years (TMYs)

are used [15].

Many modeling tools are currently available to predict the total energy
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yield of PV systems. They can be classified into simple online simulators

and advanced modeling tools. Online simulators provide quick estima-

tions of the energy yield generally at no cost. These tools usually integrate

solar radiation data from satellite-based databases, and other meteorologi-

cal variables needed to simulate PV systems. Hence, online simulators only

require a simple description of the PV system to obtain yield predictions

(Fig. 2.7). For instance, they usually include a single "system loss" parame-

ter instead of disaggregating the individual losses of each specific compo-

nent. Therefore, online simulators are specially designed for non-expert

users, such as potential buyers of rooftop installations that need rough es-

timates of the energy yield to calculate the size of the installation. Some

examples include PVGIS [142] from the European Commission, PVWatts

[143] from NREL, and PV*SOL online, among others.

Advanced simulation tools provide an extensive performance and fi-

nancial analysis of new PV installations, requiring amore detailed descrip-

tion of the PV system. These models usually incorporate the possibility of

using radiation measurements if available, reducing the uncertainty of the

predictions. Some examples include the NREL’s System Advisor Model

(SAM), pvPlanner [144] from SolarGIS, PV*SOL [145] from Valentin Soft-

ware, and PVsyst, among others. These tools are more widely used for fea-

sibility and financial studies of large PV systems where the uncertainty of

the predictions becomes increasingly critical. Both types of modeling tools

were compared by Freeman et al. [146] finding large annual deviations in

PVWatts up to a 15% whereas the errors of the three advanced simulation

packages evaluated (SAM, PV*SOL, and PVsyst) typically remained within

±5%.

Simulations made for energy rating also share many parts with those

made for yield prediction. Energy rating is an extension of power rat-

ing. PV modules have been traditionally rated and sold according to its

power under standard test conditions (STC), i.e., the nominal power given

in the product datasheet [147]. However, PV module efficiency varies at

conditions different from those at STC due to changes in temperature, ir-

radiance, solar spectrum, and angle of incidence. The actual energy pro-

duced by a PV system could be around 90% of that obtained under STC

[30, 147]. These variations are geographically dependent and also change

with the materials employed. Hence, energy rating studies also serve to

assess the efficiency of PV materials under different climatic conditions

[30, 148, 147]. A new standard, the IEC 61853, is in preparation to start

rating and selling PV modules according to the energy produced. The IEC

61853 consists on four parts: (1) temperature and irradiance dependence,

i.e., power rating, (2) angle of incidence and spectral losses, (3) PV system

modeling, and (4) climatic datasets needed for energy rating.
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Figure 2.7: Example of the type of inputs required by the

online simulator software PVGIS.

Source: http://re.jrc.ec.europa.eu/pvg_tools/en/tools.html#PVP.

Even though both energy yield and yield prediction simulations share

many steps, yield prediction considers all specific details such as electrical

losses or the exact amount of irradiation at each location after discounting

shading, soiling or snow losses. By contrast, energy rating simulations are

independent of the specific details of the installation. Another difference
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is that yield predictions are evaluated in terms of the total energy yield

(YAC) whereas energy rating studies are based on the annual module per-

formance ratio (MPR), an indicator that compares the real performance of

PV modules to that under STC during a whole year. This thesis is mainly

focused on the selection of radiation data for yield predictions, but some

of the conclusions drawn may also apply to energy rating studies as dis-

cussed in Subsection 5.4.4. In the following, the main parts of the simula-

tion models used for yield prediction are described, most of which are part

of energy rating as well.

2.3.1 Solar resource assessment

Most PV systems have modules at an angle to the horizontal plane to max-

imize the energy received by the panel. Panels are typically installed at

a fixed inclination due to its simplicity and low cost. Tracking systems

increase the energy produced at the expense of higher investment and

more maintenance needs. In both cases, PV system simulations require

the knowledge of GPOA, whereas both measured and estimated irradiance

data are generally available on the horizontal plane. Even though utility-

scale plants measure GPOA for monitoring purposes, these datasets are not

longer than one year in the planning stage. Therefore, solar resource as-

sessment in the reference period comprises two steps: (i) the estimation

of the solar resource on the horizontal plane and (ii) the transposition of

irradiance from the horizontal plane to the plane of the array.

Horizontal irradiance data

The simulation of PV systems requires horizontal irradiance data with a

resolution of at least 1 h. The smallest uncertainty is obtained from mea-

surements made at the installation site. However, pyranometers are in-

stalled during the pre-feasibility stage whereas solar radiation data should

cover at least 10 years to reduce the uncertainty due to inter-annual vari-

ability. Another option is the use of measurements made at nearby weather

stations, but stations measuring GH are sparsely distributed. Therefore,

gridded estimations are becoming the most common choice for solar re-

source assessment as they provide spatial estimations since the 1980s,

allowing to simulate PV systems at almost any location. Satellite-based

databases are integrated by some of the most popular online PV simula-

tion tools such as PVGIS, PVWatts, pvPlanner, and PV*SOL, which use

SARAH, NSRDB, SolarGIS, and Meteonorm, respectively. Atmospheric re-

analyses based on NWP are another alternative that predicts not only irra-

diance quantities but also other meteorological variables required for PV

system modeling. However, reanalyses have generally larger uncertainties
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than satellite-based databases and are less frequently used. In both cases,

the resulting uncertainty is significantly larger than that obtained with so-

lar radiation measurements. This loss of accuracy might be acceptable to

analyze the feasibility of small rooftop installations, but it is inappropriate

for planning large utility-scale facilities. Hence, pre-feasibility studies of

utility-scale plants are generally made based on estimated data, but once

the site has been selected, a pyranometer is installed at the new facility

to correct the bias of estimated data using site-adaptation techniques [18].

At least, one year of measurements are required. This significantly reduces

the uncertainty of yield predictions improving the accuracy of profitability

assessments.

The transposition of irradiance data from the horizontal plane to the

plane of the array requires separate modeling of beam and diffuse irradi-

ance. As above-mentioned, new satellite-based databases based on a phys-

ical modeling approach already estimate both GH and the radiation com-

ponents. However, former empirical and semi-empirical methods only es-

timated GH . Besides, the variable routinely measured at weather stations

is GH and measurements of BH or DH are scarce. In these cases, decompo-

sition or separation models have to be used to calculate DH and BH from

GH . Most of these techniques originate from the model proposed by Liu

and Jordan [149], which estimates the diffuse factor (KD) from the KT . An

extensive validation of decomposition models can be found in Gueymard

and Ruiz-Arias [26]. These models generally rely on empirical correlations

and lack of spatial generalization. Therefore, solar radiation databases es-

timating both GH and the radiation components should be preferably cho-

sen to avoid the use of decomposition models.

Transposition model

GPOA is calculated from horizontal irradiance quantities by transposing

each radiation component separately and subsequently adding them:

GPOA = BPOA +DPOA +RPOA (2.6)

where BPOA,DPOA, andRPOA are the beam, diffuse, and reflected irradiance

on the plane of the array, respectively. The beam irradiance is a determin-

istic variable that can be transposed based on solar geometry:

BPOA = BH · cosθ
cosθs

(2.7)

where θ is incidence angle of the sun rays on an inclined plane. The con-

tribution of RPOA is much more smaller than the other two components
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and is generally calculated assuming an isotropic distribution of reflected

irradiance:

RPOA = GH · ρg · 1− cosβ
2

(2.8)

where β is the module inclination angle, and ρg is chosen based on the type

of surface and is generally kept constant throughout the year. Intra-annual

variations of ρg are usually neglected due to the lack of reflected irradiance

measurements.

Most simulation tools used previous equations to calculate BPOA and

RPOA, differing in the model used to transpose diffuse irradiance. These

can be classified into isotropic or anisotropic. Isotropic models assume that

diffuse irradiance comes equally from all sky dome so DPOA just depends

on the portion of sky seen by the panel. Liu and Jordan [150] proposed one

of the first isotropic models. However, the diffuse irradiance is the radia-

tion scattered by atmospheric components such as clouds or aerosols, and

it is therefore non-uniform through the sky. Anisotropic models consider

that some parts of the sky, such as the circumsolar region or the horizon

band, scatter more radiation than the rest of the sky. They generally do not

consider the variations of diffuse irradiance associated to cloud cover. Ex-

tensive evaluations of both isotropic and anisotropic models can be found

in the literature [151, 152, 153].

2.3.2 PV module model

Calculation of effective irradiance

The PV module do not use all the irradiance reaching the plane of the

array to produce electricity. The fraction of GPOA available for being con-

verted into electrical current is known as effective irradiance (Gef f ). Gef f

is obtained from GPOA by applying several derating factors accounting for

different types of losses:

Geff =
(
fAOI · fsnow · fsoiling · fshading

)
·GPOA (2.9)

Shading losses (fshading) can be caused either by external or internal

shadows. External shading includes terrain shading and shadows pro-

duced by nearby objects such as trees or buildings. External shadows are

more likely in residential PV than in utility-scale plants, as the location of

the prior is constrained by that of the roof. Some of the newest satellite-

based databases already account for losses due to terrain shading by using

high-resolution DEMs. Besides, many modeling tools include the possi-

bility to add horizon images from digital cameras for modeling shadows



40 Chapter 2. State of the art

caused by both terrain and nearby objects (Fig. 2.8). Internal or inter-row

shadows are more influential in utility-scale plants because the panels are

generally installed at fixed structures distributed in several rows. Inter-

row shading is minimized by increasing the distance between rows and

by including backtracking algorithms in PV trackers. Inter-row shading is

also modeled based on solar geometry, but the effects of partial shading in

the energy production are not so easily predictable.

Figure 2.8: Horizon shading.

(a) Horizon image from a fisheye camera. (b) Sun elevations during the course of the year. Shaded ar-
eas depict sun elevations with external shading. Source: http://re.jrc.ec.europa.eu/pvg_tools/
en/tools.html#PVP

The accumulation of soiling (fsoiling) and snow (fsnow) over the modules

is characterized with experimental factors given the difficulties to develop

physical models for both losses. Both defects are geographically dependent

and increase with low maintenance and low inclination angles, conditions

that prevent the self-cleaning of panels. Snow losses can reach up to a -10%

in places with frequent snowfalls and low module inclination angles [12].

Soiling includes pollution, accumulation of dust or pollen, bird droppings,

or the growth of lichen. It typically varies from -1 to -4%, exceeding -20%

in arid locations [12]. Attempts to model soiling are currently being made

based on rain and wind speed data, but they are hindered by the complex

interdependencies between these variables. For instance, rain and wind

speed favor the self-cleaning of panels, but some particular rain and wind

speed events may bring additional loads of dust instead of cleaning the

panels.

Angle of incidence (AOI) losses (fAOI) account for the light reflected by

PV modules at sharp incidence angles. PSTC already includes reflectivity
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losses at 90◦ because modules are rated using light perpendicular to the

module surface. Hence, AOI losses account for the additional reflectivity at

angles different from 90◦. They depend on the inclination angle, the type

of module surface, and the diffuse ratio because AOI losses are applied

separately to diffuse and beam irradiances due to the different angles of

incidence of each radiation component. AOI losses vary from -2 to -3%

for modules using standard glass, but significant improvements have been

found in modules using anti-reflective coating [147]

Module efficiency for conditions different from STC

PV modules are rated under STC, i.e., a irradiance level of 1000 W/m2

distributed based on the standard solar spectrum (ASTMG173-03 AM 1.5)

and a module temperature of 25 ◦C. The power produced under STC is

known as nominal power (PSTC) and is reported in the product datasheet.

However, the efficiency of the PV module under real conditions (η) varies
from that under STC conditions (ηSTC) due to changes in the irradiance

level, ambient temperature, and solar spectrum:

η ′ = η

ηSTC
= fT · fG · fspectral (2.10)

where η ′ is the relative energy conversion efficiency. Both ηSTC and η vary

within 0.15-0.2 for newest c-Si modules whereas the annually averaged η ′
is around 0.8-0.95. The direct current module power (PDC ) is straightfor-

wardly obtained as:

PDC = Geff · η ·Amod (2.11)

where Amod is the total area of PV modules.

Spectral effects (fspectral) account for variations in the module efficiency

due to changes in the solar spectrum. These variations are geographically

and temporally dependent. The surface solar spectrum depends on the at-

mospheric composition because gases and other atmospheric constituents

absorb and scatter solar radiation at different wavelengths. The solar spec-

trum also changes with the solar position because it depends on the air

mass (AM), i.e., the amount of atmosphere traversed by solar radiation.

Variations in the solar spectrum are non-linear and affect each PV tech-

nology differently due to the particular spectral response of each mate-

rial. Spectral effects are evaluated with indicators such as average photon

energy (APE) or spectral mismatch (MM) using spectrally resolved irradi-

ance. These data are measured only at a few research centers. However,

they are increasingly being estimated by satellite-based databases thanks
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to the switch to physical modeling approaches. Hence, the number of stud-

ies evaluating spectral effects has increased during the latest years. For in-

stance, Huld and Gracia Amillo [30] reported that annual spectral losses of

c-Si modules varied from -5 to +2% over Europe, Asia, and Africa, being

around +2% over most of Europe [148].

Variations in module efficiency due to irradiance (fG) and temperature

(fT ) effects are more substantial than those by spectral effects. In the same

study, Huld and Gracia Amillo [30] reported annual efficiency variations

due to temperature and irradiance from -15% to +5%. η remains stable at

irradiances close to STC (1000W/m2) decreasing exponentially at low irra-

diance levels. On the contrary, η increases almost linearly with decreasing

temperature. Module temperature is estimated from ambient temperature

by taking into account the heating effect of irradiance and the cooling effect
of wind.

Temperature and irradiance effects can be modeled together or sepa-

rately. When modeled independently, temperature coefficients given in

the product datasheet are used to account for temperature effects, and em-

pirical models or irradiance curves are used to model irradiance effects.
However, both effects are usually modeled together using either physi-

cal or empirical modeling approaches [154]. Physical models are based

on the Shockley and Queisser diode equation and predict the whole I-V

curve. They are also known as I-V models, and the most well-known ex-

amples are one-diode and two-diode models. I-V models require many in-

puts and have relatively high complexity, so their use is generally limited

to research and theoretical studies. On the other hand, empirical models

are simpler as they only predict the maximum power point (MPP). They

are also known as MPP models and are usually developed by specialized

PV laboratories to simulate the performance of PV modules at an indus-

trial level. A set of power measurements, also known as power matrix, is

made at different irradiance and temperature values under laboratory or

field conditions. Then, the module power under any specific conditions

is obtained by directly interpolating in the power matrix, or by fitting an

empirical model.

Electrical losses

The final AC power (PAC ) of the installation is obtained by subtracting DC

losses, inverter losses, AC losses, and taking into account the availability

of the system:

PAC = (fmismatch · fcable,DC · finverter · fcable,AC · ftransformer) ·PDC (2.12)
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The total energy yield (YAC) is obtained by integrating PAC over the period

T under study:

YAC =

∫ T

t=1
PAC(t)dt (2.13)

If the calculations are made in terms of the specific power P ′ [W/Wp],

YAC is obtained by multiplying P ′AC by the total nominal power installed

instead of by Amod.

Mismatch losses are caused by deviations of the real module power

(measured power) from the nameplate power specified by the manufac-

turer. Most manufacturers have a nameplate power tolerance of ∼5 Wp

that results in yield variations of around 2.5% [13]. PV modules are con-

nected in series, so the panel with the smallest real power limits the final

current. This leads to losses of around -0.8% for production tolerances of

∼5% [12]. Mismatch losses are larger on rooftop systems than in utility-

scale plants, because the latter can measure and sort the panels according

to the real power to mitigate the impact of mismatch. Mismatch losses can

be aggravated by partial shading and other specific failures altering the

power of a specific module.

Electrical losses include wiring losses in the DC side, inverter losses,

wiring losses in the AC side, and transformer losses. Cable losses are gen-

erally small and below 1%. Inverter losses have been substantially reduced

during the latest years due to the expansion of PV technology. New invert-

ers can reach efficiencies up to 98.5%. These efficiencies depend on the

size of the inverter, being around 95% for small inverters used in rooftop

installations [12]. Transformer losses are also below 2% an are only ap-

plicable to utility-scale plants since residential systems are connected to

low-voltage grids.

The availability is the percentage of the year during which the system

produces electricity from the total time when production is possible. This

percentage excludes periods with the sun below the horizon and shut-

downs or reductions in the production by mutual agreement with grid

operators. Hence, availability losses account for programmed stops (e.g.,

maintenance) and unexpected shutdowns of the station due to system fail-

ures. The availability of PV systems is around 95% under normal condi-

tions [11], and it is generally smaller in residential systems than in utility-

scale installations.

2.3.3 Long-term effects

The energy yield in the prediction period (next 20-30 years) is estimated

from the energy yield in the reference period (past years) by accounting
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for long-term variation in the solar resource and changes in the module

efficiency.

Module degradation is more accentuated during the first days of expo-

sure of PVmodules to light. This effect is known as light-induced degrada-

tion, and it is around a -2% after the initial 20 kWh/m2 produced by c-Si

modules [10]. Currently, it is up to manufactures to include this loss in the

rated power of the modules [11]. The degradation stabilizes thereafter be-

ing around -0.5%/year for c-Si modules. Hence, manufacturers typically

provide a double warranty for their products: 90% of the initial maximum

power for the first 10 years, and 80% of the original maximum power for

the next 10 years [12].

Simulations made for yield prediction commonly assume that the aver-

age irradiance in the predicting period does not significantly differ from
the average irradiance in the reference period. However, the analysis

of long-term surface radiation measurements has evidenced that climate

trends in the solar resource do exist [20]. A decrease in surface solar radia-

tion was observed globally from the 1950s to the 1980s (global dimming),

whereas a partial recovery has been observed since then (global bright-

ening). Müller et al. [16] reported a trend for the brightening period in

Germany of +3.3 W/m2/decade, which makes the current irradiance level

about a 5% greater than the long-term average of the years 1951–2010.

This recovery is most likely caused by a decrease in air pollution due to

more effective regulations, and by a decrease in cloudiness due to an in-

crease in anticyclonic activity [96]. Therefore, the use of long-term esti-

mations/measurements from past years may lead to the underprediction

of the solar resource in the next 20-30 years under the current scenario

of global brightening. Müller et al. [10] recommended using radiation

data only from the last 10 years to mitigate the effects of climate trends.

Users might be tempted to correct solar radiation data for the next years

with the current decadal trend, but this should be avoided because the

magnitude or even the sign of climate trends may change again in the up-

coming future. Nonetheless, climate trends should be accounted for the

uncertainty analysis of yield prediction as they may partly explain the de-

viations observed. Estimating the uncertainty added by climate change in

yield predictions complicates even more due to the opposite effects caused
by temperature and irradiance in module efficiency. Climate change raises

ambient temperature lowering the module efficiency, whereas irradiance

raises as well improving both module efficiency and the total energy yield

[155].
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2.3.4 Uncertainty in PV simulations

Even the most detailed simulation software is useless without an uncer-

tainty analysis of the predictions. Uncertainty estimations are especially

required in yield predictions used as bankable data such is the case of yield

certificates [14] because they set the risk of the investment. Different meth-

ods are used to calculate the uncertainty of PV simulations. One method

is to compare predictions against yield measurements from power plants

[12]. However, these data are usually not publicly available. An alterna-

tive is to calculate the uncertainty of each part of the simulation model

separately and combine them. GUM proposes two different approaches to
calculate the combined uncertainty. The first method consists of propagat-

ing the uncertainty from GH to YDC by using the basic uncertainty prop-

agation rules. This method assumes that simulation models are a series

of independent multiplicative factors accounting from different losses that
transform GH into YDC [11, 13, 10]. The only part of the modeling chain

that is not strictly a multiplicative factor is the transposition model, but

it is usually treated as if it were. This method also assumes that the un-

certainty of all factors is normally distributed. In multiplications, relative

uncertainties (u) add in quadrature:

y = A · x1 ×B · x2 → u(y) =
√
u(x1)2 +u(x2)2 (2.14)

Relative uncertainties are transformed to absolute uncertainties (U ) and

vice versa by u(x) = U(x)/x. Thus, the combined uncertainty in YDC is ob-

tained as the quadratic sum of the relative uncertainties from the different
sub-models and derating factors (fn):

u(YAC) =
√
u(f1)2 +u(f2)2 +u(f3)2 + ...+u(fn)2 (2.15)

The second method is based on Monte Carlo. The total uncertainty in

YDC is obtained by running multiple simulations sampling from the un-

certainty distributions of each sub-models. Monte Carlo generates the

uncertainty distribution curve of YDC instead of a unique value with a

specific level of confidence. Besides, Monte Carlo can be applied to non-

normally distributed uncertainties. Examples of uncertainty studies using

the Monte Carlo method include the studies made by Thevenard and Pel-

land [11], Hansen and Martin [156], and Müller et al. [15].

Similarly to uncertainty estimations of solar radiation data, the com-

parison of uncertainty estimations in yield predictions from the literature

is hindered by the diversity of uncertainty definitions. Luckily, most un-

certainty estimations of YDC are made in annual terms because this is the

resolution of interest to assess the rates of return on investment. Besides,
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almost all studies follow GUM guidelines, differing on the level of confi-

dence of the uncertainty estimations. GUM defines the expanded uncer-

tainty as k times the standard deviation (sd) or standard uncertainty:

u = k · sd (2.16)

where k is the coverage factor that sets the level of confidence of the ex-

panded uncertainty. For instance, coverage factors of 1, 1.28, and 1.96

give confidence levels of 66% (u66), 80% (u80), and 95% (u95), respectively.
The coverage factor method can be only used when variables are normally

distributed, so several studies use Monte Carlo when normality is not ful-

filled.

Uncertainty studies reported that solar radiation data not only was

the most dominant factor in YDC [25, 157] but also the factor account-

ing for most of the uncertainty (around 50% of the total uncertainty

[14, 11, 15, 13]). Müller et al. [10] estimated a total uncertainty (u66) in
YDC of ±8.1%, with a ±4.2% attributed to solar radiation data (±3% hor-

izontal irradiance plus ±3% in the transposition model). Thevenard and

Pelland [11] estimated a u66 in YDC of ±8.7% during the first year of the

installation and a u66 = ±7.9% during the system lifetime. In this case, so-

lar radiation data accounted for more than half of total uncertainty (±5%).

GeoModel Solar [12] reported a u80 in YDC of ±4.6 and ±11.5% under low-

and high-losses scenarios, respecteviely. In this case, ±4% and ±8% came

from satellite-based databases, respectively. Richter et al. [13] compared

the uncertainty in yield predictions (u95 = ±6-8%), which use solar radi-

ation estimations, against that in performance assessments of utility-scale

plants (u95 = ±2-5.3%), which use pyranometer measurements. The sub-

stantial differences between both types of simulations highlight the rele-

vance of solar radiation data.

The two most important indicators when selecting radiation databases

to simulate PV systems are the bias and annual uncertainty in GH . As

above-mentioned, the uncertainty in solar radiation data is the main driver

of the uncertainty in yield predictions. However, the bias in GH is even

more influential, as if not corrected, the bias in GH conveys proportionally

to YDC [156]. This is because PV simulation models are virtually a series

of multiplicative derating factors. For example, the biases in YDC obtained

by Müller et al. [157] (+4.1%) and Müller et al. [10] (+3.7%) by comparing

predicted and measured values of YDC were mainly driven by the bias in

GPOA (4.9% and +2.9%, respectively). The interdependence between bias

and uncertainty is generally ignored when choosing radiation databases.

However, Cole et al. [25] suggested that intra-annual uncertainties in GH

may lead to additional systematic deviations in annual YDC of about a ±2%.
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This implies that radiation databases with low bias and annual uncertainty

may not always assure the best yield predictions. Quantifying more accu-

rately the effects of large intra-annual deviations in radiation data on the

simulation of PV systems would improve the selection of solar radiation

databases.
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Chapter 3

Data

3.1 Solar radiation measurements: weather stations

3.1.1 Global dataset

The Global dataset is exclusively composed of stations from the BSRN

[158], which is a global radiometric network created to provide accurate

reference data for validating satellite-based estimations and climate mod-

els [50]. It delivers 1-min records of GH , BN and DH , covering the major

climatic zones and following the highest-quality standards. BSRN stations

are sparsely distributed. There are currently just 59 active BSRN stations,

with a very low density of stations in regions such as Africa, South Amer-

ica, or Central Asia.

Figure 3.1: Locations of the BSRN stations included in the

Global dataset.

The Global dataset is composed of 41 BSRN stations that had more

than 7500 h of GH measurements for at least one year from 2010 to

2014 (Fig. 3.1). Stations in the Antarctic were excluded. All stations
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used secondary standard ventilated pyranometers: CM11, CM21, and

CM22/CMP22 (Kipp&Zonen).

3.1.2 European dataset

The European dataset is composed of 334 weather stations that measure

GH and are homogeneously distributed over Europe (Fig. 3.2). In all cases,

GH was retrieved at the highest temporal resolution provided at no cost,

from 2005 to 2015. The temporal resolution of data varies between net-

works (Table 3.1). Only those years with more than 7500 h of measure-

ments were used in this study.

Figure 3.2: Locations of the weather stations included in

the European dataset.

Most stations belong to national meteorological agencies (Table 3.1).

In Sweden, the Swedish Meteorological and Hydrological Institute (SMHI)

[159] measures GH with CM11 (Kipp&Zonen) pyranometers before 2008,

and with CM21 (Kipp&Zonen) pyranometers since then. In both cases,

pyranometers were kept ventilated. In Finland, stations from the Finnish

Meteorological Institute (FMI) [160] use CM11 (Kipp&Zonen) ventilated

pyranometers. In the UK, data from the national weather service (Met Of-

fice) is accessible via Met Office Integrated Data Archive System (MIDAS).

Before 2010, some stations used second class CM3 and CM5 (Kipp&Zonen)
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Table 3.1: Description of the monitoring networks in-

cluded in the European dataset

Type of pyranometerc

Network Typea Temporal resolutionb SS FC SC Ph. NR Total
BSRN rad. 1 min 7 - - - - 7
FMI [FI] met. 1 h (:00 LST) 27 - - - - 27
SMHI [SE] met. 1 h (:00 LST) 12 - - - - 12
Met Office [UK] met. 60 min (:30 UTC) 85 - 9 - 27 121
DWD [DE] met. 1 h (:30 LST) 34 - - - - 34
Météo France [FR] met. 1 h (:30 LST/UTC) 49 - - - - 49
AEMET [ES] met. 1 d 55 - - - - 55
LMT [NO] agr. 1 h (:00 LST) 28 - 1 - - 29
JRC-Ispra [IT] res. 1 min 1 - - - - 1
Total - - 10 - 27 335
a rad. = radiometric, met. = meteorological, agr. = agriculutral, eme. = emergencies.
b Values in brackets give interval midpoints. UTC = coordinated universal time, LST

= local solar time.
c SS = secondary standard, FC = first class, SC = second class, Ph. = photodiode, NR

= not reported.

pyranometers, but all measurements were made with CM11/CMP11

(Kipp&Zonen) pyranometers since then. In Germany, the Deutscher Wet-

terdienst (DWD) [161] freely offers station data via the Climate Data Cen-

ter (CDC). Most DWD stations use secondary standard CM11 or CM21

pyranometers (Kipp&Zonen). In France, Météo France type 0 (synoptic

network) and type 1 (automatic network) stations were used. Most sta-

tions belong to the synoptic network, but areas with low density of syn-

optic records, primarily the Alps and Pyrenees, were covered with type

1 stations. In Spain, stations from the national service, i.e., Agencia Es-

tatal de Meterología (AEMET) [162], were used. All AEMET stations have

ventilated secondary standard pyranometers. AEMET only provides daily

means of GH at no cost.

The Norwegian stations belong to the Landbruksmeteorologisk Tjen-

este (LMT), which is a project run by the Norwegian Institute of Bioecon-

omy Research (NIBIO) for emergency services and agricultural research

[163]. These stations are primarily located along the shoreline, which is

characterized by narrow fjords cutting into high mountains. Most stations

use secondary standard CM11/CMP11 (Kipp&Zonen) pyranometers, ex-

cept for one station using a second class CM3 (Kipp&Zonen). The Euro-

pean dataset also includes some European BSRN stations (CNR, CAR, PAL,

PAY, CAB, LIN, LER, and CAM), and the weather station from the Joint Re-

search Center (JRC) at Ispra. The JRC station has a secondary standard

CM11 (Kipp&Zonen) pyranometer, and the data can be freely accessed via
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JRC [164].

Figure 3.3: Locations of the European weather stations

used for PV simulations.

Solar radiation data used to simulate PV systems must have sub-daily

resolution (preferably 1 h or higher) and include measurements of GH and

at least one radiation component (BH or DH ) to avoid using separation

models. Based on this, 39 weather stations from the European dataset

which measure GH and DH with a resolution of at least 1 h were se-

lected. Although some stations also record BN , these data were not re-

trieved and BH was calculated from GH and DH in all cases for homoge-

nization. Stations selected belong to BSRN (6 stations), FMI (8 stations)

and DWD (25 stations), covering most European latitudes. Years from

2010 to 2015 with more than 7500 h of simultaneous measurements of GH

and DH were used. GH and DH were recorded with unshaded and shaded

ventilated pyranometers, respectively. Most of them were secondary stan-

dard Kipp&Zonen pyranometers, except for DWD-2928, which had PRM2

(Sonntag) pyranometers (shaded and unshaded) from 2010 to 2013, and

DWD-4336 & DWD-4393, which used a SCAPP for measuringDH in 2010.
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3.1.3 Spanish dataset

The Spanish dataset was composed of all Spanish weather stations that

provide GH measurements at no cost (Fig. 3.4). This results in a dataset

comprised of 748 stations distributed in 9 networks: 1 global network,

2 national networks, and 6 regional networks. The dataset includes the

BSRN station located at Cener, Pamplona (CNR). The two national net-

works are the national meteorological service (AEMET) and Servicio In-

tegral de Asesoramiento al Regante (SIAR) [165], which is a national net-

work created for irrigation planning. Note that some SIAR stations belong

to the SpanishMinistry of Agriculture and some others to the regional gov-

ernments. Thus, some differences may exist in the maintenance and cali-

bration protocols. The regional networks are the meteorological agencies

of Navarra (Meteo Navarra) [166], Cataluña (Meteocat) [167], País Vasco

(Euskalmet) [168], and Galicia (MeteoGalicia) [169]. All Meteo Navarra

stations belong to the Government of Navarra (GN), except for the station

located at University of Pamplona (UPNA). The remaining regional net-

works are SIAR Rioja [170], the SIAR branch at La Rioja, and SOS Rioja

[171], the emergencies network of the Government of La Rioja.

Figure 3.4: Locations of the weather stations included in

the Spanish dataset.

In all cases, GH was downloaded from 2005 to 2013 at the highest tem-

poral resolution provided at no cost (Table 3.2). The dataset contains only

years with more than 7500 h of valid data. The number of years available
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Table 3.2: Description of the monitoring networks in-

cluded in the Spanish dataset.

Type of pyranometerc

Network Type a Temporal resolution b SS FC SC Ph. NR Total
BSRN met. 1 min 1 - - - - 1
AEMET met. 1 d 53 - - - - 53
SIAR agr. 30 min (:00 UTC) - 19 35 348 66 468
Meteo Navarra met. 1 d 26 - - - - 26
Meteocat met. 1 d - 15 - 5 - 20
Euskalmet met. 10 min (:05 UTC) 43 - - - - 43
MeteoGalicia met. 10 min (:05 UTC) 1 21 34 27 1 84
SIAR Rioja met. 1 h (:00 UTC) - - 21 - - 21
SOS Rioja eme. 1 h (:00 UTC) - 12 - - 4 16
Total 124 67 90 380 71 732
a rad. = radiometric, met. = meteorological, agr. = agriculutral, eme. = emergen-

cies.
b Values in brackets give interval midpoints. UTC = coordinated universal time,

LST = local solar time.
c SS = secondary standard, FC = first class, SC = second class, Ph. = photodiode, NR

= not reported

varies between the stations. For each station, the information about the

pyranometer model was collected, and sensors were accordingly classified

as thermopile (285 stations) and photodiode pyranometers (386 stations)

(Table 3.2).

3.2 Solar radiation estimations: radiation databases

3.2.1 Satellite-based models

SARAH

SARAH is a climate data record generated by CM SAF for Europe, Africa,

and Asia using images from Meteosat geostationary satellites. SARAH im-

plements a semi-empirical modeling approach. First, the effective cloud

albedo or cloud index is calculated with a modified Heliosat algorithm

using the broadband channel of MIVIRI instruments on-board MFGs

(1983 - 2005) and the two narrow-band visible channels of SEVIRI in-

struments onboard MSGs (2006 - present). The cloud index defines the

atmospheric transmissivity and is closely related to the clearness index

(KCS ≈ 1 − cloud index), which is then combined with the clear-sky pre-

dictions of the all-sky model SPECMAGIC [172]. This is a variation of

MAGIC clear-sky model [83] that includes spectrally resolved data. Both
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implement an efficient computational method based on LUTs to interpo-

late current atmospheric conditions on pre-computed RTM calculations.

Different versions of SARAH are currently available: SARAH-1 [173],

SARAH-2 [174], and SARAH-East (SARAH-E) [21], an extension of

SARAH-1 using images from Meteosat East (57◦E). In this study we have

used SARAH-1, SARAH-2, and SARAH PVGIS [142], a combination of

SARAH-1 and SARAH-E. All versions have a spatial resolution of 0.05◦ ×
0.05◦. Although MSG satellites have a 15-min resolution, the temporal

resolution of all versions is limited by that of MFG satellites (30 min). The

specific characteristics of each version are:

• SARAH-1 (1983 - 2013). Hourly means are the weighted average of

30-min instantaneous values. Aerosol values are monthly climatolo-

gies from MACC reanalysis downscaled from its original resolution

(∼120 km) to 0.5◦ × 0.5◦. Water vapor data are monthly estimations

from ERA-40 and ERA-Interim remapped to a grid of 0.25◦ × 0.25◦.
• SARAH PVGIS (2005 - present). This version is a combination of

SARAH-1 and SARAH-E produced almost operationally by the JRC

for PVGIS calculations. It uses images from Meteosat Prime and Me-

teosat East satellites covering Europe, Africa, and most of Asia. The

data is available for free from the PVGIS server: http://re.jrc.

ec.europa.eu/pvgis.html. SARAH PVGIS produces hourly instan-

taneous irradiance by processing just one satellite image each hour.

The spectrally resolved data is used by PVGIS to account for spectral

effects on PV panels, but these data are not available for download.

High aerosol values have been smoothed to account for the sensitiv-

ity of cloud index on high aerosol loads.

• SARAH-2 (1983 - 2013). SARAH-2 provides 30-min instantaneous

irradiance and spectrally resolved irradiance. The calculation of

hourly and daily means has been modified compared to SARAH-1.

Water vapor has been adjusted to account for topographic effects.
A correction of the cloud albedo has been implemented to account

for slant viewing geometry effects, resulting in an improved perfor-

mance at the edges of satellite images.

Hourly irradiance was downloaded for all the versions. SARAH

datasets contain missing values provided as -1 at low solar elevation an-

gles. The number of gaps is below 1 gap/d on a yearly average, but it

increases in winter and high latitudes. Daily means calculated by CM SAF

for SARAH-1 and SARAH-2 account for these missing values, so these val-

ues were additionally downloaded for validating SARAH-1 and SARAH-2
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against weather stations. SARAH PVGIS does not provide daily means, so

they had to be directly calculated from the hourly means containing miss-

ing values.

CM SAF operational product

CM SAF generates operational products of surface irradiance variables

on a daily basis with a temporal delay of about 10 days, using images

from Meteosat Prime geostationary satellites. The retrieval algorithm is

based on a LUT approach as described in Müller et al. [83]. Two LUTs

are used due to the different dominant processes when clouds are present.

MAGIC clear-sky model [83] is used under clear sky, while under cloudy

sky the measured reflected irradiance (TOA albedo) is related to the at-

mospheric optical depth based on precalculated LUTs using additional

boundary conditions, e.g., surface albedo. Cloud masks are determined

using multi-spectral information from SEVIRI instrument. Aerosol infor-

mation is taken from the GADS/OPAC climatology using NCEP relative

humidity to consider the effect of relative humidity. Water vapor data re-

sults from the analysis of the DWD global NWP model.

Daily and monthly data are available aggregated on a 15 km sinusoidal

grid from the CM SAF data server. In the present study, the instantaneous

hourly data of surface irradiance were used, which are available from the

PVGIS server. The hourly means contain even more gaps (1-2 gap/d on

yearly average) at low solar elevation angles than those of SARAH.

NSRDB

NSRDB is produced by NREL for the Americas using images from GOES-

East (75◦W) and GOES-West (135◦W) geostationary satellites. The cur-

rent version available is the Physical Solar Model (PSM) [81] and is the

first NSRDB version based on a physical approach. In a first stage, cloud

properties (cloud mask, cloud type, cloud height, or cloud optical depth,

among others) are obtained with PATMOS-X cloud algorithm using data

from the four channels of AVHRR instruments onboard GOES satellites.

Then, two different RTMs are used to calculate surface radiation vari-

ables (GH , DH , BN ): REST2 under clear sky and FARMS under cloudy

sky. A specific model was used under cloudy sky because the multiple ab-

sorption and scattering of clouds complicate radiative transfer processes.

FARMS is based on pre-computed cloud transmittances and reflectances

of irradiances obtained with the Rapid Radiative Transfer Model (RRTM).

Aerosol data are obtained from a combination of MODIS satellite data with

MERRA-2 reanalysis. The rest of ancillary variables such as water vapor
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are obtained from MERRA-2. NSRDB provides 30-min data with a spa-

tial resolution of 0.038◦ × 0.038◦, though in this study we have only used

hourly values. Data for single locations or geographical areas are available

from https://nsrdb.nrel.gov.

CLARA

CLARA is a climate data record generated by CM SAF based on observa-

tions from AVHRR instruments onboard NOAA and Metop polar-orbiting

satellites. CLARA provides information on cloud properties, surface radia-

tion (short-wave and long-wave), and surface albedo. AVHRR instruments

have a spatial resolution close to 1 km at nadir, but data are archived and

processed at a reduced resolution of ∼4 km, and the final results are av-

eraged to a grid of 0.25◦ × 0.25◦(∼25 km). The number of available polar-

orbiting satellites carrying AVHRR instruments has significantly increased

in recent years. Whereas only 1-2 satellites were available before 2000, 3-5

satellites are available since then. Sun-synchronous polar-orbiting satel-

lites pass over equatorial regions twice per day, producing one diurnal

observation and a complementary observation 12 h later at night. Each

satellite is distributed at different observation nodes, so cloud properties

are currently calculated with 3-5 diurnal images. Therefore, CLARA can-

not produce sub-daily data, providing only daily and monthly values. A

specific version of CLARA is available at the poles because orbits of polar-

orbiting satellites overlap in high-latitudes increasing the number of diur-

nal observations.

Surface radiation quantities are obtained by combining MAGIC clear-

sky model [83] with cloud screening products (cloudy or cloud-free condi-

tions) and the TOA albedo derived from the two visible channels of AVHRR

instruments. Aerosols values are taken from an aerosol climatology based

on the Aerocom model median merged with Aeronet data. ERA-Interim

estimations are used for water vapor. Two main versions have been pro-

duced: CLARA-A1 [175] and CLARA-A2 [176].

• CLARA-A1 (1982 to 2013). Data over bright surfaces (e.g., snow-

covered areas and deserts) were set to missing due to their low qual-

ity.

• CLARA-A2 (1982 to 2015). The main change from CLARA-A1 is the

extension of temporal coverage. Some minor changes are the use of

an improved cloud detection method and the reduction of the num-

ber of values set to missing due to their low quality over some snow-

covered areas.
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Both versions are available from the CM SAF data server: https:

//wui.cmsaf.eu/safira/action/viewProduktSearch?menuName=

PRODUKT_SUCHE.

3.2.2 Atmospheric reanalyses

ERA-Interim

ERA-Interim [112] is the 4th generation of global reanalysis products from

ECMWF. This dataset is available almost operationally (with two months

of delay) from 1979 to present. ERA-Interim uses a 12-h 4DVar data as-

similation system. The NWP forecasting model is initialized at 00:00 and

12:00 UTC with a time step of 30 min, but the output frequency is 3 h for

surface (2D) variables such as surface irradiance quantities. It uses clima-

tological values for aerosols, carbon dioxide, trace gases, and ozone, and

it takes prognostic information from the forecasting model for water va-

por. The product has an overestimation of the irradiance at the top of the

atmosphere of 2 W/m2 [112].

The variable used for this study is the surface solar radiation down-

wards (SSRD) [J/m2]. In particular, we retrieved steps 3, 6, 9 and 12

of the two daily forecasts performed at 00:00 and 12:00 UTC, where the

step represents the number of hours from the beginning of the forecast.

For accumulated variables such as SSRD, the value provided is the sum

from the beginning of the forecast to the forecast step. Hence, some post-

processing was required to obtain the 3-h means. Data can be ordered (for

free but registration required) from http://apps.ecmwf.int/datasets/

data/interim-full-daily/levtype=sfc/

ERA5

ERA5 is the new global climate reanalysis dataset from ECMWF (5th gen-

eration). The most substantial upgrades from ERA-Interim are the finer

grid (31 km vs. 79 km), the higher temporal resolution (1-h vs. 3-h), the

higher number of vertical levels (137 vs. 60), a new NWPmodel (IFS Cycle

41r2), and the increase of the amount of data assimilated. The data assim-

ilation model is also a 12-h 4DVar. The dataset will cover from 1950 to

near real-time, but at the time of writing only data from 2010 to 2016 is

available.

The variable used is also SSRD [J/m2], which is part of the forecast

fields. Short forecasts are run at 06:00 and 18:00 UTC every day generat-

ing 18 forecast steps (up to 18 h) for each run. In this study, only steps 1

to 12 (the first 12 h) of each short forecast were used. Compared to ERA-

Interim, the value provided for accumulated variables is the sum since
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Table 3.3: Main features of the radiation databases.

D
a
ta
b
a
se

O
rg
a
n
iz
a
ti
o
n

S
p
a
ti
a
l

C
o
v
er
a
g
e

P
er
io
d

S
p
a
ti
a
l

re
so
lu
ti
o
n
b

T
im

e

re
so
lu
ti
o
n
c

T
y
p
e

V
er
ti
ca
l

le
v
el
s

V
a
ri
a
b
le
s

S
A
R
A
H

P
V
G
IS

JR
C

E
u
ra
si
a
,
A
fr
ic
a

6
5
◦ S

-
6
5
◦ N

2
0
0
5
-
p
re
se
n
t

0
.0
5
◦ ×

0
.0
5
◦

5
k
m

1
h
(:
5
0
/:
1
0
U
T
C
)d

in
st
.

-
G
H
,
B
H

S
A
R
A
H
-1

C
M

S
A
F

E
u
ro
p
e,
A
fr
ic
a

6
5
◦ S

-
6
5
◦ N

1
9
8
3
-
2
0
1
3

0
.0
5
◦ ×

0
.0
5
◦

5
k
m

1
h
(:
5
0
/:
1
0
U
T
C
)d

a
v
g
.

-
G
H
,
B
H

S
A
R
A
H
-2

C
M

S
A
F

E
u
ro
p
e,
A
fr
ic
a

6
5
◦ S

-
6
5
◦ N

1
9
8
3
-
2
0
1
5

0
.0
5
◦ ×

0
.0
5
◦

5
k
m

3
0
m
in

(:
5
0
/:
1
0
U
T
C
)d

in
st
.

-
G
H
,
B
H

C
M

S
A
F
O
p
er
.

C
M

S
A
F

E
u
ro
p
e,
A
fr
ic
a

6
5
◦ S

-
6
5
◦ N

2
0
0
7
-
p
re
se
n
t

0
.1
5
◦ ×

0
.1
5
◦

1
5
k
m

1
h
(:
5
5
U
T
C
)

in
st
.

-
G
H
,
B
H

N
S
R
D
B
P
S
M

N
R
E
L

A
m
er
ic
a
s

2
0
◦ S

-
6
0
◦ N

1
9
9
8
-
2
0
1
6

0
.0
3
8
◦ ×

0
.0
3
8
◦

4
k
m

3
0
m
in

(:
0
0
U
T
C
)

in
st
.

-
G
H
,
B
H
,
D
H

C
L
A
R
A
-A

1
C
M

S
A
F

G
lo
b
a
l

1
9
8
2
-
2
0
1
3

0
.2
5
◦ ×

0
.2
5
◦

2
5
k
m

1
d

a
v
g
.

-
G
H

C
L
A
R
A
-A

2
C
M

S
A
F

G
lo
b
a
l

1
9
8
2
-
2
0
1
5

0
.2
5
◦ ×

0
.2
5
◦

2
5
k
m

1
d

a
v
g
.

-
G
H

E
R
A
-I
n
te
ri
m

E
C
M
W
F

G
lo
b
a
l

1
9
7
9
-
p
re
se
n
t

0
.7
5
◦ ×

0
.7
5
◦

8
1
k
m

3
h

a
v
g
.

6
0

G
H

E
R
A
5

E
C
M
W
F

G
lo
b
a
l

1
9
5
0
-
p
re
se
n
ta

0
.2
8
◦ ×

0
.2
8
◦

3
1
k
m

1
h
(:
3
0
U
T
C
)

a
v
g
.

1
3
7

G
H
,
B
H

M
E
R
R
A
-2

N
A
S
A
’s
G
M
A
O

G
lo
b
a
l

1
9
8
0
-
p
re
se
n
t

0
.6
2
5
◦ ×

0
.5
◦

5
0
k
m

1
h
(:
3
0
U
T
C
)

a
v
g
.

7
2

G
H

C
O
S
M
O
-R

E
A
6

H
E
rZ

D
W
D

E
u
ro
p
e

1
9
9
5
-
2
0
1
5

0
.0
5
5
◦ ×

0
.0
5
5
◦

6
.2

k
m

1
5
m
in

(:
0
0
U
T
C
)

in
st
.

4
0

B
H
,
D
H

a
P
re
li
m
in
a
ry

re
le
a
se
:
2
0
1
0
-
2
0
1
6
.

b
T
h
e
se
co
n
d
li
n
e
sh
o
w
s
th
e
a
p
p
ro
x
im

a
te

sp
a
ti
a
l
re
so
lu
ti
o
n
in

k
m

a
t
n
a
d
ir
.

c
V
a
lu
es

in
b
ra
ck

et
s
g
iv
e
th
e
in
te
rv
a
l
m
id
p
o
in
t
o
f
a
v
er
a
g
e
(a
v
g
.)
v
a
lu
es

a
n
d
th
e
ex
a
ct

ti
m
e
o
f
in
st
a
n
ta
n
eo
u
s
(i
n
st
.)
es
ti
m
a
te
s.

d
:5
0
u
n
ti
l
2
0
0
5
(M

F
G
),
:1
0
U
T
C
si
n
ce

2
0
0
6
(M

S
G
).

A
ll
d
a
ta
b
a
se
s
ca
n
b
e
a
cc
es
se
d
o
n
li
n
e
a
t
n
o
co
st
.



60 Chapter 3. Data

the previous forecast step, e.g., the step 1 from 06:00 UTC forecast is the

SSRD from 06:00 to 07:00 UTC. Therefore, mean hourly irradiances ob-

tained from SSRD forecasts (accumulated radiation) are centered at half-

hourly intervals, e.g., the step 1 from 06:00 UTC forecast gives the hourly

mean irradiance centered at 06:30 UTC. Daily means were calculated by

aggregating all steps from 00:00 to 23:59 UTC: steps 7-12 initialized at

18:00 UTC of the previous day (values centered at 00:30-5:30 UTC), steps

1-12 initialized at 06:00 UTC of the corresponding day (values centered at

6:30-17:30 UTC), and steps 1-6 initialized at 18:00 UTC of the correspond-

ing day (values centered at 18:30-23:30 (UTC). Instructions for download

are found in https://software.ecmwf.int/wiki/display/CKB/How+to+

download+ERA5+data+via+the+ECMWF+Web+API.

MERRA-2

MERRA-2 [177] is the second version of the Modern-Era Retrospective

Analysis for Research and Applications (MERRA) produced by NASA’s

GMAO. MERRA-2 was created to replace the former MERRA reanaly-

sis [123], solving the limitations of the latter in the assimilation of the

newest sources of satellite data. The new version maintains the main

features of its predecessor, such as the spatial and temporal resolutions

and the 3DVar 6-h update cycle. The NWP model is initialized at 00:00,

06:00, 12:00, and 18:00 UTC, and it has an hourly resolution for sur-

face irradiance variables. The most substantial upgrades in MERRA-2

are the use of a new version of the GEOS-5 atmospheric model [178] and

the assimilation of aerosol data to analyze five aerosol species including

black and organic carbon, dust, sea salt, and sulfates. The variable re-

trieved was the surface net downward shortwave flux (SWGNT) [W/m2],

and the value provided is the average of each forecast interval centered

at 00:30, 1:30, 2:30, etc. Information about data access can be found at

https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/data_access/

COSMO-REA6

COSMO regional reanalyses are developed by HErZ/DWD with a resolu-

tion of ∼6.2 km for Europe (COSMO-REA6) [116] and of ∼2 km for Ger-

many (COSMO-REA2) [179]. The product is based on the implementation

of a regional NWP model using ERA-Interim estimates as boundary con-

ditions. The data assimilation system uses a continuous nudging scheme

that makes possible the continuous assimilation of observations. This pro-

cess is interrupted every 3 h (00:00, 03:00 UTC, ...) for updating lateral

boundary conditions, every 6 h (00:00, 06:00, 12:00, 18:00 UTC) for snow
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analysis, and every 24 h (00:00 UTC) for sea surface temperature anal-

ysis and soil moisture analysis. The NWP model is the COnsortium for

Small-Scale MOdelling (COSMO) limited-area model (LAM) [180], which

is part of the DWD operational scheme. The radiation scheme is called

each 15 min. It uses instantaneous distributions of clouds and water va-

por, whereas aerosols are modeled with the Tanré climatology. This clima-

tology is used because it is the standard input of the COSMO model, even

though it is known to provide too high values of aerosols optical thickness

over Europe [181]. The output resolution available for surface radiation

is 15 min. Variables retrieved were instantaneous direct radiation (SWD-

IFDS_RAD) and instantaneous diffuse radiation (SWDIRS_RAD) [W/m2],

which correspond to BH and DH , respectively. Data can be downloaded

from ftp://ftp-rea.dwd.de/pub/REA/COSMO_REA6.

3.3 Additional meteorological data

3.3.1 Rain data

Daily rainfall measurements from weather stations were downloaded to

help in the analysis of samples flagged by the BQC.

3.3.2 Temperature and wind speed data

Ambient temperature (Tamb) and wind speed at module’s height (WSmod)

are required to calculate PV module temperature (Tmod). Both variables

were obtained from ERA-Interim reanalysis, which estimates 10 m E-W

wind component (WS10m,x), 10 m N-S wind component (WS10m,y), and 2

m temperature (T2m) with a spatial resolution of 0.75◦×0.75◦ (∼81 km) and

temporal frequency of 3 h. Tamb was assume to be equal to T2m. WSmod was

obtained by adding in quadrature the two wind components and using the

power law [182] to estimate WS variation with height:

WS10m =

√
(WS10m,x)

2 + (WS10m,y)
2

WSmod =WS10m ·
⎛⎜⎜⎜⎜⎝zmod

10

⎞⎟⎟⎟⎟⎠α (3.1)

where zmod is the module’s height and α is the power law index, an em-

pirically derived coefficient that depends on terrain roughness and atmo-

spheric stability. In this case, zmod and α were assumed to be 2 m and

0.2, respectively. Linear interpolation was used to obtain hourly WSmod

and Tamb from the 3-h ERA-Interim estimates. In addition, Tamb data were
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downscaled using the procedure described in Huld and Pinedo [138] to

account for local terrain variations.
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Chapter 4

Methods

4.1 New quality control procedure: the BQCmethod

We propose a new semi-automatic QC method that combines model com-

parison and visual inspection techniques to detect low-magnitude errors

in ground measurements. The procedure is referred to as the Bias-based

Quality Control (BQC) method as it compares estimations from radiation

databases, mainly satellite-based models, against measurements evaluat-

ing the stability of the deviations obtained. Specifically, the BQC analyzes

groups of consecutive days with a window function flagging those groups

in which the daily deviations of all radiation databases statistically differ
from the typical values in that region and time of the year. All databases

used must be temporally stable to achieve a proper characterization of the

deviations. Besides, the BQC includes two color-coded plots to help in the

inspection of the quality flags generated.

4.1.1 Calculation of the confidence intervals (CIs)

The first step is to find the typical range of daily deviations for each radi-

ation database in each region analyzed and time of the year. This is done

statistically by defining a confidence interval (CI) within which the daily

deviations of each radiation database lie. The daily deviations are the dif-

ference between estimations and measurements of the variable X being

analyzed:

deviationd(X) = Xest
d −Xmea

d (4.1)

The CIs are defined as the median absolute deviation (�MAD) around

the median bias deviation (�MBD). They are calculated for each month of

the year m (temporal averaging) and each spatial region sr sharing similar

characteristics (spatial averaging):
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CIdbm,sr = �MBD
db
m,sr ±n ·�MAD

db
m,sr

m ∈ (Jan, ...,Dec), sr ∈ spatial regions, db ∈ radiation databases
(4.2)

where n is a tuning parameter that weights the �MAD in order to tune the

restriction level of the QC method. The �MAD around the median has

proven to be a more robust method for detecting outliers than the tradi-

tional standard deviation around the mean [183]. The �MBD and the �MAD
are obtained in two steps to increase the robustness of the method. First

the �MBD is calculated for all stations (st) and all months of the time series

(m′) as:

�MBD
db
m′ ,st =mediandbm′ ,st(deviation

db
d,st(X)) (4.3)

These values are subsequently averaged again by grouping the months of

the time series (m′) in the twelve months of the year (m) (temporal averag-

ing) and stations (st) in spatial regions (sr) (spatial averaging). This results
in a unique set of twelve CIs per spatial group and radiation database:

�MBD
db
m,sr =mediandbm,sr(�MBD

db
m′ ,st)�MAD

db
m,sr = 1.4826 ·mediandbm,sr(|�MBD

db
m′ ,st |)

(4.4)

The �MAD includes a constant scale factor of 1.4286 that ensures the con-

sistency of estimates for different sample sizes (Eq. 4.4). The use of this

constant value and the median makes this statistic more independent of

the sample size and more robust than the standard deviation [183].

The CIs in each spatial region should be calculated only with high-

quality measurements if available. The BQC will analyze any station

within the spatial region including the group of high-quality measure-

ments. If any defect is found in this group, the CIs should be recalculated

excluding those samples. Locations where radiation databases typically

produce large deviations, such as snow-covered areas, small islands, or

high mountains, should also be excluded from the calculation of the CIs.

Besides, samples flagged at these locations should be examined carefully

because the flags may be caused by deviations in the radiation database

and not in the sensor (false alarm). If there are a sufficient number of sta-

tions where radiation databases show the same type of failure, they can be

grouped in a specific spatial group.
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4.1.2 Flagging samples with a window function

Having defined the CIs, a window function goes through the time series

of each station flagging those groups of consecutive days where the daily

deviations of all radiation databases are predominantly over or under the

CI limits. The number of days analyzed by the window function each time

is set with the window width (w) parameter. The distance between the

first day of two consecutive windows is specified by the parameter step.
Consecutive windows overlap because w is substantially larger than step.

Figure 4.1: Flowchart of the window function.

Notes: db = radiation database, d = day of the time series, dini ,dend = first and last days of the time
series, respectively, d_missing = percentage of missing values, d_under,d_over = percentage of daily
deviations under and over the CIs, CI = confidence intervals of the daily deviations, CI_low, CI_up
= lower and upper limits of the CI, X variable analyzed, Xmin minimum value of X to consider the
deviations significant.

Each analysis of the window function (Fig. 4.1) starts with the calcu-

lation of the percentage of missing samples from each radiation database
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(d_missingdb). Databases with more than 80% of missing values are dis-

carded. Besides, at least one database should span almost the whole win-

dow (d_missingdb < 20%) to ensure that the analysis covers most of the

variability within the window. In the remaining databases, the percent-

age of days with deviations over (d_overdb) or under (d_underdb) the CI

limits are calculated and subsequently averaged (d_over, d_under). These
percentages are calculated only with significant deviations (deviationsig )
larger than a threshold Xmin to reduce the number of false alarms in cases

with too narrow CIs (e.g., low irradiance months). All days within the win-

dow are flagged if more than 80% of the deviations are either over the CI

upper limit (d_over > 80%) or under the CI lower limit (d_under > 80%).

4.1.3 Visual inspection of flagged samples

Figure 4.2: Example of the two color-coded plots generated

by BQC for visual inspecting the flags.

(a) Daily deviations (estimations - measurements) of the radiation databases. The gray line is a
smoothed version of the deviations of the three databases. (b) Instantaneous GH from SARAH-1
and the pyranometer.

The BQC automatically generates two plots to facilitate the visual in-

spection of the quality flags generated: (a) the time series of the daily de-

viations from all radiation databases, and (b), the time series of instanta-

neous irradiance from the sensor and radiation databases with sub-daily

temporal resolution overlapped. Both plots include color-coded flags that

shade those days flagged by the window function (yellow/orange flags)

(Fig. 4.2). Additionally, a grey flag shows periods with missing samples,

while a red flag indicates that the samples had not passed the BSRN "Ex-

tremely rare limits" and "Physically possible limits" (Eq. 4.5). The BSRN
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tests can be applied only to measurements with sub-daily temporal reso-

lution. Even though the window function works with daily means, it is

convenient to include at least one database with sub-daily resolution to

generate plot b because this is the one that usually allows finding the cause

of the error.

4.2 Pre-processing irradiance measurements

4.2.1 Quality control

Night samples (solar elevation < 0◦) at weather stations with sub-daily res-

olution were set to 0 and subsequently quality controlled using the BSRN

range tests [51]:

Physically possible limits :

−4 W/m2 < GH < EN · 1.5 · cos(θs)
1.2 + 100 W/m2

−4 W/m2 < DH < EN · 0.95 · cos(θs)
1.2 + 50 W/m2

Extremely rare limits :

−2 W/m2 < GH < EN · 1.2 · cos(θs)
1.2 + 50 W/m2

−2 W/m2 < DH < EN · 0.75 · cos(θs)
1.2 + 30 W/m2

(4.5)

Samples out of the physically possible and extremely rare limits were set

to not available (NA). The daily means of European and Spanish weather

stations were additionally quality controlled with the BQC. This method

was not applied to the Global dataset due to the high-quality of BSRN data

and to the geographical dispersion of these stations, which hinders the use

of databases based on geostationary satellites to calculate the CIs. The BQC

was implemented using SARAH PVGIS, CLARA-A2, and ERA-Interim, for

the European dataset, and SARAH-1, CLARA-A1, and ERA-Interim, for the

Spanish dataset. The BQC was applied only to GH measurements because

some of these databases (ERA-Interim, CLARA-A2, and CLARA-A1) do not

estimate DH and BH .

Seven spatial regions were defined to quality control the European

weather stations (Fig. 4.3): high latitudes above 65◦N (14 stations), Nor-

way below 65◦N (23 stations), Finland and Sweden below 65◦N (31 sta-

tions), Germany (35 stations), France along with the stations in North Italy

and Switzerland (53 stations), the UK (123 stations), and Spain (55 sta-

tions). All stations available in each region were used to calculate the CIs.

One group was roughly made for each country, making an additional split

for stations above 65◦N. This region presents particular conditions such as
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Figure 4.3: Confidence intervals used to quality control the

European weather stations.

The black line represents the median.

seasonal snow, low viewing satellite angels, and low solar elevation angles

in winter. Finland and Sweden below 65◦N were grouped together to have

a sufficient number of stations for obtaining robust CIs. An additional

group could have been made for mountain stations due to the generally

poor performance of radiation models there, but the number of stations

was too low. These stations were analyzed with the CIs of their corre-

sponding country, and they were treated as false alarms if flagged by the

BQC.

The Spanish dataset was filtered out using the same CIs for all the sta-

tions (Fig. 4.4). The CIs were calculated using only AEMET stations to
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increase the robustness of the CIs because AEMET provides the highest-

quality measurements among the Spanish networks analyzed.

Figure 4.4: Confidence intervals used to quality control the

Spanish weather stations.

The black line represents the median.

The window function was run two times: (i) w = 20 d and n = 2.4, and

(ii) w = 90 d and n = 0.4. In both cases, Xmin was set to 5 W/m2 or 5%

to reduce the number of false alarms and step was set to 5 d to seep up

the whole process (fast-moving filter). This configuration was determined

after analyzing different combinations of w an n (Subsection 5.1.1). The

first run looks for short-lived defects analyzing windows of 20 d, relaxing

the level of restriction of the CIs (n = 2.4) to reduce the number of false

alarms. The second run seeks for long-lasting deviations using windows

of 90 d. Here, the CIs can be made more restrictive (n = 2.4) in order to

detect low-magnitude defects such as shading or sensor miscalibrations.

Flagged samples were visually inspected and classified into true defects

or false alarms using the two plots generated by the BQC. Defects were

classified into the following groups: shading, soiling, snow/frost accumu-

lation, time lags, diurnal values = 0, large errors, incorrect leveling, mis-

calibrations, and unknown causes. All samples with verified defects were

set to NA for validating radiation databases, except for time lags whose

effects disappear after aggregating the data to daily values.

4.2.2 Data aggregation

Daily means of GH were calculated for all weather stations (Global, Eu-

ropean, and Spanish) to homogenize the temporal resolution of the data.

Hourly means were initially calculated for stations with sub-hourly reso-

lution. In the case of 1-min data, 15-min averages were calculated if at

least 5 min were available. Then hourly means were obtained if all four

15-min values were valid, following the procedure described in Roesch

et al. [45]. In the case of resolutions between 5 min and 30 min, hourly
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means were directly calculated if all sub-hourly values were available. Fi-

nally, daily means were obtained by averaging all hourly values if at least

20 h were available. This threshold was elevated to 21 h for the dataset of

39 European stations used for the PV simulations. The same aggregation

procedure was applied to calculate the daily means of DH .

4.3 Pre-processing radiation databases

4.3.1 Data extraction

Radiation databases provide gridded estimations of surface irradiance as

raster files. However, the exact values at the locations of weather sta-

tions are needed to evaluate the radiation databases against point mea-

surements. For products with high spatial resolution (SARAH-1, SARAH

PVGIS, CLARA-A1, CLARA-A2, NSRDB PSM, and COSMO-REA6), values

used were those of the pixel containing the station location. For prod-

ucts with coarse resolution (MERRA2, ERA-Interim, and ERA5), the clos-

est four pixels to the station location were interpolated using IDW. The

spatial resolution of CLARA-A1 and CLARA-A2 is rather high (∼25 km)

and similar to that of ERA5. However, CLARA was included in the high-

resolution group because CLARA computations are made in a grid of ∼4
km and then averaged, so the output raster files already account for the

spatial variability within each pixel.

4.3.2 Quality control

Reanalysis databases are obtained by assimilating satellite and ground ob-

servations and using a NWP model to extrapolate these observations in

space and time, predicting many other unobserved variables such as sur-

face radiation quantities. Assimilated observations are quality controlled,

and the output of the forecast model is limited to a range of physically

possible values. Thus, reanalysis data contain neither missing values nor

inconsistencies. On the contrary, satellite-based databases may have some

missing values due to either a real gap in satellite data or to the inability

of the model to generate valid estimations under challenging conditions

such as low solar elevation angles, slant viewing geometry, or bright sur-

faces. Therefore, satellite-based data with sub-daily resolution were qual-

ity controlled by setting night values to 0 and diurnal negative values to

NA. Besides, missing values of SARAH-PVGIS and CM SAF operational

at low solar elevation angles, which were provided as -1, were set to 0 to

minimize their impact on the calculation of daily means. These values will
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still introduce a small negative bias in the daily averages of these databases

that should be accounted for the interpretation of the results.

4.3.3 Data aggregation

Daily means of GH , BH and DH for radiation databases with sub-daily res-

olution were obtained using the aggregation procedure described in Sub-

section 4.2.2 for station measurements.

4.4 Validation of radiation databases

Satellite-based databases and reanalyses were evaluated against quality-

controlled measurements of the Global and European datasets. The main

validation was made in Europe because this dataset has a dense network of

weather stations covering the major European climates. A second valida-

tion was made against the Global dataset to corroborate the findings of the

European validation and to evaluate the databases in other regions apart

from Europe. In both cases, only the years of data from 2010 to 2014 with

more than 310 valid daily samples were used. The specific databases and

stations used for each validation were:

• European dataset (293 stations): four satellite-based databases

(SARAH PVGIS, SARAH-2, CLARA-A2, and CM SAF Operational)

and four reanalyses (ERA-Interim, ERA5, MERRA-2, and COSMO-

REA6).

• Global dataset (41 stations): two satellite-based databases (SARAH

PVGIS and NSRDB PSM) and three reanalyses (ERA-Interim, ERA5,

and MERRA-2).

The variable evaluated was the daily GH . Some of the radiation

databases also estimate DH and BH , but these are not measured at all

weather stations. Thus, they were validated only in the subset of 39 Eu-

ropean weather stations used for simulating PV systems (Section 5.4). Al-

though some databases and weather stations provide sub-daily data, we

only evaluated the daily means of GH because it was the highest resolution

we could validate using all available weather stations. For instance, some

databases and weather stations provide 1-h values, but they cannot be di-

rectly compared because hourly intervals are calculated differently by each
monitoring network and radiation database. The validation of 1-h values

requires 1-min measurements to calculate the hourly reference values with

the same averaging intervals as those used by each radiation database. Be-

sides, if the database provides instantaneous values instead of averages,
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just a few samples around the estimated value should be used. Thus, val-

idating hourly GH would have reduced the number of available stations

drastically because only the BSRN provides 1-min data.

Radiation databases were evaluated based on the mean bias deviation

(MBD), or simply the bias, the mean absolute deviation (MAD) and the

root mean squared deviation (RMSD):

MBD =
1

N

N∑
i=1

|Xtst −Xref | (4.6)

MAD =
1

N

N∑
i=1

(Xtst −Xref ) (4.7)

RMSD =
1

N

√√√
N∑
i=1

(Xtst −Xref )2 (4.8)

where Xtext is the test value, i.e., the estimations of daily GH (Gest
H,d ), Xref

the reference value, i.e., the measurements of daily GH made at weather

stations (Gmea
H,d ), and N the total number of daily samples. The term de-

viation was used in lieu of error to stress that reference values (measure-

ments) have their own uncertainty [184]. Relative metrics (rMBD, rMAD,

and rRMSD) were obtained by dividing absolute metrics by annual aver-

age irradiance. All years of data had more than 310 valid samples per year,

so validation metrics cover most of the inter-annual variability. This im-

plies that biases reported are valid for other temporal resolutions because

the bias is independent of the temporal resolution of the data if the num-

ber of missing values is low. This does not apply for absolute metrics such

as MAD or RMSD because absolute statistics increase with the temporal

resolution of the estimations.

The performance of the models under different atmospheric condi-

tions was evaluated with the monthly-aggregated rMBD and with the den-

sity plots of daily relative deviations against the clearness index (KT ).

The monthly-aggregated rMBD was obtained by dividing the monthly-

aggregated MBD by annual average irradiance, instead of by monthly av-

erage irradiance:

deviationm(X)[%] =
Xest
m −Xmea

m

Xmea
y

· 100 (4.9)

In this way, the monthly-aggregated rMBD is independent of the seasonal

variation of the solar resource and each value shows its real contribution
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to the annual rMBD. The same procedure was used to obtain the daily

relative deviations:

deviationd(X)[%] =
Xest
d −Xmea

d

Xmea
y

· 100 (4.10)

The clearness index is the ratio between GH and the extraterrestrial

irradiance received on a horizontal plane (EH ):

KT ,d =
Gmea
H,d

EH,d
(4.11)

The KT is a common indicator of the atmospheric transmissivity that varies

from 0.1-0.2 under overcast conditions to 0.8-0.9 under clear conditions.

The daily KT was only calculated if EH,d > 1W/m2 to prevent the inclusion

of outliers in the KT time series.

4.5 Estimation of uncertainty in solar radiation data

Previous sections dealt with the quality control of measurements and the

validation of satellite-based and reanalysis estimations. The next step is to

estimate the uncertainty of both measured and estimated GH under a com-

mon framework. For measurements, we analyzed independently the un-

certainty of pyranometers (equipment errors) and the uncertainty added

by operational defects. We estimated the uncertainty of annualGH because

this is the temporal resolution used to calculate the uncertainty of PV yield

predictions. We also reported daily uncertainties for consistency with pre-

vious sections and to facilitate the comparison of the results against other

studies. The uncertainty analysis was made with the Spanish dataset be-

cause it presents the most favorable conditions to estimate the uncertainty

statistically: it has a dense network of 732 stations with a high variety of

pyranometers, and some Spanish stations showed several defects of dif-

ferent types facilitating the estimation of deviations added by operational

errors.

For each factor analyzed (estimations, operational errors, and equip-

ment errors), the annual relative deviation between the irradiance value

being analyzed, i.e., the test value (Xtext), and the irradiance value used as

reference (Xref ) was obtained as:

deviationy(X)[%] =
Xtst
y −Xref

y

X
ref
y

· 100 (4.12)
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where Xtst
y and X

ref
y were calculated using the days with valid values for

both test and reference variables. This prevents adding systematic devia-

tions to annual deviations due to the presence of missing values in either

test or reference variables. Variables used as test and reference varied de-

pending of the factor analyzed (Subsections 4.5.1 to 4.5.3). Annual and

daily uncertainties were calculated statistically from the distributions of

annual and daily relative deviations, respectively (Subsection 4.5.4).

4.5.1 Uncertainty in estimations from radiation databases

The uncertainty in estimated irradiance was characterized using one

geostationary satellite-based database (SARAH-1), one polar-orbiting

satellite-based database (CLARA-A1), one regional reanalysis (COSMO-

REA6), and two global reanalysis (ERA-Interim and ERA5). Similarly to

the validation over Europe, the annual deviations of the estimations (Gest
H,y)

were obtained as:

deviationdby = Gest
H,y −Gaemet

H,y (4.13)

where the reference values (Gaemet
H,y ) were the 53 quality-controlled AEMET

stations to reduce the uncertainty of the validation. The analysis was lim-

ited to the period in which data from the five databases were simultane-

ously available (2010-2013).

4.5.2 Uncertainty added by operational errors

The uncertainty added by operational defects was estimated as the dif-

ference between measurements from stations with defects (Gmea
H,y ) and

SARAH-1:

deviation
op−error
y = Gmea

H,y −Gsarah
H,y (4.14)

Annual deviations were calculated only at stations and years where de-

fects occurred, independently of the duration of the defect. SARAH-1 was

used as the reference due to the lack of collocated measurements to evalu-

ate the magnitude of the operational errors.

4.5.3 Uncertainty of pyranometers (equipment errors)

The analysis of equipment errors was simplified to the comparison of

53 AEMET secondary standard pyranometers against 348 SIAR photodi-

odes. Sensors from the regional networks and other types of pyranometers

(first class and second class) were excluded because they are sparsely dis-

tributed, so their inclusion would lead to additional uncertainties related
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Figure 4.5: SIAR photodiodes separated by less than 20 km

from an AEMET secondary standard pyranometer.

to the spatial location. AEMET uses ISO 9060 secondary standard pyra-

nometers from Kipp & Zonen, which have an achievable uncertainty at

95% CI of ±3% and ±2% for hourly and daily values, respectively [19]. The

uncertainty of annual values should be smaller due to the compensation of

seasonal deviations, so we assumed an annual uncertainty of ±1.5%. SIAR

photodiodes are the SP1110 model (Skye Instruments). Their datasheet

specifies an absolute accuracy always better than 5% and most times un-

der 3%, but it details neither the temporal resolution nor the confidence

level of this value. Besides, field uncertainties of photodiodes depend on

the empirical corrections applied for cosine error, spectral response, and

thermal effects, among others. Thus, our goal is to roughly estimate the

real uncertainty of SIAR photodiodes using AEMET secondary standards

as reference. For that, we calculated the difference between SIAR pho-

todiodes (G
siar−ph
H,y ) and AEMET secondary standard (Gaemet−ss

H,y ) in a group

of 34 SIAR photodiodes that had an AEMET station in a radius of 20 km

(Fig. 4.5).

deviation
eq−error,ph
y = G

siar−ph
H,y −Gaemet−ss

H,y (4.15)

Operational errors were removed to evaluate the uncertainty of equip-

ment errors alone. The analysis was restricted to the period 2007-2013

because most AEMET stations started in 2007. Besides, we only used SIAR

and AEMET stations operating during all the years in this period to avoid

including artificial trends in the comparison.
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4.5.4 Estimation of uncertainty from the distributions of annual
deviations

Annual deviations calculated in previous subsections included the uncer-

tainties of both test and reference values. The uncertainty of test values

alone was estimated statistically following the GUM guidelines: (i) remove

the systematic part of deviations (bias), (ii) estimate the uncertainty of

deviations statistically, and (iii) remove the uncertainty of reference val-

ues with the uncertainty propagation rules. GUM analyzes bias and un-

certainty separately [185] because it considers that systematic errors can

be detected and corrected. An example of this would be the use of site-

adaptation techniques to eliminate the bias of radiation databases by com-

paring estimations against groundmeasurements [18]. Another example is

the use of empirical correction factors during the calibration of pyranome-

ters to remove systematic deviations of the sensors [186]. However, from

the perspective of users of solar radiation data, the bias will generally be

present in both measured and estimated data. Thus, we removed the bias

from the deviations, but we kept it for the analysis reporting the results as

bias ±u.
The bias was characterized as themedian bias deviation (�MBD) because

the median is a more robust central measurement than the mean for non-

normal distributions. The bias was only present in reference values when

SARAH-1 was the reference, and it was directly removed to obtain the true

bias in test values:

deviation = tst − ref → biastst = biasdeviation + biasref (4.16)

Uncertainty was estimated as the expanded uncertainty with a 95%

confidence level (u95). GUM defines this value as 1.96 times the standard

deviation (coverage factor = 1.96), but we did not use this method because

some of the variables were non-normally distributed. Instead, we calcu-

lated uncertainty statistically as the distance between the 95% CIs and the

bias. The 95% CIs were defined by percentiles 2.5 (p2.5) and 97.5 (p97.5).
The distance between the CIs and the bias (median) is not symmetric for

non-normal distributions, so both negative (u−) and positive (u+) uncer-

tainties were reported as:

±u95 = u+

u− =
+(p97.5−bias)
−(bias−p2.5) (4.17)

The uncertainty of test values (utst
y ) was obtained by removing the un-

certainty of reference values with the functional relationships for uncorre-

lated uncertainties. All reference values had their own uncertainty because
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the true irradiance is never known. In case of subtractions, the absolute

uncertainty of test and reference values add in quadrature:

y = x1 ± x2 → U(y) =
√
U2(x1) +U2(x2)) (4.18)

In our study, this rule also applies for relative uncertainties because the av-

erage value of the variables subtracted is the same. Hence, the uncertianty

in test values is obtained as:

deviation = tst − ref → utst
y =

√
(udeviation

y )2 − (uref
y )2 (4.19)

The functional relationships were applied separately to u+ and u−. Daily

uncertainties were obtained similarly to annual uncertainties but using

daily differences (deviationd = Gtst
H,d - G

ref
H,d ) instead of annual ones.

4.6 PV system simulations

Figure 4.6: Flowchart of the procedure used to evaluate

the suitability of radiation databases for simulating PV sys-

tems.

The simulation model is based on the one implemented by PVGIS.

The suitability of radiation databases for yield prediction studies was

evaluated by comparing the results obtained with simulations based on

estimated irradiance against those obtained with solar radiation measure-

ments. The databases evaluated were those used by PVGIS: SARAHPVGIS,

COSMO-REA6, and ERA5. The simulations were made at the locations of

the 39 European weather stations that measure DH , from 2010 to 2014.
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The three radiation databases and all weather stations meet the require-

ments for simulating PV systems: (i) time resolution of at least 1 h, and

(ii) availability of at least two out the three horizontal irradiance variables

(GH , DH or BH ) to avoid the use of decomposition models. The simulation

model implemented by PVGIS was used (Fig. 4.6). Ambient temperature

and wind speed data were obtained from ERA-Interim (Subsection 3.3.2).

The outputs stored were the hourly GPOA and the hourly module power

(PDC ).

4.6.1 Transposition model

The transposition of irradiance from the horizontal plane to the plane of

the array was made independently for each radiation component. BPOA

was calculated from BH using solar geometry relationships. RPOA was

calculated assuming an isotropic distribution of reflected irradiance and

a constant ground albedo (ρg = 0.2). DPOA was obtained using the

anisotropic diffuse model proposed by Muneer [187], which accounts for

the anisotropic diffuse irradiance coming from the horizon band and that

from the circumsolar region. Muneer [187] proposed different equations
for shaded and sunlit surfaces. The equation for shaded surfaces or sunlit

surfaces under overcast situations is:

DPOA =DH ·
⎡⎢⎢⎢⎢⎣(1+ cosβ

2

)
+0.25227 ·

(
sinβ − β · cosβ −π · sin2

(
β

2

))⎤⎥⎥⎥⎥⎦ (4.20)

where β is the module inclination angle. For sunlit surfaces, Muneer’s

model further distinguishes between overcast and clear situations. The

equation for sunlit surfaces under non-overcast situations is:

DPOA =DH ·
⎡⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎝(1+ cosβ

2

)
+

(
sinβ − β · cosβ −π · sin2

(β
2

))
·
(
0.00263−

− 0.712 · BH

EH
− 0.6883 ·

(BH

EH

)2)⎞⎟⎟⎟⎟⎠ ·
⎛⎜⎜⎜⎜⎝1− BH

EH

⎞⎟⎟⎟⎟⎠+
⎛⎜⎜⎜⎜⎝BH

EH
· cosθ
cosθs

⎞⎟⎟⎟⎟⎠⎤⎥⎥⎥⎥⎦
(4.21)

and the following correction has to be applied for low solar elevation an-

gles (αs < 0.1 rad):
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DPOA =DH ·
⎡⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎝(1+ cosβ

2

)
+

(
sinβ − β · cosβ −π · sin2

(β
2

))
·
(
0.00263−

− 0.712 · BH

EH
− 0.6883 ·

(BH

EH

)2)⎞⎟⎟⎟⎟⎠ ·
⎛⎜⎜⎜⎜⎝1− BH

EH

⎞⎟⎟⎟⎟⎠+
⎛⎜⎜⎜⎜⎝BH

EH
· sinβ · cos(φ −φs)

0.1− 0.008 ·αs

⎞⎟⎟⎟⎟⎠⎤⎥⎥⎥⎥⎦
(4.22)

where φ is the module orientation and φs the solar azimuth angle.

Muneer’s model compares well with other transposition models [152]. The

choice of inclined-plane model is not critical to the present study which in-

vestigates the effect of bias in the direct/diffuse irradiance. All models will

predict a decrease in diffuse radiation with increasing inclination (as more

and more of the sky will shine on the back of the plane), and an increase in

direct radiation from horizontal up to an optimum angle which depends

on latitude and the seasonal variation in climate. Reflected irradiance will

also increase with the inclination, but its annual contribution is generally

negligible when compared to the beam and diffuse components.

4.6.2 PV module model

The effective irradiance (Geff) was calculated from GPOA by accounting

only for AOI losses. Losses due to shading, accumulation of snow and soil-

ing were also ignored because their impact is independent of the radiation

database used.

Angle of incidence (AOI) effects

AOI losses were modeled with the method proposed by Martin and Ruiz

[188], which is used in part 2 of the IEC 61853 standard on energy rating

[189]. This models calculates the correction factor for beam (fAOI,B) and

diffuse (fAOI,D) components separately:

fAOI,B =
1− exp(−cosθ/ar )
1− exp(−1/ar ) (4.23)

fAOI,D =1− exp
⎡⎢⎢⎢⎢⎣−1ar ·

⎛⎜⎜⎜⎜⎝ 4

3π
·
(
sinβ +

π − β − sinβ
1+ cosβ

)
+

+ (0.5ar − 0.154) ·
(
sinβ +

π − β − sinβ
1+ cosβ

)2⎞⎟⎟⎟⎟⎠⎤⎥⎥⎥⎥⎦
(4.24)
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where ar is an empirical coefficient. In this case, we used a value of ar =
0.16 based on Martin and Ruiz [188]. Note that the expression for fAOI,D

only depends on β, so the reduction of the diffuse light is constant in time.

Model for PV power dependence on temperature and irradiance

The instantaneous power of PV modules at conditions different from those

under STC depends on Tmod , Gef f and the solar spectrum. Spectral losses

were neglected because only SARAH provided spectrally resolved irradi-

ance. The dependence of the efficiency on temperature and irradiance was

calculated with the model proposed by Huld et al. [190]:

P ′DC(G
′
eff,T

′
mod) = G′eff · η ′(G′eff,T ′mod) = G′eff ·

(
1+ k1 · lnG′eff + k2 · ln2G′eff+

+ k3 ·T ′mod + k4 ·T ′mod · lnG′eff + k5 ·T ′mod · ln2G′eff + k6 · (T ′mod)
2
)

(4.25)

where the coefficients k1 · · ·k6 were those obtained by Huld et al. [190] for

c-Si modules by fitting to measured power matrices. All variables in the

model were normalized to STC as:

P ′DC = PDC/PSTC with PSTC = nominalpower

G′eff = Geff/GSTC with GSTC = 1000W/m2

T ′mod = Tmod −TSTC with TSTC = 25◦C
(4.26)

Tmod was calculated with the model proposed by Faiman [191]:

Tmod = Tamb +
GPOA

u0 +u1 ·WSmod
(4.27)

where u0 and u1 are the empirical coefficients reported by Koehl et al. [192]

for c-Si modules. Tamb and WSmod were derived from ERA-Interim esti-

mates as described in Subsection 3.3.2.

4.7 Propagation of the bias inGH through PV simula-
tions

For each radiation database, the deviation between the simulations using

estimated irradiance (subscript ’est’) and the simulation using weather sta-

tion measurements (subscript ’mea’, reference simulation) was calculated:
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deviationd(X) = Xest
d −Xmea

d X ∈ (GH,BH,DH,GPOA,PDC) (4.28)

This procedure gives the "true error" only for horizontal irradiance

variables (GH , BH , DH ) because these are the only variables for which Xmea

is actually measured data. In GPOA and PDC, X
mea is the prediction ob-

tained with the simulation based on ground measurement, so the devia-

tions show the difference between predictions using estimated irradiance

and predictions using ground measurements. Even though the simula-

tions were made with hourly aggregated values, hourly deviations could

not be calculated because hourly intervals were defined differently in ra-

diation databases and weather stations. All simulations were made using

c-Si modules with a nominal power of 1 kW (PSTC = 1 kW) and an incli-

nation angle of 45◦ (β = 45◦). The results are independent of PSTC because

the simulations are evaluated with relative metrics.

The suitability of each radiation database for simulating PV systems

was evaluated with the annual rMBD of the daily deviations. The influence

of the intra-annual distribution of the deviations in the propagation of the

bias was also analyzed with the scatter plots of daily relative deviations

against the clearness index. As for the validation of radiation databases,

the relative daily deviations were obtained by dividing the absolute devia-

tions by the annual averages instead of by the daily ones.

The use of relative metrics enables the comparison of the values ob-

tained in the different steps of the simulation chain. Therefore, the propa-

gation of the bias in the transposition model (Eq. 4.29) and the PV module

model (Eq. 4.30) was straightforwardly calculated:

ΔrMBD(trans.model) = rMBD(GPOA)− rMBD(GH )

Δdeviationd(trans.model) = deviationd(GPOA)− deviationd(GH )
(4.29)

ΔrMBD(PVmod.model) = rMBD(PDC)− rMBD(GPOA)

Δdeviationd(PVmod.model) = deviationd(PDC)− deviationd(GPOA)

(4.30)

Note that in the present study, both positive and negative changes of

the bias through the simulation have negative connotations, regardless of

whether the absolute value of the bias decreases getting closer to zero.
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4.7.1 Influence of module inclination angle in bias propagation

The influence of the module inclination angle in the propagation of the

bias was analyzed performing simulations with an inclination angle vary-

ing from 0◦ to 65◦ by intervals of 5◦. These simulations were conducted

only in three of the locations included in the central part of the study:

(i) BSRN CAR (Carpentras), a low-latitude station (44.08◦N) situated in a

sunny region with a high frequency of clear-sky days, (ii) DWD662 (Braun-

schweig), a mid-latitude station (52.29◦N) located in a cloudy region, and

(iii) FMI 4714 (Sotkamo), a high-latitude station (64.11◦N) located in a re-

gion with seasonal snow and low sun elevations during winter.

4.7.2 Uncertainty of the reference simulation

The uncertainty of each variable analyzed (GH , BH , DH , GPOA, and PDC) in

the reference simulation was estimated to evaluate the significance of the

results. The uncertainty was smaller in irradiance variables (GH , BH , DH ),

which were measurements, than in GPOA and PDC, which included the un-

certainty of measured irradiance plus that of the simulation models. This

uncertainty can be reduced by using GPOA and PDC measurements, which

is the standard approach for validating PV simulation models, but those

are available only at a few sites. On the contrary, our goal is to analyze

the suitability of different radiation databases for PV simulations under a

common simulation framework. Thus, having a spatially uniform database

from weather stations to feed the simulations and evaluate the radiation

databases across Europe was more important than having high-quality but

sparsely distributed GPOA and PDC measurements. The expanded uncer-

tainty with a 95% confidence level (u95) was estimated from the values

reported by previous studies applying the uncertainty propagation rules

due to the lack of high-quality collocated data to calculate u statistically.

The uncertainty of measured variables (GH and DH ) depends on the

quality of the sensor and the operating conditions at the stations. In the

present study, most stations use secondary standard pyranometers (shaded

and unshaded), which have a typical uncertainty of ±3% and ±2% for

hourly and daily values, respectively [19]. These values do not include

additional uncertainties due to incorrect calibrations and operational de-

fects, but the existence of significant operational errors in the current set

of weather stations is unlikely. All stations are maintained by organiza-

tions that implement strict operating procedures. For instance, the BSRN,

which follows the strictest guidelines among all the networks used, has an

accuracy target of ±2% for GH and DH (1-min values) [41]. Besides, all

measurements have passed the BQC and the BSRN tests.
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Based on this, we assumed a u95 in annual GH and DH of ±2% for sta-

tions below 55◦ N, and of ±3.5% for stations above 55◦ N. Annual uncer-

tainties are lower than the daily uncertainties due to the compensation of

seasonal deviations. The larger uncertainty at high-latitude stations is due

to the extreme weather conditions and to the high frequency of hours with

low sun elevation angle that aggravates the cosine error of pyranometers,

among others. These values are rough estimates just for the analysis of

uncertainty propagation through the simulations. A more detailed analy-

sis similar to those made by Reda [39], Vuilleumier et al. [41], and Habte

et al. [40] would require the evaluation of the particular conditions at the

stations such as the pyranometer model and dates of sensor replacement

or re-calibrations. Besides, the uncertainty also varies spatially with lati-

tude and temporally from season to season due to changes in the incom-

ing irradiance and sun elevation angles [40]. Uncertainty fluctuations due

to changes in either the equipment or the operating conditions are more

likely in FMI and DWD networks than in the BSRN. A couple of DWD

stations were temporally equipped with SCAPP sensors, which simulta-

neously measure BN and DH using a silicon detector. The uncertainty of

SCAPP measurements is higher due to the limited spectral response of sil-

icon and the cosine error, among other issues. In the FMI network, the

uncertainty in DH is not homogeneous between stations due to variations

in the equipment (sorted by increasing accuracy): (i) shading ring (before

2012), (ii) Delta-T SPN1 multi-pyranometer (since 2012), (iii) shading ball

on a solar tracker.

The uncertainty increases for BH because this variable was not mea-

sured but calculated as the difference between GH and DH . As aforemen-

tioned, the absolute uncertainty adds in quadrature in sums and differ-
ences (Eq. 4.18), so the uncertainty in BH is:

GH = BH +DH → U(BH ) =

√
U2(GH ) +U2(DH ) (4.31)

Absolute uncertainties were transformed into relative ones and vice versa

by using the annual average values for each variable: GH = 130 W/m2, BH

= 66 W/m2 and DH = 64 W/m2, for stations below 55◦N, and GH = 104

W/m2, BH = 56 W/m2, DH = 48 W/m2, for all stations above 55◦N.

The uncertainty propagation through the simulations was made as-

suming that the PV simulation model is a series of multiplicative factors

that transform the GH into PDC. The total uncertainty in multiplications is

obtained by adding in quadrature the relative individual uncertainties:
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u(GPOA) =

√
u2(BH ) +u2(trans.model)

u(PDC) =

√
u2(BH ) +u2(trans.model) + u2(PVmod.model)

(4.32)

where u(BH ) was considered the overall uncertainty of horizontal irradi-

ance data because BH had the largest uncertainty among the three hori-

zontal irradiance variables. An annual uncertainty of 3% was assumed for

both, transposition and PV module models, based on the studies made by

Müller et al. [10] and Thevenard and Pelland [11].

Figure 4.7: Estimated annual uncertainty in the reference

simulation.

(a) Locations below 55◦N. (b) Locations above 55◦N.
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Chapter 5

Results and Discussion

First, the different types of defects detected with the BQC at the European

and Spanish weather stations are analyzed in Section 5.1. Several satellite-

based and reanalysis databases are validated over Europe and also world-

wide in Section 5.2. The uncertainty of both, solar radiation measurements

and estimations, is evaluated in Section 5.3 using the dense network of

Spanish weather stations. Finally, the propagation of the uncertainty in

solar radiation data through PV simulations is assessed in Section 5.4.

5.1 Quality control of solar radiation measurements

The BQC was used to quality control all European and Spanish weather

stations. Stations flagged were visually inspected using the two plots gen-

erated by the BQC and classified into the following categories:

• Operational errors: snow or frost accumulation, shading, soiling,

time lags, large errors, diurnal GH = 0, and incorrect leveling.

• Equipment errors: incorrect calibration of the sensor.

• Doubtful cases: potential errors of unknown cause.

• False alarms.

The tuning process of the window function used in the BQC is described

in Subsection 5.1.1. Subsection 5.1.2 shows how the BQC plots (daily devi-

ations and instantaneous irradiance) look like for each type of defect. The

duration of each defect is depicted in Fig. 5.2. The quality of the monitor-

ing networks is evaluated in Subsection 5.1.3. Finally, the strengths and

limitations of the BQC are discussed in Subsection 5.1.4.
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5.1.1 Setting up the BQC

The best configuration of the window function was determined by analyz-

ing the precision-recall (PR) curves (Fig. 5.1) obtained with different com-

binations of w (window width) and n (CI width). w varied within 5, 10, 15,

20, 30, 40, 60, 90, and 120, whereas n ranged from 0.2 to 3.5 in intervals

of 0.1. PR curves evaluate precision, i.e., the percentage of flags showing

true defects, versus recall, i.e., the percentage of true defects found. The

PR curves in Fig. 5.1 showed if the BQC was able to find the different types
of defects at each station with erroneous data, independently of whether

the BQC flagged the exact days when defects occur.

Figure 5.1: Precision-recall (PR) curves obtained for differ-
ent combinations of n and w.

n goes from 0.2 (up-pointing triangle) to 3.5 (down-pointing triangle) in intervals of 0.1. The red dot
represents the results obtained with the chosen configuration based on two runs of the window
function: (i) w = 20 d, n = 2.4, (ii) w = 90 d, n = 0.4.

The PR curves showed similar patterns with decreasing n, i.e., narrow-

ing the CI, and reducing w, i.e., analyzing fewer days with the window

function. The number of defects detected increased at the expense of ob-

taining more false alarms. Conversely, false alarms decreased by increas-

ing either n or w, but the number of defects found diminished as well.

The best configuration may be an intermediate solution that balances the

number of true positives and false alarms, somewhat around w = 30 d and

n = 1.5. However, from the users’ perspective, it is more useful to find all

existing defects (high recall) rather than having few false alarms (high pre-

cision). This is even more clear in the BQC because it includes two plots

that speed up the detection of false alarms. Thus, w and n should be tuned

prioritizing the attainment of a high recall.
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Besides, the characteristics of the defects vary with their duration. De-

fects introducing high deviations such as electronic shutdowns or equip-

ment failures typically last from few hours to few days because they can

be easily detected and corrected. Conversely, low-magnitude defects such

as shading or calibration drifts often pass unnoticed and may last several

months. Hence, defects detected with narrow windows (w < 20 d) are not

the same as those found with wide ones (w > 30 d), so the use of an inter-

mediate solution is not sufficient to detect all types of defects.

Based on the previous observations, the best results were obtained by

running the window function with two different configurations. The first

run looked for short-lived defects (w = 20 d), relaxing the CIs (n = 2.4) to

reduce the number of false alarms. The second run searched long-living

defects (w = 90 days) using more restrictive CIs (n = 0.4) to detect low-

magnitude deviations. This design based on two configurations of the

window function to detect different types of defects was possible thanks

to the flexibility of the method, i.e., the trade-off between w and n. This

configuration led to a precision of 66% and a recall of 92%, improving

configurations based on a single run of the window function (Fig. 5.1).

5.1.2 Visual inspection of quality flags

Figure 5.2: Duration of defects detected at European and

Spanish weather stations.

The label depicts the total number of stations showing each type of defect.
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True errors

Snow or frost accumulation on pyranometers is an operational error char-

acteristic of places with seasonal snow such as high-latitude regions or

high-elevation mountains. Dew formation in the mornings may also be

a problem in areas with enough humidity to produce water vapor conden-

sation. Dew typically lasts few hours and causes smaller deviations in the

readings than snow or frost, being undetected with the BQC because it

is based on daily deviations. Ventilation units are installed in the pyra-

nometers to prevent the accumulation of snow, frost, and dew. This is a

common practice in high-quality networks such as the BSRN and national

meteorological agencies. Some ventilators even integrate heaters to help

in melting snow and ice. Therefore, snow accumulation is more likely in

non-ventilated pyranometers than in ventilated ones. However, it may also

affect ventilated stations if sensors are not regularly cleaned or in case of

extreme weather conditions.

Figure 5.3: Operational error: snow or frost accumulation.

Station: LMT Apelsvoll.

Severe cases of snow or frost accumulation occur in regions with sea-

sonal snow. Snow accumulation generally lasts from few days to few weeks

and disappears when the pyranometer is cleaned, or the snow melts. This

defect produces very low irradiance values detected by the BQC as a pe-

riod of underestimated irradiance that leads to positive deviations for all

radiation databases (Fig. 5.3a). The detection of this error is hindered by

the low irradiance of these months, which leads to small deviations around

50 W/m2. The deviations are particularly small in high latitudes because
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the irradiance is close to or even zero in winter. Snow or frost accumula-

tions are not detected by traditional QC tests based on range or consistency

checks because measurements obtained are plausible under cloudy condi-

tions.

Soiling is caused by the accumulation of dust, pollen, pollution, or bird

droppings on the sensor. This defect is also mitigated by installing venti-

lation units. A better solution for preventing soiling is to clean regularly

the dome of the sensor, especially at locations with high aerosol loads. The

BSRN measuring guidelines [17] recommend cleaning the instruments at

least once per day, preferably before dawn.

Figure 5.4: Operational error: soiling (cleaned by rain).

Station: SIAR A12. Days with precipitation are shaded in blue. The label shows the daily rainfall.

Soiling leads to underestimated irradiance values, but the magnitude

of the deviations is very variable due to the different degrees of soiling.

In most cases, daily irradiance values resemble those under cloudy condi-

tions, which hinders the detection of soling by range checks that analyze

each daily sample individually. The best approach to detect soiling is ei-

ther by visual inspecting the time series or by analyzing if the underes-

timation prevails in time, as the BQC does. Soiling duration can also be

very variable. The severity of the error generally increases with time until

it rains (Fig. 5.4) or until cleaning the sensor manually (Fig. 5.5). Soiling

may last several months at remote stations in arid climates, such as those

located in desserts. Care must be taken when analyzing potential soiling

cases with low-magnitude deviations because the deviations can be caused

either by soling or by an overestimation in the radiation database. In these

cases, checking the precipitation data if available can help in the detection

of soiling cases.
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Figure 5.5: Operational error: soiling (manually cleaned).

Station: SIAR AL02.

Shading is another defect that leads to the underestimation of irradi-

ance because the sun is being blocked by artificial or natural objects around

the station. Shadows typically appear in the morning or the afternoon be-

cause low solar elevation angles favor horizon blocking (Fig. 5.6). Occa-

sionally, shadows may affect not only the pyranometer but also the sur-

rounding region. This happens in high-latitude regions, where the sun

elevation angle is low during winter, or deep valleys, where the surround-

ing mountains block the sun at sunrise and sunset. Here, the user has to

decide whether to keep or remove the shadows depending on the end-use

of the records. For instance, shadows should be kept in the datasets for

an evaluation of the solar power capacity of the region, because they also

reduce the energy yield obtained with PV panels. Contrary, shadows are

generally removed for validating radiation databases, because these mod-

els are usually focused on global atmospheric processes.

Shadows can also occur around noon if a surrounding object such as

trees or buildings directly blocks the sun (Fig. 5.7). Sometimes, even

the components or the own weather station may cause the shadows (self-

shading). Shading duration is usually long, typically spanning several

years of the time series (Fig. 5.2). Shading may even affect the whole time

series if the station was inadequately placed, or emerge during the opera-

tional stage due to low maintenance and changes in the surrounding area,

which is an indirect consequence of an incorrect site selection as well. Sim-

ilarly to soiling and snow, shading is hardly detected by conventional QC

methods because the daily means obtained are physically possible under

overcast conditions.
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Figure 5.6: Operational error: shading (sunrise shadow).

Station: SIAR A102.

Figure 5.7: Operational error: shading (midday shadow).

Station: SOS Rioja Urbaña.

The absolute time at high-quality weather stations is commonly mea-

sured in UTC or LST and set with one of the following methods [17]:

(i) time-synchronization with GPS satellites, (ii) conversion of radio fre-

quency time signals from national standards agencies, and (iii) time up-

dates via the internet. Time lags are thus unusual in high-quality stations,

and if they occur, they typically last few days and are usually related to

an occasional failure in the data logger. However, time lags are common
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Figure 5.8: Operational error: time lag.

Station: SIAR AV101.

in low-quality monitoring networks that synchronize clocks manually or

collect data in local time (LT). These time lags can span several months

until the station is inspected again (Fig. 5.2). In some stations using LT,

the time lag only appears either in winter or summer evidencing an inade-

quate correction for daylight saving time. These time lags are around ±1 h,

but smaller time lags between 0-30 min may also occur due to an incorrect

specification of the averaging intervals. The BQC cannot detect time lags

because this defect gets masked in daily averages. Time lags were found by

the BSRN checks included in the BQC, flagging either morning (forward

time lag) or afternoon readings (backward time lag) if a time lag occurs

(Fig. 5.8). Other tests have been specially tailored to detect this error, such

as those based on the symmetry of the irradiance profiles [58].

Large errors include all types of equipment malfunctions and data pro-

cessing errors that cause large deviations during short periods of few days

or even less [33]. Large errors can be either positive or negative, and most

of them are easily detected with basic range checks because the readings

obtained are out of the physically possible limits. This was the case of the

station in Fig. 5.9, with all measurements above the upper limit of phys-

ically plausible values, or station in Fig. 5.10, with night measurements

above zero. These large errors were flagged by both the BSRN tests and

the BQC. The inclusion of BSRN checks in the BQC assures the detection

of too brief defects that do not produce sufficiently large deviations for

being detected with a window of 20 days. The duration of large errors is

generally very short (Fig. 5.2) because most stations implement automatic

QC checks to detect these large deviations. In this sense, working with
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Figure 5.9: Operational error: large error (values out of

range).

Station: MeteoGalicia 10800.

Figure 5.10: Operational error: large error (night values

above zero).

Station: Euskalmet 060.

sub-hourly data (1-min to 10-min) facilitates the detection of large errors

because their magnitude can be mitigated after aggregating the data to

hourly, daily, or monthly means. Some large errors generate physically

possible measurements that still introduce significant deviations in the

data. This was the case of the station shown in Fig. 5.11, whose records

were around 2-3 W/m2 during the whole year but passed the BSRN range

tests. In this case, the error was straightforwardly detected by the window
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Figure 5.11: Operational error: large error (values close to

zero).

Station: LMT Sortland.

function as the deviations of the three radiation products were close to a

100%.

Figure 5.12: Operational error: diurnal GH = 0 (constant).

Station: SIAR M05.

Diurnal readings set to zero (Diurnal GH = 0) are a particular case of

large error. This defect can be easily detected when all diurnal values are

zero (Fig. 5.12) because the daily mean is zero as well. However, some

stations intermittently set diurnal readings to zero (Fig. 5.13), so the daily
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Figure 5.13: Operational error: diurnal GH = 0 (intermit-

tent).

Station: Met Office 1302.

means resemble those of a cloudy day. The pyranometer produces accept-

able records during the rest of the day. The most probable cause of the

error may be a failure during the data processing or in the data logger,

which integrates and saves the instantaneous records. Again, this error

may pass unnoticed if working with temporally-aggregated data. Quality

checks should be applied to high-resolution data whenever possible.

Figure 5.14: Operational error: incorrect leveling of the

sensor.

Station: SIAR MA04.
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Pyranometers generally include a high-precision bubble level and ad-

justable screw legs to place the sensor horizontally (within ±0.1◦). How-

ever, any failure in the mounting structure or the legs can result in an in-

correct leveling of the sensor. It is an unusual defect that generally does not

last too long because it can be detected either by visual inspecting the sta-

tion or the time series. Deviations introduced in the measurements depend

on the new angle of the pyranometer. Irradiance will be overestimated if

the sensor is tilted towards the sun (south in the Northern hemisphere),

while the opposite occurs if it tilts away from the sun. If the sensor tilts

towards east or west, morning or afternoon measurements will be over-

estimated, respectively, while underestimating the rest of the day. This

was the case of the station shown in Fig. 5.14, which depicts the time se-

ries of a pyranometer tilted towards west. The probability of detecting

cases of incorrect leveling with the BQC increases with the duration of

the defect, the inclination angle, and its direction. The daily global ir-

radiance obtained at some inclinations can be similar to GH , passing the

BQC. Besides, the short duration of some defects (Fig. 5.14) hinders the

detection of the error with the window function of 20 days. Similarly to

time lags, this is another case for which the inclusion of the BSRN tests

facilitates the detection of the defect. The BSRN range checks will flag all

time slots with measurements above the physically possible limits for an

horizontally-installed pyranometer.

All the defects described so far were operational errors. These defects

generally introduce larger deviations than equipment errors and are more

easily detected. However, the BQC found some equipment errors as well.

The window function identified both positive and negative systematic de-

viations due to problems in the calibration of the pyranometers. These de-

fects are more easily identified when the problem started or ended within

the limits of the period under study because the difference between cor-

rectly and incorrectly calibrated sensors becomes more clear. This was

the case of the station shown in Fig. 5.15, which presented a constant

overestimation of the irradiance from 2005 to 2008 that suddenly disap-

peared in 2009. Checking the station metadata can help in the identifi-

cation of the cause of equipment errors. In some stations, the systematic

deviation ended/started with sensor replacements evidencing a problem

in the calibration of the old/new sensor. For instance, this was observed at

three MetOffice stations (326, 453, 586) that replaced second class sensors

with secondary standard ones. In other stations such as the one shown in

Fig. 5.15 the same sensor was used from 2005 to 2015, so the extinction of

the bias was probably due to a re-calibration of the sensor.
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Figure 5.15: Equipment error: inadequate calibration.

Station: SIAR ZA05.
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False alarms

Figure 5.16: False alarms: snow-covered surfaces.

Station: FMI Utsjoki.

False alarms occur when all radiation databases fail inconsistently: if

they fail just in one period of the time series (temporal inconsistency) or

in one site of the spatial region defined to calculate the CIs (spatial incon-

sistency). An example of a temporal inconsistency is the presence of one

month with snow cover in a region where snow rarely falls, whereas a case

of a spatial inconsistency is filtering mountain stations with CIs calculated

over a predominantly flat region. The window function flags inconsistent

deviations because they are not included in the CIs.

False alarmswere obtained at 1 station with seasonal snow and 5moun-

tain stations (Table 5.1). The station with seasonal snow was the highest-

latitude station (FMI Utsjoki, 69.8◦N). Satellite-based databases produce

large deviations over snow-covered surfaces due to the similar reflectivity

of snow and clouds. Even though FMI Utsjoki was filtered out with other
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Figure 5.17: False alarms: mountains.

Station: DWD 5792 (Zugspitze - 2964 m).

high-latitude stations where the presence of snow is common, FMI Utsjoki

is the station with the longest seasonal snow. The window function flagged

just one month of the time series (April - May) where the snow still covers

the ground, but the irradiance level is high increasing the magnitude of

the deviations (Fig. 5.16). Thus, the BQC probably flagged the excessively

large deviations during a year with abundant snow. The five mountain

stations were located in the Alps (Météo France 5183001 - 1310 m, Météo

France 6094002 - 1748 m, DWD 5792- 2964 m) and the Pyrenees (Météo

France 9024004 - 1781 m, Météo France 64316003 - 1427 m). These sta-

tions were filtered out with the CIs calculated for all of France, so the BQC

flagged the large deviations of solar radiation models in the mountains

(Fig. 5.17). The limitations of solar radiation models in the mountains and

over snow-covered surfaces are more extensively discussed in Section 5.2.
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Doubtful cases

Figure 5.18: Doubtful cases: SIAR photodiodes.

Station: SIAR A101.

There were some stations in which it was not possible to identify the
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cause of the deviation flagged after visual inspecting the time series. In

some of them, the presence of defects was evident, but we could not de-

termine their cause due to their low magnitude, the lack of metadata, and

the lack of sub-daily data to generate the second plot of the BQC. These

stations were included in the Unknown cause group.

There was an additional group of 60 stations in which the presence of

an equipment error was highly likely. All of them were SIAR photodiode

pyranometers, which have lower accuracy than thermopile pyranometers.

The flags were long-term periods of at least 90 consecutive days with a

small but persistent systematic deviation of around ±50 W/m2 between

measurements and the three radiation databases. The hypothesis of a si-

multaneous failure of all radiation databases, i.e., a false alarm of the BQC,

was discarded because this type of error was only found in SIAR photodi-

odes. Further, although some of the negative biases (36 stations) could be

caused by undetected operational errors such as small dust accumulations,

these defects rarely produce long-term positive bias (24 stations). The bias

in most of these stations followed random patterns spanning from 3 to

6 months at any season of the year and happening typically in just one

year of the time series. Hence, these defects could be related to changes in

temperature, aerosol, or water vapor accentuating temperature, linearity,

and spectral errors [36]. On the other hand, some of the positive biases

appeared for a consecutive number of years at the beginning of the time

series (2005-2009) (Fig. 5.18). This suggests that the sensor was replaced

or recalibrated, but SIAR did not provide the information required to ver-

ify this hypothesis. We assumed that photodiode-related errors caused the

majority of these flags labeling them as Doubtful photodiodes. The analysis

of equipment errors in SIAR photodiodes is discussed more extensively in

Subsection 5.3.3.

5.1.3 Summary of the defects

European dataset

TheQCmethod flagged suspect data at 29 out of the 335 Europeanweather

stations (Fig. 5.19). After visual inspecting the quality flags, we considered

that defects indeed existed at 26 stations. False alarms were detected at the

remaining 3 stations and at other 3 stations that have periods of both false

alarms and true defects (Table 5.1). The majority of defects were opera-

tional errors (22 stations). Equipment errors were only found at 4 stations,

and they were related to the use of low-quality or inadequately calibrated

sensors at the beginning of the study period.
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Figure 5.19: Summary of the defects found at the 335 Eu-

ropean weather stations.

(a) Number of defects per network. The label shows the total number of defects in the network and
the percentage of the stations with defects. (b) Number of stations showing each type of defect.

LMT was the European network with the highest percentage of defects

(14% stations). LMT is a Norwegian network that covers the main agricul-

tural districts of the country collecting data for research, forecast models,

and alert services. LMT website indicates that stations are daily main-

tained, whereas measurements and equipment are quality controlled an-

nually [163]. However, maintenance protocols of weather stations used for

agricultural purposes are generally not so strict than those implemented

by national meteorological agencies. This along with the extreme weather

conditions in northern Norway (there are 6 stations from 65◦ to 70◦N) may

explain the high percentage of errors found in LMT stations.

Met Office, which is the British meteorological service and the most ex-

tensive network of the European dataset (121 stations), was the network

with the largest number of defects (10 stations). Three of these stations

presented systematic deviations at the beginning of the time series that

were classified as equipment errors. These stations were initially equipped

with second class pyranometers CM3 or CM5 (Kipp & Zonen). In 2005 and

2008, Met Office replaced all second class sensors by the secondary stan-

dard CMP11 (Kipp & Zonen), which is currently the standard pyranometer

of Met Office. The systematic deviations occurred during the operation of
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Table 5.1: List of stations flagged at the 335 European

weather stations.

Network Type of defect Stations

FMI Soiling Ilomantsi

Snow/Frost Rautavaara, Siikajoki

False alarm Utsjoki

Met Office Shading 918, 56424, 57250

Soiling 370, 1352

Diurnal GH = 0 708, 1302

Equipment error 326, 534, 586

DWD Equipment error 3028

False alarm 5792

Météo France Shading 5183001, 27056003

Soiling 58218006, 64316003

Snow/Frost 6094002

False alarm 5183001, 6094002, 64316003, 9024004

AEMET Soiling 5402

Unknown cause 6325O

LMT Shading Kise, Maere

Snow/Frost Apelsvoll

Large error Sortland

- Shading JRC Ispra

second class sensors and disappeared after replacing the sensor. This con-

firms that these deviations were caused either by the limitations of second

class pyranometers or by an inadequate calibration of these sensors. An-

other particular defect found at Met Office stations was the presence of

periods with diurnal readings intermittently set to zero. This defect could

have been identified with range or persistence tests, questioning the auto-

matic quality checks implemented by Met Office.

A relatively high number of defects (5 stations) were also found at

Météo France compared to other meteorological agencies. All these de-

fects occurred at type 1 stations, which are automatic "Radome-Resome"

stations maintained by non-Météo France staff. On the other hand, no de-

fects were found at type 0 stations, which are synoptic stations supervised

by Météo France personnel. The main differences between type 0 and type

1 stations are the expertise of the person in charge and the geographical

distribution of the stations. The density of type 1 stations is higher than
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that of type 0 ones. Besides, type 1 stations are located in more remote ar-

eas hindering the stationmaintenance. In the present study, type 1 stations

were only used in regions where the density of type 0 stations was low such

as the Alps or the Pyrenees (5 stations). Hence, the extreme weather con-

ditions at those stations may explain some of the defects found such is the

case of snow accumulation or soiling. The 4 false alarms found in Météo

France also occurred at those 5 mountain stations. Maintenance frequency

at mountain stations should be increased to reach the quality levels exhib-

ited by stations in low-lying areas.

The number of defects in the rest of national meteorological services

was acceptable. We only found 3 operational defects at FMI stations, with

two of them being caused by the accumulation of snow or frost. Despite

keeping pyranometers ventilated, this type of defect is hardly avoidable

at high-latitude stations in winter. Again, maintenance frequency should

be as high as possible under extreme weather conditions to keep the pyra-

nometers clean. Nonetheless, the influence of this defect in annual aver-

age irradiance is low due to the low irradiance values during months with

snow or frost. AEMET and DWD presented just two and one defects, re-

spectively, while no defects were found at SHMI stations. In AEMET, the

cause of one of the defects could not be found due to the lack of sub-daily

irradiance data to generate the second plot of the BQC. No defects were ob-

served at BSRN stations as well. This was expected because the BSRN uses

the highest-quality equipment. All BSRN sites are staffed and implement

the most stringent protocols among the networks analyzed [50].

Spanish dataset

The number of defects found in the Spanish dataset was more significant

than that of the European dataset (Fig. 5.20). While most European net-

works were national meteorological services, the Spanish dataset includes

different types of weather stations collecting GH data across Spain, from

the national meteorological service to regional and agricultural networks.

The BQC flagged suspect data at 264 out of the 732 Spanish stations (Ta-

ble 5.2). The majority of these defects were solely detected with the BQC.

On the contrary, the BSRN checks only flagged time lags, some cases of

incorrect leveling, and some large errors. Most of the defects were oper-

ational errors (208 stations), and hence mostly related to the inadequate

maintenance of the stations. However, the BQC also flagged deviations at

60 doubtful SIAR stations probably related to photodiode limitations and

its incorrect calibration.

The majority of the defects were found in SIAR (166 stations, 35% of

SIAR stations), which was the most extensive network with 468 stations.
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Figure 5.20: Summary of the defects found at the 732

Spanish weather stations.

(a) Number of defects per network. The "Multiple error" group includes stations with two or more
types of defects. The label shows the total number of defects in the network and the percentage of
the stations with defects. (b) Number of stations showing each type of defect. Stations with multiple
errors are accounted in each type of defect identified.

The Spanish Ministry of Agriculture created SIAR for irrigation planning,

so most SIAR stations are located in agricultural regions such as Ebro and

Guadalquivir Valleys or the Mediterranean Coast. Some locations were

selected based on the proximity of other government facilities such as

sewage-treatment plans to facilitate the station maintenance. By contrast,

pyranometers must be installed in locations with a flat horizon and far

from potential sources of contamination such as industrial areas, airports,

or busy roads [17]. The inadequate location of some of the stations may ex-

plain the high amount of stations with shading (35 stations), due to horizon

shadows, or soiling defects (14 stations), due to the proximity of sources of

pollution. Besides, other variables such as temperature and precipitation

are more critical than solar irradiance for agricultural purposes. The little

interest on GH along with the probably low maintenance of the stations

may also explain the large number of large errors, time lags, or incorrect

leveling cases identified. In this regard, most of these defects, such as time

lags or some large errors, could have been prevented with the implemen-

tation of basic QC checks.
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There were 60 additional SIAR stations classified as having doubtful

photodiodes. Photodiodes are installed in agricultural weather stations

due to their low-cost and because they require less maintenance than ther-

mopile pyranometers. However, if they are not properly corrected for spec-

tral response, cosine error, and temperature dependence, the uncertainty

of the readings obtained may double that of adequately corrected sensors

[26]. This suggests that most of SIAR photodiodes are incorrectly cali-

brated, or calibrated with general empirical corrections without account-

ing for the specific conditions at the station. Moreover, maintenance and

calibration conditions may strongly vary between SIAR stations because

some stations are maintained by the Spanish Ministry while others belong

to the regional governments. Overall, the high number of operational er-

rors and the likely presence of equipment errors make SIAR stations inad-

equate for solar radiation studies.

Table 5.2: List of stations flagged at the 732 Spanish

weather stations.

Network Type Stations

AEMET Soiling 5402

Unknown cause 6325O

SIAR Time lag A09, A11, A16, AB07, AB08, AL01, AL05, AV01, AV101,

AV102, BA01, BA07, BA104, BA205, BA207, BU102,

CA07, CA10, CA101, CC04, CC09, CC102, CC13, CC16,

CR01, CR02, CR03, CR10, CS11, GR09, GR10, H05, H06,

H10, HU19, HU20, HU21, IB05, IB09, IB101, J102, J11,

J15, LU02, M01, M102, MA09, MA10, MA101, NA09,

NA101, NA102, NA103, NA104, NA105, NA106, NA107,

NA108, NA109, NA110, NA111, SA03, SA101, SA102,

SE101, SE12, SE13, SE17, TO10, TO11, TO12, V14, V26,

VA06, VA102, ZA08

Shading A09, A10, A102, A1020, A13, AB01, AL10, BU101, CA05,

CC10, CC14, CO04, CO08, CO102, GR03, GR09, GU07,

IB04, IB07, IB08, IB09, J09, J102, MA09, MA10, MA101,

V01, V101, V103, V104, V107, V19, V22, V24, VA05

Soiling A12, AL02, AL06, CA06, GR101, HU02, M01, MA06,

MU03, MU11, TO03, TO09, V23, VA01

Large error A10, CR03, H101, J16, M04, MU10, MU17, NA14, SG01,

V06, V104

Diurnal GH = 0 J15, M05, VA101

Leveling A02, A07, A11, CC17, CS04, MA04, TE05, TO08, V01,

V23, Z08, Z11
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Doubtful

photodiodes
A02, A03, A04, A08, A101, A11, AB01, AB02, AB05,

AL08, AV101, BA101, BA102, BA203, C01, CC07, CC102,

CC11, CC14, CC16, CO09, CR02, CS01, CS03, CS05,

CS06, CS08, CS10, CS101, GR11, GU02, GU06, H01,

H101, HU01, HU15, HU19, IB01, IB06, IB10, J01, J02,

J03, J09, J12, LE01, M102, MA01, MA02, MA06, MU105,

MU128, MU16, NA105, NA108, P02, P03, P07, SA03,

SA101, SE02, SE08, SG02, V04, V05, V06, V07, V102,

V14, V17, V20, V25, VA01, VA08, ZA05, ZA06

Meteocat Unknown DC

Euskalmet Shading 023, 029, 051, 055, 058, 0DC

Soiling 039, 047

Large error 018, 026, 027, 030, 048, 054, 057, 060, 064, 0DC

Diurnal GH = 0 020, 040, 047, 057

MGalicia Shading 10052, 10053, 10057, 10060, 10063, 10064, 10086,

10088, 10095, 10108, 19065

Soiling 10045, 10099, 10125, 10126, 19068, 19070

Large error 10047, 10091, 10093, 10104, 10105, 10112, 10114,

10119, 10121, 10131, 10132, 10800

Diurnal GH = 0 10105

Unknown cause 10061, 10085, 10091, 10096, 10097, 10103, 10110,

10118, 10122

SIAR Rioja Time lag Albelda de Iregua

SOS Rioja Time lag Ezcaray, Santa Marina, Calahorra

Shading Urbaña, Moncalvillo, Calahorra, Villoslada

Soiling Ocón

Large error Ezcaray

Diurnal GH = 0 Haro, Arnedo, Nájera, Ocón, Yerga, Torrecilla

MeteoGalicia and Euskalmet are two regional meteorological agencies

that provide high-resolution GH data (10 min), but present an unusually

high number of defects for a meteorological network (58% of Euskalmet

stations, 49% of MeteoGalicia stations). This fact was especially alarming

in Euskalmet, where all stations are equipped with the secondary standard

pyranometers. The most common defect in both networks was large errors.

Some of the defects identified, such as long nocturnal periods with phys-

ically impossible values (Euskalmet), evidence a deficient QC in both me-

teorological agencies. In this sense, Hérnandez et al. [193] described that

the QC checks implemented at Euskalmet data center are composed by 5

levels of quality flags. This QC procedure should have eliminated some

of the large errors found in this study, but Euskalmet data retrieved from

http://opendata.euskadi.eus did not include any quality flag. This sug-

gests that data provided by this website has not undergone the QC routines
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described in Hérnandez et al. [193].

Shading and soiling are also typical in both MeteoGalicia and Euskal-

met, questioning again the maintenance protocols implemented by these

networks. Mirás-Avalos et al. [194] also found several defects in Meteo-

Galicia and SIAR stations in Galicia with a QC procedure based on the

one described in Younes et al. [34] and using additional spatial consistency

tests. They suggested that certain defects were caused by the handling of

data, whereas others were caused by a bad positioning of the sensors due

to shading by nearby obstacles. Overall, GH measurements from these two

networks should be generally avoided despite the high-quality expected a

priori from both meteorological agencies.

SOS Rioja stations presented the worst quality overall, with 79% of the

stations showing defects (12 out of 16). The most common defect was the

presence of diurnal periods with GH equal 0, which is some cases extend

the whole year indicating no maintenance in either the station or the pro-

cessing center. Shading was another common defect in SOS Rioja (4 sta-

tions). Compared to other networks, the shadows were commonly visible

around solar noon. This excludes the possibility of shadows being caused

by obstacles on the horizon, such as mountains, trees, or buildings. SOS

Rioja sensors are installed in lattice towers, so the most likely scenario is

that the structure of the station is causing the shadows. This evidences in-

adequate planning during the installation phase. In addition, the lack of

maintenance and quality checks ruins the high quality of the pyranome-

ters (ISO 9060 first class). Similarly to Euskalmet, these results corroborate

that the acquisition of high-quality equipment does not guarantee to col-

lect high-quality records. Top-end pyranometers should be only installed

if the adequate level of maintenance can be kept.

The number of defects in the remaining networks was low, with two

defects in AEMET, one in SIAR Rioja and Meteocat, and no defects in Me-

teo Navarra and the BSRN. The good quality of the BSRN and AEMET

was somehow expected. We recommend using these networks in applica-

tions requiring solar radiation data with low uncertainty. Besides, we also

consider that Meteocat, Meteo Navarra, and SIAR Rioja present sufficient

quality for being used for regional studies in Cataluña, Navarra, and La

Rioja, respectively.

5.1.4 Strengths and limitations of the BQC

The majority of QC procedures described in Subsection 2.1.3 flag values

that are implausible from a physical or a statistical perspective. The best

example is the BSRN tests, which are the most common choice for quality

control solar radiation data [45, 195, 82, 181, 196]. The main limitation of
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range checks is that the range of physically and statistically acceptable val-

ues for surface irradiance variables is very wide because the atmospheric

transmissivity depends on different stochastic processes such as cloud for-

mation or the concentration of aerosols, water vapor, and ozone, among

others. Hence, these QC methods do not detect defects that introduce low-

magnitude deviations, such as shading, soiling, or sensor miscalibrations.

This fact was verified in the present study in which BSRN tests only de-

tected time lags, some large errors, and some cases with incorrect leveling

of pyranometers.

The strength of the BQC lies in its ability to detect low-magnitude op-

erational errors. This is possible due to two main features of our method:

(i) filter deviations of radiation databases (estimations - measurements) in-

stead of irradiance measurements, and (ii) analyze periods of time with a

window function instead of individual days/hours. Working with devi-

ations reduces the acceptance ranges because the influence of stochastic

atmospheric processes is eliminated, as these processes affect both mea-

sured and estimated values. The evaluation of several days all at once with

a window function facilitates the detection of long-living errors because

the BQC checks if low-deviations prevail in time. Still, the results show

that the BSRN tests are a good complement to the BQC because they fa-

cilitate the detection of very short periods (few hours) of large deviations

and errors that get masked in daily means such as time lags or incorrect

leveling.

Another strength of the BQC is the two plots generated for the visual

inspection of flagged stations. The two plots are useful in visually de-

tecting false alarms and identifying the cause of the defects. The auto-

matic generation of both plots for stations with flags speeds up the visual

inspection and reduces the computation skills required. By contrast, the

majority of the QC methods [52, 45, 51, 34] provide numerical flags and

leave the user the decision of removing the samples. When working with

large datasets, the visual inspection of numerical flags may become unfea-

sible from a practical point of view, so users may be tempted to remove all

flagged samples without knowing the exact cause of the error and without

discarding false alarms.

The use of radiation databases to detect errors in groundmeasurements

entails some risks related to the uncertainty of estimation methods. The

stability and variance of the estimations are the two most critical aspects.

Regarding the temporal stability, our method flags inconsistent deviations

of the radiation databases against station measurements. Systematic devi-

ations are taken into account by the CIs, so the databases can overestimate
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or underestimate solar radiation as long as they do it consistently. How-

ever, inconsistent deviations can be caused either by a defect on the read-

ings or by a failure in the radiation database. The use of three radiation

databases derived with independent models increases the likelihood of er-

rors in the recording process causing the deviations flagged. Besides, we

observed that the number of false alarms decreased with the combination

of the three databases. Still, the temporal stability of the model must be of

critical importance when selecting the databases for the BQC.

All radiation databases used were designed for climate monitoring pur-

poses, so the temporal stability of the data was one of themain concerns for

their design. Even though both satellite-based databases are climatological

datasets, their stability is not fully guaranteed because they are obtained

by combining images from different satellite generations. Sometimes even

the type of sensor is replaced, resulting in a potential introduction of arti-

ficial trends in the times series. Besides, satellite instruments degrade in

time, so the calibration factors have to be continuously corrected to mit-

igate aging effects [197]. Nonetheless, the magnitude of these temporal

instabilities is generally within the uncertainty of pyranometers and con-

siderably smaller than the deviations caused by the equipment and oper-

ational errors, so they do not interfere in the BQC. The decadal trend of

SARAH-1 was −1.1 W/m2/decade [195], while that of CLARA-A2 showed

a good agreement with the decadal trend from BSRN stations [176]. ERA-

Interim used the same NWP model to derive the whole dataset including

a bias correction scheme for long-term drifts and calibration errors [198].

In addition, we observed that the inter-annual stability of the three prod-

ucts was acceptable in the period studied (2005-2015), and none of the

false alarms identified could be attributed to an artificial degradation of

the products.

Based on the previous, the probability of false alarms in the BQC is

low. False alarms can still occur when all models fail inconsistently at the

same time. Inconsistent deviations are those that appeared just one year

of the time series (temporal inconsistency) or at one location within the

spatial region analyzed with the same CIs (spatial inconsistency). These

deviations produce false alarms because they cannot be characterized by

the CIs, but they only occurred at one station with seasonal snow and five

stations located in the mountains. False alarms due to seasonal snow were

minimized by filtering together stations above 65◦N because the CIs al-

ready accounted for the large deviations of radiation databases during the

snow season. False alarms at mountain stations could have been similarly

reduced by grouping all mountain stations for calculating the CIs, but this

option was discarded due to the few mountain stations available.
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Another critical issue is the variance of radiation databases. As above-

mentioned, the bias (systematic errors) is not crucial because the CIs in-

cludes it. However, the variance (random errors) defines the width of the

CIs and limits the magnitude of deviations flagged by the BQC. Random

errors may be caused by limitations of the databases (low spatial and tem-

poral resolution, low-quality ancillary products, or simple atmospheric

models) and by the particular conditions of the region analyzed (moun-

tains, snow-covered areas, coastlines, etc.) [199]. For instance, the high

variance of the databases in the Nordic countries results in wider CIs than

those in Southern Europe. This implies that low-magnitude defects such

as shading or soiling are more easily detected in Southern Europe than in

the Nordic countries. This problem was mitigated with the calculation of

the CIs on a monthly basis (temporal averaging) and grouping stations that

share similar characteristics (spatial averaging). This spatiotemporal aver-

aging, along with the use of robust statistics, made the CIs more restrictive

enhancing the detection of low-magnitude defects.

5.2 Validation of radiation databases

The main validation of satellite-based and reanalysis databases was made

over Europe because the European dataset offers a dense network of

weather stations to evaluate both types of modeling approaches (Subsec-

tion 5.2.1). A second validation was made against BSRN stations world-

wide (Subsection 5.2.2) to verify globally the results obtained over Eu-

rope. The strengths and weaknesses of satellite-based and reanalysis mod-

els were summarized in Subsection 5.2.3.

5.2.1 Validation over Europe

Satellite-based models

The summary statistics showed in Table 5.3 were calculated by excluding

stations located in the mountains and latitudes above 65◦N. Solar radia-

tion models typically present large deviations in the mountains, so includ-

ing these results would have altered overall statistics. These stations are

Météo France 5183001 (1310 m), Météo France 6094002, (1748 m), Météo

France 9024004 (1781 m), Météo France 64316003 (1427 m), DWD 5792

(2964 m), and AEMET 2462 (1894 m). High-latitude stations were ana-

lyzed separately because the spatial coverage of models using images from

geostationary satellites is limited to latitudes within ±65◦. Mountain sta-

tions were excluded not only from the calculation of summary statistics

but also from the different plots used in the evaluation. Contrary, results
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at high-latitude stations were kept in those plots. Note that the biases

(MBD and rMBD) of SARAH PVGIS and CM SAF Operational product are

negatively biased because missing hourly values at sunrise and sunset have

been set to 0. Therefore, their actual bias should be somewhat larger.

Table 5.3: Summary statistics of daily GH from satellite-

based databases at European weather stations (2010-2014).

MBD rMBD MAD rMAD RMSD rRMSD

[W/m2] [%] [W/m2] [%] [W/m2] [%]

Lat. < 65◦N
271 stations

SARAH PVGIS 0.07 -0.33 12.38 9.94 17.51 14.15

SARAH-2 2.33 1.65 11.57 9.27 16.11 13.00

CM SAF Oper. 4.63 3.96 12.73 10.35 17.57 14.28

CLARA-A2 -2.18 -1.56 13.02 10.38 18.18 14.48

Lat. > 65◦N
17 stations

CLARA-A2 -3.82 -3.97 13.23 14.87 20.30 22.98

Mountains

6 stations

SARAH PVGIS -8.74 -5.05 34.56 21.30 48.28 29.85

SARAH-2 -4.77 -2.62 28.59 17.95 40.55 25.56

CM SAF Oper. -6.09 -3.91 28.85 18.03 40.09 25.04

CLARA-A2 -13.72 -8.40 27.85 17.34 37.00 23.09

The biases obtained by both SARAH versions are in line with previous

validations made by CM SAF against BSRN stations: SARAH-E (rMBD =

+0.73%,MBD = +1.63 W/m2) [21], SARAH-1 (MBD = +1.12 W/m2) [195],

and SARAH-2 (MBD = +1.7 W/m2) [22]. In this study, SARAH-2 also ob-

tained a positive rMBD (+2.33 %), whereas the rMBD of SARAH PVGIS,

which is a combination of SARAH-1 and SARAH-E, was somewhat smaller

(+0.07%). The increase of the bias from SARAH PVGIS to SARAH-2 is

explained by the negative bias in SARAH PVGIS due to missing hourly

values, along with a decreased underestimation in SARAH-2 due to an im-

proved temporal stability and a reduced negative bias in high latitudes.

CM SAF validations [22] revealed a decrease in the decadal trend from

SARAH-1 (-1.7 W/m2/decade) to SARAH-2 (-0.7 W/m2/decade) due to

an improved transition from MFG satellites (MVIRI instruments) to MSG

satellites (SEVIRI instruments). Hence, SARAH-2 estimations are higher

than those of SARAH-1 (and SARAH PVGIS) during the years validated

in this study. Besides, SARAH PVGIS showed a stronger underestimation

in high latitudes, even though both SARAH versions showed an increas-

ing underestimation with increasing latitude (Fig. 5.21). The underesti-

mation near the edge of satellite images is a known problem of SARAH-1

and SARAH-E [21, 195]. In those regions, satellites view clouds at very

shallow angles overestimating cloud thickness and underestimating irra-

diance. This problem was addressed by SARAH-2 with a correction for

the cloud index as a function of satellite zenith angle that minimized the

underestimation of SARAH-2 in high latitudes [22].
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Figure 5.21: Distribution of rMBD in daily GH from

satellite-based databases over Europe.

The magnitude of rMBD is represented with both color and size.

The bias of both SARAH-2 and SARAH PVGIS was stronger in high lat-

itudes during winter (Fig. 5.22). This was also observed by Riihelä et al.

[102] in a validation of SARAH-1 over Finland and Sweden (MBD = -

4.72 W/m2). SARAH detects clouds solely with images from the visible

channels of radiometers onboard geostationary satellites. These images

are not sufficient to robustly differentiate between the high reflectivity of
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snow and that of clouds, leading to an over-prediction of clouds over snow-

covered surfaces [22]. CM SAF is working on an improved snow detection

algorithm [22]. In this respect, newest algorithms use infrared channels to

detect clouds, but CM SAF cannot exploit all channels of SEVIRI instru-

ments (2006-present) because it has to keep consistency with MVIRI data

(1982-2005) to produce long-term homogeneous climate data records.

Excluding high latitude locations, both versions underestimate in sum-

mer and overestimate in winter (Fig. 5.22). This pattern is common among

solar radiation models, and it may be related to an incorrect cloud predic-

tion. Even the best algorithms will show clouds through random chance

under clear conditions, which are more frequent in summer, while the op-

posite will occur under cloudy conditions in winter. These random errors

typically average out and do not interfere in the annually-aggregated bias.

CLARA-A2 obtained the most homogeneous spatial distribution of the

bias over Europe (Fig. 5.21), though it systematically underestimated GH

(rMBD = -1.56%). CM SAF validations against BSRN stations also found

negative biases for CLARA-A1 (MBD = -4.7 W/m2) [200] and CLARA-A2

(MBD = -1.7 W/m2) [103]. The decrease of the bias from CLARA-A1 to

CLARA-A2 is most likely due to an improved cloud detection algorithm

[103]. CLARA-A2 still underestimates in summer and overestimates in

winter, which similarly to SARAH may be due to random errors in cloud

prediction. This pattern changed in high latitudes where CLARA-A2 un-

derestimates in winter and overestimates in summer. Negative biases in

winter may be related to the same snow detection problems than those dis-

cussed for SARAH. Indeed, the actual bias of CLARA-A2 in winter may be

even larger because daily samples showing strong deviations due to snow-

related issues were set to missing by CM SAF [176]. The positive bias from

May to September was also observed in the validation of CLARA-A1 made

by Riihelä et al. [102] over Finland and Sweden. In that case, the overesti-

mation in summer led to an overall positive MBD of +2.79 W/m2 because

CLARA-A1 coverage over snow-covered areas was even lower than that of

CLARA-A2. Riihelä et al. [102] also reported a reducing variance from

1983 to 2009 due to an increasing satellite coverage. In this study, we have

just evaluated the last years covered by CLARA-A2 (2010-2014) where the

availability of polar-orbiting satellites is the highest (from 3 to 5). This in-

creases the number of sub-daily satellite images used to calculate the daily

atmospheric transmissivity reducing the uncertainty of daily estimates.

The CM SAF operational product showed the largest bias overall

(rMBD = +3.96%), which is especially alarming given the fact that its daily

means were negatively biased due to missing values at low solar elevation

angles. These systematic deviations ranged from +1 to +2W/m2 in Central
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Figure 5.22: Heatmap of monthly-aggregated rMBD in

daily GH from satellite-based databases at European sta-

tions.

Stations are sorted from bottom to top by increasing latitude. Y-axis labels show the station latitude.
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and Southern Europe, and from +3 to +4 W/m2 in Northern Europe, be-

fore 2012. Since then, the number of missing values decreased, and these

systematic deviations fell below +1 W/m2. This validation includes years

from 2010 to 2014, so the actual bias of the operational product may be

around +2 W/m2 larger due to missing values from 2010 to 2012. The

overestimation of the operational product is more prominent on the coast

(rMBD = [+10, +20]%) (Fig. 5.21), which may be related to the coarser grid

of the operational product (∼25 km) compared to other satellite databases.

CLARA has a similar resolution, but the calculations are made in a grid

of ∼5 km and then averaged. The quality of solar radiation models using

coarse spatial grids degrades on the coasts because large portions of land

and sea fall in the same pixel while irradiance shows a steep gradient. This

issue is further discussed in the analysis of reanalysis databases (Subsec-

tion 5.2.1).

Compared to SARAH and CLARA, the bias of the operational product

wasmore positive in summer than in winter (Fig. 5.22). Random errors due

to cloud prediction show the opposite pattern. Hence, the overestimation

in summer may be related to the quality of the aerosol climatology. The

operational product uses the GADS/OPAC climatology whereas SARAH

and CLARA take aerosol data from MACC reanalysis and Aerocom model

median merged with Aeronet data, respectively. CM SAF has just updated

its operational product implementing the modeling approach and input

data used by SARAH-2, so most of the issues in the operational product

mentioned above may have been corrected in the new version.

Figure 5.23: 2D density plots of relative deviations of daily

GH (satellite-based data minus measurements) against KT
at European stations.

Density plots are generated with a 2D binned kernel density estimate.

Clouds are not only the most dominant factor in surface incoming ir-

radiance but also the one most difficult to predict. Thus, errors in cloud



5.2. Validation of radiation databases 117

placement produce the most significant deviations in solar radiation mod-

els. The quality of cloud predictions can be evaluated with the distribution

of deviations against KT (Fig. 5.22). In this case, any particular pattern was

observed, and all databases showed a homogeneous performance against

atmospheric transmissivity. Aerosol and water vapor data may also cause

deviations at high KT , but none of the satellite-based databases showed

any particular systematic deviation under clear conditions.

SARAH-2 (MAD = 9.27%) and SARAH PVGIS (rMAD = 9.94%)

showed the smallest absolute errors. The reduction of the absolute er-

ror from SARAH-1 (MAD = 12.1 W/m2) [195] to SARAH-2 (MAD = 11.8

W/m2) [22] was also reported by CM SAF. The absolute error of CLARA-

A2 was somewhat larger (rMAD = 10.35 %), which could be related to

the lower temporal resolution of polar-orbiting satellites. While SARAH-1

and SARAH-2 use hourly or half-hourly satellite images to calculate the

cloud index, CLARA-A2 only has 3-5 diurnal images in mid and low lat-

itudes. The temporal resolution of polar-orbiting satellites increases near

the poles, but it is still lower than that of geostationary satellites. The ab-

solute error of the CM SAF operational product (rMAD = 10.38%) was

comparable to those of SARAH-2 and SARAH-PVGIS, but similarly to the

bias, it significantly increased in coastal regions as well (Fig. 5.24).

The validation metrics of all databases substantially worsened in the

mountains (Table 5.3). All models tend to underestimate GH (rMBD = [-2,

-8]%), which may be related to the presence of snow in winter. The abso-

lute error increases even more, and both rMAD (17-21 %) and rRMSD
(23-30%) in the mountains double those in low-lying areas. SARAH-2

showed the smallest degradation in mountain regions. The CM SAF vali-

dations [22] reported that SARAH-2 irradiance increased in mountainous

areas (Alps or Pyrenees) and decreased in the valleys reducing the estima-

tion errors due to the use of a downscaled water vapor based on a topo-

graphic correction. The low bias of the operational product was just a for-

tuitous value due to the compensation of the discussed overestimation of

this product in low-lying areas with the underestimation of satellite-based

models over snow-covered surfaces. These deviations are not compensated

for absolute errors, so the operational product showed a large rMAD in the

mountains as well.

Solar radiation models typically produce large deviations in the moun-

tains because they do not have a sufficiently high temporal and spatial

resolution to model the particular atmospheric conditions in mountainous

areas. This is complicated even more by terrain shading and the presence

of snow in winter. Validation statistics in the mountains also worsen due

to the comparison of spatial estimates against point measurements in a re-

gion with a steep gradient in solar irradiance. This also occurs in other
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Figure 5.24: Distribution of rMAD in daily GH from

satellite-based databases over Europe.

The magnitude of rMAD is represented with both color and size.

regions such as coastal areas, as observed in the results of the operational

product. The representativeness of stations decreases in rough terrains,

whereas the resolution of the spatial grids is too large to account for the

high spatial variability [201]. We will further discuss these issues in the

evaluation of reanalyses (Subsection 5.2.1).
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Reanalysis databases

Reanalyses were evaluated based on the same groups of stations defined to

validate satellite-based databases for comparability purposes (Table 5.4),

although both global and regional reanalyses cover latitudes above 65◦N.

Table 5.4: Summary statistics of daily GH from reanalysis

databases at European stations (2010-2014).

MBD rMBD MAD rMAD RMSD rRMSD

[W/m2] [%] [W/m2] [%] [W/m2] [%]

Lat.< 65◦N
271 stations

ERA-Interim 11.67 9.24 24.18 19.19 35.57 28.29

MERRA-2 18.66 15.02 26.59 21.29 39.15 31.41

ERA5 3.75 3.18 19.48 15.48 28.08 22.36

COSMO-REA6 -6.00 -3.72 22.56 17.57 31.84 25.13

Lat.> 65◦N
17 stations

ERA-Interim 2.05 2.65 17.54 19.89 28.79 32.76

MERRA-2 6.82 7.96 19.09 21.61 31.19 35.42

ERA5 0.81 1.42 15.49 17.53 25.78 29.27

COSMO-REA6 -1.96 -1.87 16.22 18.28 27.15 30.75

Mountains

6 stations

ERA-Interim 13.40 8.78 38.08 24.00 52.56 33.10

MERRA-2 22.78 14.34 36.17 22.69 51.28 32.21

ERA5 8.24 5.18 31.21 19.46 42.72 26.66

COSMO-REA6 -1.44 -0.84 31.17 19.45 42.36 26.46

MERRA and ERA-Interim have probably been the two most widely

used global reanalysis in the last years. In this study, we have validated

MERRA-2 which is the successor of MERRA but still shares most of its

main features. Both ERA-Interim and MERRA-2 strongly overestimate GH

over Europe, with a rMBD of of +9.24% and +15.02%, respectively. The

overestimation of both reanalyses in Europe and also globally has been

reported in previous validations. Positive biases for ERA-Interim were

found in Germany by Träger-Chatterjee et al. [120] (MBD = +5.2W/m2), in

France (rMBD = [-4, +14]%) and in the Baltic region (rMBD = [+2, +17]%)

by Boilley and Wald [24], in Europe by Bojanowski et al. [23] (rMBD =

+9.08%) and Zhang et al. [109] (MBD = +4.64 W/m2), and globally by

Zhang et al. [109] (MBD = +11.25 W/m2) and Posselt et al. [202] (MBD =

+5.64 W/m2). Positive biases were for MERRA-2 were also found in France

(rMBD = [-5, +21]%) and in the Baltic region (rMBD = [+7, +16]%) by

Boilley and Wald [24], in Czech Republic by Jurǔs et al. [122] (MBD =

+23.4 W/m2), in Europe by Zhang et al. [109] (MBD = +19.80 W/m2), in

North America by Zhao et al. [111] (MBD = +20.2 W/m2), and globally

by Zhang et al. [109] (MBD = +22.36 W/m2) and Yi et al. [121] (MBD =

+16.55 W/m2). The overestimation of MERRA was stronger that that of

ERA-Interim in most regions. We observed the same trend in this study,

despite validating MERRA-2 instead of MERRA. This suggests that the up-

grades of MERRA-2 have not solved the bias problems of its predecessor.
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In this line, one of the first validations of MERRA-2 by the own NASA’s

GMAO [124] confirmed that MERRA-2 kept a positive bias of around [+5,

+10] W/m2 globally. Pfenninger and Staffell [125] also used both MERRA

and MERRA-2 for simulating PV systems over Europe and obtained a sim-

ilar overestimation in yield predicted from both versions.

ERA-Interim and MERRA-2 overestimated GH across all Europe

(Fig. 5.25). MERRA-2 obtained a larger average positive bias because

it overestimated at almost all European stations and particularly in re-

gions with high-cloudiness such as Central Europe or the British Islands.

The overestimation of ERA-Interim was somehow mitigated in the Nordic

countries, but it substantially increased in coastal regions of northern

Spain, the British Islands, and Norway. The stronger overestimation at

coastal locations is related to the above-mentioned errors due to compar-

ing coarse spatial estimates against point values in regions with steep ir-

radiance gradients. ERA-Interim (∼81 km) and MERRA-2 (∼50 km) pixels

include large portions of both water and land whereas irradiance sharply

changes in few km. Particularly, both products strongly overestimated in

the Spanish, Norwegian, and British coasts because the average irradiance

received by the sea is greater than that received by the land in these regions

(Fig. 5.26). Thus, the spatial average provided by these pixels is greater the

point value measured by inland stations. The increase of the bias at coastal

locations was more accentuated in ERA-Interim than in MERRA-2 due to

the coarser grid of the prior. Note that the irradiance estimates from both

reanalyses were interpolated using IDW, eliminating some systematic de-

viations in the comparison against point values such as those caused by

latitude effects [201]. Therefore, the bias may be even higher if the pixel

values are directly compared to ground measurements.

The source of these biases was analyzed with the distribution of

monthly-aggregated biases (Fig. 5.27) and with the distribution of daily

deviations against KT (Fig. 5.28). The overestimation of GH under cloudy

conditions (Fig. 5.28) drove the positive bias in both ERA-Interim and

MERRA-2. This is probably caused by an underestimation of the cloud

fraction due to predicting too few clouds, optically too thin clouds, or in-

correct cloud properties (cloud phase or liquid/ice water content), among

others. In this line, Träger-Chatterjee et al. [120] observed significant pos-

itive biases for ERA-Interim in cloudy regions and winter, when the fre-

quency of clouds is high. Zhang et al. [109] and Zhao et al. [111] also sug-

gested that an underestimation of clouds probably caused the overestima-

tion of both ERA-Interim andMERRA-2. The performance of ERA-Interim

and MERRA-2 differed under clear sky. ERA-Interim underestimated GH

averaging out the large overestimation under cloudy conditions and re-

ducing the overall bias of ERA-Interim [24]. This compensation of the bias
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Figure 5.25: Distribution of rMBD in daily GH from re-

analysis databases over Europe.

The magnitude of the rMBD is represented with both color and size.

may be related to random errors in cloud prediction. These random er-

rors do not completely cancel out because the overestimation under cloudy

conditions was more significant than that under clear sky resulting in the

overall positive bias of ERA-Interim. Excluding coastal locations, the over-

estimation decreased in summer and regions with low-cloudiness such as

Spain or southern France (Fig. 5.27). On the other hand, MERRA-2 slightly
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overestimated GH under clear conditions as well, aggravating the strong

overestimation under cloudy conditions and leading to the large average

positive bias shown by MERRA-2. Therefore, MERRA-2 bias was positive

in every month of the year (Fig. 5.27). The positive biases of MERRA2 un-

der clear conditions cannot be caused by random errors in cloud prediction

and may be related to aerosol errors.

Figure 5.26: Map of mean GH form SARAH PVGIS (2010-

2016).

The inset shows the irradiance gradient on the Mediterranean coast of North Africa.

ERA5 is the newest global reanalysis produced by the ECMWF. Con-

trary to MERRA-2, ERA5 entails a significant improvement over ERA-

Interim as it includes an increased horizontal, vertical, and temporal reso-

lution, among other features. All these upgrades led to a notable reduction

in the average rMBD shown by ERA-Interim over Europe from +11.67% to

+3.75%, mainly due to a decreased overestimation at all European stations

(Fig. 5.25). The bias reduction was driven by a reduced overestimation

under cloudy conditions (Fig. 5.28). The bias of ERA5 still showed a simi-

lar dependence on the atmospheric transmissivity to that of ERA-Interim,

but the magnitude of positive and negative biases under cloudy and clear

conditions in ERA5 was comparable. Thus, both effects averaged out lead-

ing to a moderate average positive bias over Europe. Similarly to ERA-

Interim, the dependence of the bias on KT may be related to random errors

in cloud prediction that lead to predicting clouds under clear sky and vice

versa. Negative biases were stronger in summer when the frequency of

clear conditions is higher, and positive biases were more accentuated in

winter when cloudy conditions predominate (Fig. 5.27). The reduction of
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the bias was also very notable in coastal regions (Fig. 5.25) mainly due to

the finer grid of ERA5 (∼31 km) compared to that of ERA-Interim (∼81
km). Nonetheless, moderate positive biases remained in the Norwegian,

British and Spanish coasts, suggesting that the spatial grid of ERA5 is still

inadequate to model the steep solar irradiance gradients of coastal regions.

COSMO-REA6 was the only regional reanalysis evaluated, which are

characterized by using finer spatial grids and regional NWP models spe-

cially designed for the region covered by the reanalysis. In this regard,

COSMO-REA6 presented the most homogeneous spatial distribution of

the bias over Europe, being the only reanalysis that did not deteriorate in

coastal regions (Fig. 5.25). This is most likely due to the fine spatial grid of

COSMO-REA6 (∼6.2 km) that is comparable to that used by most satellite-

based products. Still, COSMO-REA6 systematically underestimates GH

over Europe (rMBD = -5.30 W/m2) and showed the same bias dependency

on KT as global reanalyses, though in this case, the dominant effect was

the underestimation under clear condition (Fig. 5.28). Similar results were

obtained by the HErZ-DWD when validating COSMO-REA6 against Eu-

ropean BSRN stations (MBD = -9.2 W/m2) [181, 203]. They found large

negative biases at locations with low cloudiness such as Sede Boqer (MBD
= -49.7 W/m2) and positive biases at locations with high cloudiness such

as Lerwick (MBD = +12.6 W/m2). Frank et al. [181] investigated the

source of the bias with collocated measurements from ceilometers. Pos-

itive biases under low KT corresponded to cases with low (cloud base <

2 km) and medium-height clouds (2 km < cloud base < 5 km) and were

caused by predicting by optically too thin or too few clouds. This effect
was mainly observed in winter (Fig. 5.27) and in cloudy regions such as

Scotland (Fig. 5.25). On the other hand, positive deviations under high KT

corresponded to clear conditions and were probably caused by a too strong

aerosol extinction. The overestimation of the aerosol content was a known

problem of the Tanré aerosol climatology [204] when producing COSMO-

REA6, but this climatology was kept because it was the standard input for

COSMO NWP model. Due to this excess of aerosols, the underestimation

of COSMO-REA6 increased in summer (Fig. 5.27) and sunny regions such

as Spain where the rMBD exceeded -20 W/m2 (Fig. 5.25).

The previous results suggest that the incorrect prediction of clouds is

the primary source of error in reanalysis models. As above-mentioned,

this type of error causes the under-prediction of clouds under cloudy con-

ditions and vice versa, leading to positive and negative bias in GH un-

der overcast and clear conditions, respectively. These deviations averaged

out in annually-aggregated biases, but they do not cancel out in annually-

aggregated absolute errors, leading to large MADs and RMSDs for all re-
analyses (Table 5.4). Therefore, models such as ERA5 can show a moderate
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Figure 5.27: Heatmap of monthly-aggregated rMBD in

daily GH from reanalysis databases at European stations.

Stations are sorted from bottom to top by increasing latitude. Y-axis labels show the station latitude.
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Figure 5.28: 2D density plot of relative deviations of daily

GH (reanalysis minus measurements) against KT at Euro-

pean stations.

Plots are generated with a 2D binned kernel density estimate.

bias but a large absolute error because the low bias is a result of the com-

pensation of seasonal deviations.

MERRA-2 and ERA-Interim presented the largest rMAD among the

databases evaluated (21.29% and 19.12%, respectively). The rMAD of

both products increased on the coast and in Central Europe (Fig. 5.29), a re-

gion characterized by high cloudiness. On the other hand, both MERRA-2

and ERA-Interim showed a moderate rMAD around 9-15 W/m2 in regions

with a high frequency of clear skies such as Spain. The rMAD also de-

creased from ERA-Interim (19.12%) to ERA5 (15.48%) confirming the im-

provement of ERA5. Although ERA5 showed the smallest rMAD among

reanalyses over Europe, the reduction in the rMAD was less significant

than that in the bias because ERA5 deviations also vary with atmospheric

conditions. The rMAD of ERA5 was below 15% at most European loca-

tions excluding the coasts, the Alpine region, and the British Islands. The

lowest absolute errors were obtained in Spain as well (rMAD = 8-12%).

COSMO-REA6 obtained a very homogeneous spatial distribution of the

rMAD (Fig. 5.29), with the rMAD slightly increasing in Scotland and Nor-

way. The average rMAD was small but somewhat larger than that of ERA5

(17.57%), most likely due to the strong underestimation of COSMO-REA6

under clear conditions due to an excess of aerosol. This problemwas aggra-

vated in low-cloudiness regions of Southern Europe, where COSMO-REA6

obtained the greatest rMAD (12-15%) between the reanalyses evaluated.

Besides, the differences between ERA5 and COSMO-REA6 on the coast

were not as large for the rMAD as they were for the bias, suggesting that

the use of coarse grids may have a greater impact on the bias than on the

absolute error.
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Figure 5.29: Distribution of rMAD in daily GH from re-

analysis databases over Europe.

The magnitude of the rMAD is represented with both color and size.

All reanalyses showed a strong degradation in the mountains (Table

5.4). Similarly to the degradation on the coast, this was caused by us-

ing coarse spatial grids (30-80 km) that are inadequate to model local

climates. Contrary to satellite-based products, reanalyses showed strong

positive biases in mountainous areas. This was probably caused by an in-

creased overestimation under cloudy conditions due to the characteristic
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high-cloudiness of mountains. Besides, the coarse grids of global reanal-

yses make that both, mountains and the surrounding flat regions, were

included within the same pixel. Thus, the spatial average given by the

pixel overestimates the irradiance compared to measurements made in the

mountains, where the irradiance is typically lower than in flat areas.

Comparison of irradiance maps

As above-mentioned, the comparison of spatial estimates against ground

measurements has several limitations. Large deviations may be obtained

by databases with coarse grids over areas with steep irradiance gradients

such as mountains or coastal regions. These uncertainties cannot be at-

tributed to the underlying physics of reanalysis models. Thus, a second

evaluation was made by directly comparing raster files from reanalyses

against those from satellite-based products. Specifically, SARAH PVGIS

was used as the reference over Europe due to its superior quality com-

pared to reanalyses. Besides, this comparison allows evaluating databases

in regions with low density of ground stations. The differences between

gridded products were calculated at the original horizontal resolution of

each product. Other authors remapped the product with higher resolution

to the coarser spatial grid [120]. However, we intended to show the varia-

tion of the irradiance within a single pixel of coarse grids emphasizing the

limitations of these grids in some particular regions.

In Europe, SARAH PVGIS showed a fairly low bias within ±5 W/m2 at

74 % of European stations (Fig. 5.21). Therefore, if the difference between

a reanalysis product and SARAH (Fig. 5.30) is outside this range, it is an

indication that the accuracy of said product is low in that region. ERA5

exhibited the lowest deviations with values within ±5 W/m2 in most of

Europe, while the negative deviations observed in Southern Europe sug-

gest that ERA5 is even able to correct the overestimation of SARAH there.

Overall, the annual biases of both products were comparable in flat and

cloudless European regions. Deviations were larger and generally positive

in coastal regions due to the coarse resolution of reanalyses, and in the

mountains, but here the bad performance of SARAH hinders an adequate

analysis of ERA5. The underestimation of COSMO-REA6 increased with

decreasing latitude exceeding -20 W/m2 in Spain and Italy and is even

higher in the southern edge of the grid. This is most likely caused by the

underestimation under clear conditions caused by the excess of aerosols

mentioned above. However, the differences between COSMO-REA6 and

SARAH did not increase on the coast, while deviations remain within ±5
W/m2 in Northern Europe and are comparable to those of ERA5.
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Figure 5.30: Map of the difference in mean GH between

reanalysis databases and SARAH PVGIS (2010-2014).

The color scale is limited to ±30W/m2; larger differences are shown as black. Areas not covered by
SARAH PVGIS are shown as dark grey.

Fig. 5.30 also evidences the significant reduction of the bias from

MERRA-2 and ERA-Interim to ERA5. MERRA-2 showed the most substan-

tial differences overall, especially in Central and Northern Europe with

positive differences around +20 W/m2. These positive differences were

smaller in ERA-Interim, being around +10 W/m2 for most of Europe, but

these values are still considerably larger than those of ERA5. Besides, the

increase of the differences in coastal areas of northern Spain, Wales, Scot-

land, and southern Sweden, was more pronounced for ERA-Interim than
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for ERA5. This moderate improvement on the coast proves the benefits of

the finer grid used by ERA5 (∼31 km) compared to that of ERA-Interim

(∼81 km).

5.2.2 Worldwide validation

The worldwide dataset of BSRN stations was used to compare satellite-

based and reanalysis databases over a wider region. BSRN stations cover

all continents and climatic regions, and some of them are located at par-

ticular areas such as high mountains, extreme latitudes, small islands, or

arid regions, where solar radiation models typically present larger uncer-

tainties. Therefore, the performance statistics at BSRN stations (Table 5.5)

were generally worse than those at European stations (Table 5.3 and 5.4).

Similarly to the validation over Europe, the statistics for stations located in

themountains were reported separately. In this case, only Izaña (IZA, 2373

m) was located in high mountains. The statistics for the stations covered

by NSRDB PSM and SARAH PVGIS were also calculated for benchmarking

against these databases.

Table 5.5: Summary statistics of daily GH at BSRN stations

(2010-2014).

MBD rMBD MAD rMAD RMSD rRMSD

[W/m2] [%] [W/m2] [%] [W/m2] [%]

All

40 stations

MERRA-2 11.34 7.12 30.17 18.37 43.12 26.79

ERA-Interim 10.04 6.12 28.29 17.32 40.58 25.38

ERA5 4.52 2.96 23.13 14.19 33.06 20.76

SARAH coverage

13 stations

MERRA-2 17.49 11.81 27.75 18.15 40.77 27.00

ERA-Interim 8.88 6.70 24.45 16.12 35.89 23.96

ERA5 0.80 1.31 20.99 13.57 30.47 19.88

SARAH PVGIS 0.74 -0.17 13.46 8.55 19.74 12.74

NSRDB coverage

13 stations

MERRA-2 15.56 8.18 30.42 16.19 42.72 22.79

ERA-Interim 14.14 7.77 29.26 15.71 41.79 22.43

ERA5 6.30 3.43 22.36 11.93 31.56 16.82

NSRDB-PSM 1.76 0.61 17.46 9.38 24.68 13.33

Mountains

1 station

MERRA-2 -33.63 -11.91 46.15 16.37 53.28 18.90

ERA-Interim -47.76 -16.92 60.51 21.46 70.17 24.89

ERA5 -43.11 -15.27 51.93 18.41 58.88 20.88

SARAH PVGIS -72.24 -25.67 75.25 26.75 100.09 35.58

Overall, the statistics at BSRN stations were in concordance with those

over Europe. Satellite-based databases showed both the smallest annually-

aggregated bias (Table 5.5) and the most homogeneous distribution of the

bias (Fig. 5.31) worldwide as well. The bias was also low for ERA5 (rMBD
= +4.52%) corroborating its improvement over previous global reanaly-

ses. ERA5 showed a spatially homogeneous bias, with an average rMBD
comparable to that of SARAH PVGIS (1.31% vs. -0.17%) and NSRDB PSM
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(3.43% vs. 0.61%) in the areas covered byMeteosat and GOES satellites, re-

spectively. ERA5 only showed large positive deviations in coastal regions

and small islands. This was the case of Lerwick (rMBD = +19.2%) and

Ny-Ålesund (rMBD = +24.2%), two high-latitude islands, and Kwajalein

(rMBD = +18.9%), a coral atoll comprising 97 islands and islets with a

total land area of 16 km2.

Figure 5.31: Distribution of rMBD in daily GH at BSRN

stations.

The magnitude of rMBD is represented with both color and size.

The validation against BSRN stations confirmed that ERA-Interim and

MERRA-2 present strong positive biases not only over Europe but also

globally. ERA-Interim and MERRA-2 obtained the largest bias (+14.14%

and +15.56% respectively) and the most heterogeneous distribution of the

bias (Fig. 5.31). Similarly to ERA5, the overestimation increased in coastal
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regions and small islands due to the coarse spatial grids of global reanal-

yses. However, both ERA-Interim and MERRA-2 systematically overesti-

mateGH also over flat areas in North America, Europe, South America, and

China. The source of the positive biases may vary for each database and

region, but the most likely cause may be an underestimation of cloud cov-

erage in regions with high cloudiness, e.g., South America, and the predic-

tion of too few aerosols in regions with high aerosol contents, e.g., China.

Figure 5.32: 2D density plot of relative deviations of daily

GH (estimations minus measurements) against KT at BSRN

stations.

Plots are generated with a 2D binned kernel density estimate.

The distribution of daily deviations against KT (Fig. 5.32) corrobo-

rated that the main difference between satellite-based and reanalysis mod-

els is the quality of cloud predictions. Note that the density plots of

satellite-based products were calculated only with the stations covered by

the product. Nonetheless, all reanalyses presented a similar distribution
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of the deviations against KT , with positive and negative deviations un-

der cloudy and clear conditions, respectively. On the other hand, devi-

ations of both satellite-based products did not show any specific depen-

dence with atmospheric transmissivity. In ERA5, these deviations aver-

age out in annually-aggregated bias, leading to a moderate rMBD world-

wide. In ERA-Interim and MERRA-2, positives biases under cloudy con-

ditions caused by an underestimation of clouds were stronger, causing the

strong positive biases obtained by these products. These deviations did not

cancel out in annually-aggregated absolute errors leading to substantially

larger MADs and RMADs in the three reanalyses than in satellite-based

databases (Fig. 5.31). These differences are expected to increase even more

for sub-daily estimations.

Figure 5.33: Distribution of rMAD in daily GH at BSRN

stations.

The magnitude of rMAD is represented with both color and size.

All databases showed a striking underestimation at Izaña (IZA), which
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was the only BSRN station in the mountains. Izaña is located in the Tener-

ife island (2034 km2) at 2373 m, in the surroundings of Teide volcano

(3718 m). The station is above the subtropical temperature inversion layer

and affected by a quasi-permanent subsidence regime [205], so clouds typ-

ically affect the lower part of the island (below 2000 m) while clear condi-

tions prevail in the upper area. These particular conditions aggravate the

underestimation of satellite-based products. SARAH PVGIS pixels may

include both lower and upper parts of the island, underestimating the ir-

radiance of the upper parts, where IZA is located, due to the presence of

clouds in the lower parts.

Maps of average irradiance were compared using SARAH PVGIS and

NSRDB as the reference in areas covered by Meteosat and GOES satellites,

respectively. Differences between global reanalyses and NSRDB (Fig. 5.34)

shared a similar pattern, with positive deviations in North America and

high negative differences in Central and South America. In North America,

NSRDB biases at BSRN stations were the smallest overall. Thus, positive

differences observed are most likely the consequence of the overestimation

of the three reanalyses. The smallest deviations were obtained by ERA5

with values generally within ±5 W/m2 except for the Rocky Mountains

and the Great Lakes. The differences between ERA5 and NSRDB are par-

ticularly low in flat regions such as the Great Plains and the West Coast.

The deviations of all products were higher in the area covered by GOES

West than in the area covered by GOES East. The maps show a clear dis-

continuity along the 105◦W longitude line, which lies between the nadir

points of the two satellites used to calculate the NSRDB. The magnitude of

this discontinuity is substantially smaller than that of the reanalysis val-

idation errors, making its impact on the results negligible. However, it

serves to illustrate that the deviations shown here are not exclusively due

to the reanalysis products. This discontinuity may be related to the degra-

dation of models derived from geostationary satellite images near the edge

of the images. The most likely cause of NSRDB discontinuity is the par-

allax effect, which makes that clouds appear displaced when viewed from

shallow angles [81].

The differences became more complex in Central and South America

due to the uncertain performance of NSRDB in this region. The number

of BSRN stations to validate the databases was too low. Besides, NSRDB

showed strong positive biases in the few BSRN stations available, while

NSRDB and SARAH PVGIS estimations differed in the South American

region covered by both databases. Hence, differences against NSRDB in

South America should be interpreted with caution. The negative differ-
ences obtained by ERA5 in western Brazil then indicate that ERA5 has a

smaller bias than NSRDB there, as it occurs at Brazilian BSRN stations.
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Figure 5.34: Map of the difference in annual GH (2010-

2014) between reanalyses and NSRDB PSM (GOES cover-

age area) and SARAH PVGIS (Meteosat coverage area).

The color scale is limited to ±30W/m2; larger differences are shown as black. Areas not covered by
SARAH PVGIS are shown as dark grey.

However, this cannot be extrapolated to all of South America due to the

lack of ground data. A pattern shared by differences with respect SARAH

and NSRDB in South America is the strong negative deviations exceeding

-20 W/m2 in the Amazon Basin. This area belongs to the Inter Tropical

Convergence Zone (ITCZ), which is a belt that encircles the Earth near the

equator. The most likely cause of these negative deviations is the over-

estimation of the clouds in the ITCZ, a region that already has a high

frequency of clouds [109]. Fig. 5.34 also depicts a discontinuity in the

set of pixels that cover both water and land. For instance, high negative

differences are observed in MERRA-2 on the coasts of Central America,



5.2. Validation of radiation databases 135

while ERA5 shows a positive deviation on the West coast of North Amer-

ica. These discontinuities caused the high bias obtained at coastal stations

and corroborate the limitations of reanalysis in those regions.

The differences between reanalyses and SARAH PVGIS also showed a

discontinuity at the border between METEOSAT Prime and METEOSAT

East, though it is somewhat less pronounced than in NSRDB PSM. ERA5

presented again the smallest deviations within ±5 W/m2 over most of Eu-

rope, Central Asia, and South Africa. The most considerable differences
were obtained in regions of the ITCZ such as the Guinean Gulf, West

Africa, and India. This corroborates the limitations of reanalysis models in

the ITCZ in particular, and in regions with frequent occurrence of clouds

in general. On the other side, largest positive deviations were observed in

the Tibetan Plateau and China. The positive bias for the Tibetan Plateau

agrees with the ones obtained in other mountain ranges such as the Alps,

the Pyrenees, the Rocky Mountains, or the Andes, while the overestima-

tion over China may be related to the underestimation of clouds and an-

thropogenic aerosols reported by Zhang et al. [109]. In general, the maps

evidence that the average irradiances from ERA5 and SARAH are compa-

rable mostly for flat regions with a low occurrence of clouds.

5.2.3 Strengths and weaknesses of satellite-based and reanaly-
sis databases

Databases derived from geostationary satellites are the best alternative to

ground measurements for assessing the solar resource when long-term

data are required. They provide spatially continuous estimates since the

1980s with a high spatiotemporal resolution (∼3-5 km, ∼15-30 min). Be-

sides, they present the lowest uncertainty among estimation methods.

Compared to reanalyses, their strength lies in their accurate prediction of

clouds from geostationary satellites images. Clouds were traditionally pre-

dicted with empirical corrections using images from visible channels; such

is the case of Heliosat-based models. However, new satellite-based models

are replacing empirical corrections by RTM calculations making possible

to exploit data from infrared channels, as well as to estimate the radiation

components and spectral irradiance. Besides, this evolution towards phys-

ical modeling approaches enables future improvements such as including

more detailed data of atmospheric constituents, which may bring the qual-

ity of satellite-based data even closer to that of ground measurements.

One of the main limitations of databases based on geostationary satel-

lites is their spatial coverage. This is primarily a problem in high latitudes

because none geostationary satellite covers latitudes above ±65◦. Other

minor limitations are their large uncertainties over bright surfaces, near
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the edge of satellite images, and in mountainous regions. Satellite-based

models show large errors over bright surfaces, and particularly over snow-

covered areas, because both clouds and snow have similar reflectivities

leading to the over-prediction clouds. In this respect, the latest snow de-

tection algorithms are including thermal data from infrared channels to

better differentiate between clouds and snow. Uncertainties of satellite-

basedmodels also increase at the edge of satellite images due to the shallow

viewing geometries. Empirical corrections based on the satellite viewing

angle such as the one included by SARAH-2 can mitigate these deviations.

The performance of satellite-based models also deteriorates in the moun-

tains because their spatiotemporal resolution is not enough for modeling

the steep irradiance gradients in rough terrains. The spatiotemporal reso-

lution of the databases is limited by that of geostationary satellites, so the

solution might be to increase the resolution of ancillary datasets such as

aerosols or water vapor. In this line, SARAH-2 improved from SARAH-

1 in the Alps and Pyrenees due to the use of a downscaled water vapor

dataset.

Estimations based on polar-orbiting satellites may be a valid alterna-

tive to those based on geostationary satellites in high latitudes because

they have global coverage and acceptable quality. However, their global

coverage comes at the expense of a lower temporal resolution because each

polar-orbiting satellite passes over a specific equatorial region just twice a

day. Currently, from 4 to 6 polar-orbiting satellites are distributed at dif-

ferent equatorial crossing times, but the number of satellite images avail-

able each day to calculate cloud coverage is substantially lower than that

from a single geostationary satellite. This is why the temporal resolution of

databases based on polar-orbiting satellites is limited to daily values mak-

ing them inadequate to applications requiring sub-daily data, such as the

simulation of PV systems. This low temporal resolution also explains why

the absolute error and uncertainty of polar-orbiting databases are higher

than those of geostationary databases, especially at a daily level. Nonethe-

less, databases based on polar-orbiting satellites are the best alternative to

those based on geostationary satellites if sub-daily data is not a require-

ment.

Global atmospheric reanalyses are another alternative to satellite-

based models that provide hourly irradiance globally, including the poles,

and estimate many other climatic variables such as temperature, wind

speed, or humidity. Moreover, global reanalyses are developed by mete-

orological agencies and are generally free, in contrast to some satellite-

based databases produced by private companies. This makes reanalyses
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an attractive option for applications such as the simulation of PV sys-

tems that require temperature and wind speed data in addition to sur-

face irradiance. However, the accuracy of reanalyses is substantially lower

than that of satellite-based models. This is mainly caused by their coarse

spatial resolution and inadequate modeling of clouds. Global reanalyses

have resolutions of around 30-80 km producing large uncertainties in re-

gions with high irradiance variability such as coastal regions, small islands,

and mountains. Besides, their main difference compared to satellite-based

models is that they tend to overestimate under overcast conditions and un-

derestimate under clear conditions due to cloud-related errors. Whereas

satellite-based models specifically use satellite images each 15-30 min to

predict clouds, cloud predictions in reanalysis are one of the many outputs

that the NWP model produces after assimilating different sources of satel-
lite and ground observations. However, reanalyses do not assimilate irradi-

ance observations, so irradiance estimations are pure predictions from the

NWP model. These limitations are particularly accentuated in reanalyses

such as MERRA and ERA-Interim, where a significant under-prediction of

clouds under cloudy conditions led to positive annual biases worldwide.

ERA5 partly corrects this issue because it showed a similar overestima-

tion and underestimation under cloudy and clear conditions, respectively,

which average out leading to moderate annual biases similar to those of

satellite-based databases. However, these intra-annual deviations do not

cancel out when calculating absolute errors. Thus, the absolute error of

ERA5 is still substantially larger than those of satellite-based databases.

Regional reanalyses correct some of the limitations of global reanalyses

due to their high spatial resolution, which is similar to that of geostationary

satellites, and the use of NWPmodels tailored for the specific area covered

by the database. This results in a decreased degradation of the estimations

in coastal or mountainous regions, but it comes at the expense of losing the

global coverage. Besides, COSMO-REA6 has the same cloud-related errors

as global reanalyses. Overall, COSMO-REA6 had a similar performance

to ERA5 in Europe with a moderate annual bias and a large absolute er-

ror. However, COSMO-REA6 showed a negative bias in GH driven by the

strong underestimation under clear conditions caused the overestimation

of aerosols.

Different a posteriori corrections of reanalysis databases have been de-

veloped to address the dependence of their deviations on cloudiness. Zhao

et al. [111] corrected MERRA and NARR against ground measurements as

a function of KT and surface elevation. Jones et al. [128] corrected ERA-

Interim against the satellite-based database Helioclim 3v5 using quantile

mapping, which consists on adjusting the cumulative distribution function
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of ERA-Interim to that of Helioclim. Frank et al. [181] corrected COSMO-

REA6 against groundmeasurements as a function of KT , αs, and themonth

of the year. They developed specific corrections for low (KT > 0.5) and

high (KT < 0.5) cloudiness. All these corrected versions showed a substan-

tial reduction of the bias. However, absolute errors barely decreased, even

worsening at some locations because an incorrect cloud prediction cannot

be fully corrected a posteriori. Bias-corrected databases might be a tempo-

rary solution to mitigate the impact of data with high bias, but the ultimate

solution should be the improvement of cloud predictions.

Overall, former global reanalyses such as MERRA, MERRA-2, and

ERA-Interim should be generally avoided and only used to fill gaps in

ground measurements or satellite-based databases [23]. New reanalyses

such as ERA5 and COSMO-REA6 have substantially improved former ver-

sions and are a valid alternative to satellite-based models in regions where

those are missing. Still, these databases must be used knowing their limi-

tations [24]; primarily their large uncertainties in regions with high cloudi-

ness and places with steep irradiance gradients such as mountains, coasts,

or small islands.

5.3 Uncertainty in annual global horizontal irradi-
ance

After the evaluation of measured and estimated GH data separately, the

bias and annual uncertainty (u95) in both sources of data were quantified

under a common framework. The Spanish dataset was used because it is

composed of a dense and diverse network of pyranometers to calculate the

uncertainty statistically.

5.3.1 Uncertainty of estimations (radiation databases)

In general, the performance of radiation databases over Spain was similar

to that observed over Europe. The main difference was that the validation

in Spain includes an estimation of the annual uncertainty, giving an idea

of the dispersion of deviations. Satellite-based products exhibited both

the smallest bias and uncertainty (Fig. 5.35), with mean biases of +1.4 and

-1.6% for SARAH-1 and CLARA-A1, respectively. The bias of ERA5 was

similar to those of satellite-based databases (+1.3%), but ERA5 showed

a greater annual variability (+10.6−5.5 %). This is because ERA5 had positive

and negative deviations under cloudy and clear conditions, respectively,

due to a deficient modeling of clouds. These deviations cancel out in the
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Figure 5.35: Relative deviations in annual GH between ra-

diation databases and AEMET secondary standard pyra-

nometers.

Violin plots outline the kernel probability density. Boxplots visualize the lower quartile, median and
upper quartile. The red diamond represents the mean.

annual bias but increase the uncertainty of annual estimations. This in-

crease will be even more significant for daily or hourly estimates. COSMO-

REA6 showed a somewhat smaller uncertainty than ERA5, probably due

to the attenuation of errors at coastal and mountain locations thanks to

the higher resolution of COSMO-REA6. However, COSMO-REA6 had the

largest bias over Spain (-8.2%) because the high frequency of clear condi-

tions aggravates the underestimation due to the excess of aerosols. ERA-

Interim exhibited a large positive bias and the most significant variability,

with annual biases exceeding +20% on the Atlantic coast. The overall pos-

itive bias of +6.1% was driven by the underestimation of clouds under

overcast conditions, whereas the large uncertainty was attributed to the
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coarse resolution of ERA-Interim (∼81 km).

Uncertainties in estimated irradiance depend on the characteristics of

the database. The strongest influencing factor is the type of modeling ap-

proach, with reanalyses showing larger uncertainties than satellite-based

models. Another critical factor is the quality of estimations of the atmo-

spheric components, mainly clouds, but also aerosols and water vapor.

For example, the positive bias of ERA-Interim and the large variability of

all reanalyses were driven by the incorrect modeling of clouds, whereas

the underestimation of COSMO-REA6 was caused by the use of a defi-

cient aerosol climatology. Significant differences were also observed be-

tween databases using similar models. For instance, the increase in the

spatiotemporal resolution from ERA-Interim to ERA5 led to a substantial

reduction in the bias and uncertainty.

The uncertainty of a particular database also changes spatially. This is

one of the main differences between measurements and estimations. De-

spite some measuring errors aggravate under specific climatic conditions,

the uncertainty of pyranometers varies spatially significantly less than that

of radiation databases, especially if the sensor is properly calibrated and

maintained. On the contrary, all regions covered by a database do not

show the same uncertainty. Satellite-based models have large uncertain-

ties in the mountains, over bright surfaces, and near the edge of satellite

images [199], whereas the uncertainty of reanalyses increases in the moun-

tains, coastal regions, and areas with high cloudiness.

5.3.2 Uncertainty added by operational defects

The bias and uncertainty added by operational defects were calculated

based on the differences between measurements from stations showing

defects and SARAH-1 (Fig. 5.36). Note that these differences are nega-

tively biased because they include the bias and uncertainty of SARAH-1

(+1.4+5.6−5.3%). The exact magnitude of operational defects is shown in Sub-

section 5.3.4 after removing the bias and uncertainty of SARAH-1. In any

case, deviations added by operational errors are substantially larger than

those of SARAH-1, justifying the use of SARAH-1 as the reference.

The annual bias added by operational defects increased with the dura-

tion of the defect and its intensity. Most operational failures introduced

large annual differences around ±10%, while some severe cases exceeded

±30%. Differences were generally negative except for some stations with

an incorrect leveling of the pyranometer or large errors. Shading, which

was the most common defect at Spanish weather stations, resulted in neg-

ative differences (bias = -9.4%) that exceeded -30% in extreme cases. Sta-

tions with soiling and defects of unknown cause, which most likely are
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Figure 5.36: Relative deviations in annual GH between

measurements with operational defects and SARAH-1.

Deviations were calculated in stations and years with defects. Violin plots outline the kernel prob-
ability density. Boxplots visualize the lower quartile, median and upper quartile. The red diamond
represents the mean.

low-intensity soiling errors, also showed similar negative biases (-10.8%

and -12%, respectively). Large errors produced either positive or nega-

tive deviations, explaining the high variability obtained in these stations

(+33.4−10.9%). Large errors shown in Fig. 5.36 only included stations with daily

values within -200 < GH < 500 W/m2, but more extreme values were ob-

tained at some Euskalmet stations. An incorrect leveling of the sensor can

also lead to positive differences when the pyranometer is tilted towards

the sun. The largest negative bias was introduced by diurnal periods with

GH = 0 (-14.5%), which is a particular case of large error. This value was

calculated without taking into account two SOS Rioja stations with GH =

0 all year round. All defects showed a high variability as a consequence

of the different severity and duration of the defects. While the whole year

was typically affected in the case of shading, some cases of electronic errors

lasted just a few days or hours, having different impacts in the annual GH .
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5.3.3 Uncertainty of pyranometers (equipment errors)

The direct comparison of SIAR photodiodes against AEMET secondary

standard pyranometers showed that significant differences exist between

the annualGH provided by both types of sensors (Fig. 5.37). The deviations

showed high variability (+7.1−5.6%), with 56% of annual differences out of the
±1.5% uncertainty interval of secondary standards, while 15.3% of annual

differences exceeded ±5%. The bias was predominantly positive (+0.7%)

though some photodiodes also showed negative biases. However, the most

relevant aspect was the high inter-annual variation of the bias (Fig. 5.38). A

sharp change was observed in many photodiodes from 2009 to 2011: pho-

todiodes overestimated annual GH by around +2.5% from 2007 to 2009,

and they underestimated it by around -1% from 2011 to 2013. A recal-

ibration of SIAR photodiodes most likely caused this sharp decrease in

annual GH . Note that some SIAR stations are maintained by the central

government and some others by each regional government, so calibration

procedures and dates may differ between groups of stations. Some of the

inter-annual variations might also be caused by the different performance

of photodiodes with the amount and type of irradiance received each year,

but they have a smaller order of magnitude than changes in the calibration

constant.

Figure 5.37: Comparison between SIAR photodiodes and

AEMET secondary standards separated by less than 20 km.

(a) Relative deviation in annual GH between SIAR photodiodes and AEMET secondary standards.
(a) Distance from SIAR photodiodes to the closest AEMET station. The dashed line depicts the un-
certainty of secondary standard pyranometers. Violin plots outline the kernel probability density.
Boxplots visualize the lower quartile, median and upper quartile. The red diamond represents the
mean.

Differences in Figs. 5.37 and 5.38 included the uncertainty of secondary
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standard pyranometers and additional uncertainties because the sensors

compared are not exactly in the same place. The uncertainty of secondary

standard pyranometers was removed in Subsection 5.3.4 observing small

changes from the values reported in the current section. This suggests

that the use of AEMET stations as the reference is acceptable. Besides, no

trend, neither in the bias nor the variance, was observed with increasing

distance. Some of the largest differences were actually obtained between

pairs of sensors closer than 8 km (Fig. 5.37). In addition, agricultural sta-

tions are typically installed in low-lying areas with a low spatial variability

of irradiance, which means that the spatial representativeness of these sta-

tions is high. This suggests that the uncertainty of the comparison is low

so the differences observed between photodiodes and secondary standards

actually exist.

Figure 5.38: Inter-annual variation of the relative devia-

tions in annualGH between SIAR photodiodes and AEMET

secondary standards separated by less than 20 km.

The 24 pairs of stations visualized have valid annual values for all the years in the period 2007-2013.
Grey lines show the inter-annual variation for each pair of stations. The red line visualizes the me-
dian. The black dots are extreme cases lying beyond 1.5 times the interquartile range (length of the
whiskers).

Different factors could be behind the differences observed in photo-

diodes. The main sources of uncertainty in photoelectric detectors are

the spectral response, cosine error, temperature dependence, and linearity.

Reda [39] estimated that the contributed uncertainty of each of these de-

fects was 5%, 2%, 1%, and 1%, respectively. Driesse et al. [36] analyzed the

individual impact of linearity, spectral response, temperature, and the an-

gle of incidence on photodiode and thermopile pyranometers. They found

positive errors up to +2% for high temperatures, up to +3% for medium

and low angles of incidence, and up to +2% for high irradiances, while neg-

ative errors up to -3% were observed only for low irradiances. Similarly,

Sengupta et al. [38] found an overprediction of photodiode pyranometers
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when compared to secondary standard sensors in the morning and the af-

ternoon. Both studies emphasized the spectral limitations of photodiodes.

The spectral response of silicon is limited to the range 350-1100 nm, which

includes about 70-75% of the total energy [206], whereas 96% of broad-

band irradiance is received from 300 to 3000 nm. Thus, photodiodes in-

clude empirical corrections to estimate the broadband irradiance from the

narrowband measurement, but problems arise when the part of the spec-

trum not seen by the sensors varies non-linearly. This occurs with changes

in aerosol and water vapor concentrations, as well as with intra-daily and

intra-annual variations of the sun elevation angle that modify the domi-

nant scattering process in the atmosphere.

Previous defects introduce systematic deviations that can be mitigated

using empirical correction functions. Ideally, these corrections should be

applied individually per defect, type of sensor, and location after side-by-

side comparisons with a reference radiometer. The calibration should last

at least 1-2 months [42, 44] to include different atmospheric conditions.

Photodiodes should be recalibrated every 2 years to mitigate the effects of
sensitivity drifts [19]. Previous studies have reported that the uncertainty

of uncorrected photodiodes oscillates within 5-10% for 1-min values, dou-

bling that of corrected ones that are generally below 5% [44]. Al-Rasheedi

et al. [44] obtained 91% of GH measurements within ±5%, Vuilleumier

et al. [186] reported an uncertainty of ±10% for presumably uncorrected

photodiodes installed at Payerne, andWilbert et al. [43] found that the un-

certainty was reduced from 5.2% to 2.2% using empirical corrections [43].

All these values refer to 1-min records of GH , which hinders the compari-

son with our study where only daily and annual uncertainties are reported.

Besides, we did not carry a side-by-side validation against a reference in-

strument, which increases the uncertainty in our results.

Nonetheless, annual deviations obtained in this study are clearly larger

than those reported in previous works. This may be partly explained by

the distance between the SIAR and AEMET stations compared and the

own uncertainty of AEMET stations, but these two factors alone cannot

explain the large deviations obtained. The presence of undetected opera-

tional errors in SIAR photodiodes is also unlikely because the comparison

was made after excluding the group of 56 doubtful photodiodes flagged

by the BQC. Therefore, the high uncertainty of SIAR photodiodes com-

pared to the values reported in previous studies may indicate that they

are probably uncorrected. If corrected, it is likely to believe that general

empirical corrections were applied to most SIAR sensors without taking

into account the particular climatic conditions of each site. This would

explain the abrupt inter-annual changes observed in several SIAR photo-

diodes from 2009 to 2011 and the remaining bias since then. Besides, the
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large deviations obtained in this group of quality-controlled SIAR photo-

diodes leads to the conclusion that equipment errors may also be behind

most of the 56 doubtful photodiodes flagged by the BQC. Therefore, the

real uncertainty of SIAR photodiodes may be even higher.

5.3.4 Comparison of the different sources of uncertainty

The uncertainty associated to radiation databases, operational errors, and

equipment errors (Fig. 5.39) was calculated from the annual differences
shown in previous subsections by removing the uncertainty of the refer-

ence irradiance, i.e., the uncertainty of secondary standards in the anal-

ysis of estimations and photodiodes, and the uncertainty of SARAH-1 in

the analysis of operational defects. The expected uncertainty of secondary

standards was used (±1.5%) [19], while the annual uncertainty of SARAH-

1 was estimated from the validation against AEMET stations (+1.4+5.6−5.3%).

The uncertainty of daily values was also reported, with the uncertainty

of secondary standards and SARAH-1 increasing to ±2% and +14.7
−14.9%, re-

spectively. Note that the field uncertainty of secondary standards could

be somewhat larger due to the presence of operational failures or an in-

adequate calibration. However, AEMET stations are strictly maintained

and have passed the two QC tests. Besides, previous studies conducted by

Vuilleumier et al. [41] and Reda [39] reported even lower field uncertain-

ties of ±1.8% and ±2.6%, respectively, for 1-min records obtained with ad-

equately calibrated and maintained secondary standards. Therefore, the

uncertainty assumed for secondary standard seems reasonable. Besides,

the changes from annual differences to annual uncertainties after remov-

ing the uncertainty in reference values were negligible, corroborating the

adequacy of the reference values for each analysis.

When using solar radiation measurements, operational errors pro-

duced the largest uncertainties among all the factors analyzed. The impact

of these defects should be smaller from the users’ perspective because we

have only used the years in which an operational error occurred. Annual

biases of -8.0% and -9.4% were obtained for shading and soiling, respec-

tively, which were widespread defects in agricultural and regional moni-

toring networks. These errors were mainly caused by the incorrect place-

ment and lowmaintenance of the stations. What is worse, many of these er-

rors occurred in networks with top-end pyranometers. Using high-quality

pyranometers does not guarantee to obtain accurate measurements. These

sensors should be only bought if strict maintenance routines can be main-

tained. More importantly, operational errors are generally caused by low-

magnitude deviations that introduce large annual uncertainties because

they persist in time. Thus, these low-magnitude defects usually pass the
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Figure 5.39: Bias ± uncertainty (u95) in annual and daily

GH .

Annual and daily values are depicted with solid and dashed lines, respectively. Uncertainties for
daily values are shown between parentheses.

automatic QC methods implemented by the monitoring networks and ex-

ternal QC procedures such as the BSRN tests. Therefore, operational errors

can substantially skew solar radiation studies if the data is not quality con-

trolled correctly.

The second largest source of uncertainty in annual GH was due to solar

radiation estimations. We observed considerable differences between re-

analyses such as ERA-Interim and COSMO-REA6 (bias = +6.1 and -8.2%)

and satellite-based products such as SARAH-1 and CLARA-A1 (bias = +1.4

and -1.6%). The gap between reanalysis and satellite-based products in-

creased even more for daily estimations because the dependence of errors

with cloudiness averaged out in annual values. These systematic errors in

reanalysis are primarily caused by the incorrect prediction of clouds (ERA-

Interim, ERA5) and aerosols (COSMO-REA6). The daily uncertainty also

increased more in CLARA-A1 (+18.4−20.5%) than in SARAH-1 (+14.7−14.9%), probably

due to the lower temporal resolution of polar-orbiting satellites. We con-

firm that satellite-based products using images from geostationary satel-

lites, such as SARAH-1, provide the estimations with the lowest bias, un-

certainty, and the most homogeneous spatial performance. New reanalysis
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such as ERA5 or COSMO-REA6 can be used when satellite-based data is

missing but accounting for their limitations, such as their large errors in

cloudy regions. Former reanalysis such as ERA-Interim or MERRA should

be avoided for assessing the solar resource.

Uncertainties due to equipment errors were the smallest among all the

factors compared. However, significant deviations were observed in low-

cost photodiodes. The annual uncertainty of SIAR photodiodes (+6.9−5.4%)

was significantly higher than that of AEMET secondary standard (±1.5%)

and similar to that of SARAH-1 (+5.6−5.3%). The uncertainty in photodiodes

would be even higher from the users’ perspective because operational de-

fects and 56 doubtful photodiodes were removed from this analysis. The

daily (+15.1−16.1%) and annual (+6.9−5.4%) uncertainties obtained were larger than

the values reported in previous studies made with photodiodes. Although

part of this uncertainty could be attributed to the validation procedure, the

inadequate calibration of SIAR photodiodes is the most likely cause of this

high uncertainty. This suggests that poorly maintained and incorrectly

calibrated photodiodes could obtain similar uncertainties than satellite-

based databases such as SARAH-1. We recommend using secondary stan-

dard pyranometers when the accuracy of the results is critical, such as the

validation of satellite-based products or the analysis of climate trends. If

photodiodes have to be used, special care must be taken if they belong to

low-quality monitoring networks because the probability of having opera-

tional errors and uncorrected sensors substantially increases.

5.3.5 Impact of measuring errors on solar radiation studies

Solar radiation measurements present the lowest uncertainty if strict mea-

suring guidelines are followed, being therefore customarily used for appli-

cations such as analyzing climate trends, validating solar radiation models

and correcting their biases, and assessing the solar resource, among oth-

ers. Users sometimes take for granted the high-quality of measurements.

However, previous sections evidenced that operational errors are frequent

in some monitoring networks. These defects introduce significant biases

and uncertainties, while photodiode pyranometers may increase this un-

certainty even more. Therefore, studies based on stations showing defects

might be substantially affected by the low quality of the measurements.

Validations of radiation databases are one example of a study strongly

influenced by measuring errors. We have observed that the bias and un-

certainty added by operational errors and some photodiodes can be sim-

ilar or even higher than those of satellite-based databases. This prevents

the accurate validation of the models because deviations added by defects

can be mistaken for deviations of the model. Validations are made against
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high-quality networks such as the BSRN when low uncertainty is critical

[21, 195]. However, the inclusion of data from national services and re-

gional networks is customary to increase the density of stations for evalu-

ating databases over specific regions. This increases the chances of intro-

ducing operational errors in the reference dataset.

Figure 5.40: Influence of operational defects on the

annually-aggregated rMBD and rMAD of SARAH PVGIS

at European stations with defects.

Stations are sorted from left to right by increasing number of daily samples removed per year (values
shown at top). Red and green dots show the years with and without defects, respectively.

By way of example, we have quantified the effects of measuring er-

rors on the evaluation of radiation databases by validating SARAH PVGIS

against the European stations with defects (Fig. 5.40). The annual bias was

used to evaluate the results to prevent that short defects got masked in

long time series spanning several years. The reduction in both rMBD and

rMAD from the years containing defects to those with acceptable data was

around 2-10% at most stations. Differences up to a 20% were obtained at

DWD 3028 (equipment error) andMétéo France 5183001 (shading), values

which were greater than the own rMBD and rMAD. The sign of the bias

even changed at Météo France 5183001, altering the analysis of SARAH

PVGIS performance completely. The impact of the defects on annually-

aggregated statistics increased with its duration as expected, but signifi-

cant deviations of around 2-3% were still obtained at stations with defects

shorter than one month. Overall, these results evidence that using mea-

surements from high-quality networks and applying a strict quality con-

trol of the data should be mandatory to perform an adequate evaluation of
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radiation databases. The progress of solar modeling techniques is accentu-

ating this issue because the magnitude of modeling errors is getting closer,

and sometimes smaller, than that of operational defects.

The previous was an extreme example because only stations with de-

fects were used. However, the use of measurements from networks with

a high number of operational errors or low-quality sensors is not unusual,

partly because most widely used QC procedures cannot detect equipment

or operational defects. In Spain, several studies have been published based

on data from monitoring networks with a high number of operational fail-

ures such as Euskalmet [193, 207], MeteoGalicia [194], or SOS Rioja [131].

Studies based on SIAR stations, whose uncertainty is larger due to the

presence of incorrectly calibrated photodiodes, are even more common

[129, 208, 209, 130, 69, 210, 211, 212, 59]. This is because SIAR pro-

vides high-resolution (30-min) GH data at no cost over a dense network

of more than 500 stations. By contrast, the national meteorological ser-

vice, AEMET, currently charges for sub-daily radiation data. Studies using

SIAR data typically assumed the uncertainty reported in the pyranometer

datasheet (±5%), but previous results have evidenced that this uncertainty

may be substantially larger even after removing operational defects. Most

of published studies applied basic range or consistency tests to quality con-

trol the data [129, 212] and did not discuss SIAR quality. Only Ruiz-Arias

et al. [130] removed 14 SIAR stations in Andalucia after inspecting the

data and observing suspicious inter-annual trends likely caused by defi-

cient maintenance.

The consequences of using measurements with high uncertainty can

be observed in some of the published validations of solar radiation mod-

els against SIAR stations. Besides obtaining large errors at some particu-

lar stations most likely due to operational defects, the biases obtained can

be partly explained by the trends observed when comparing SIAR photo-

diodes against AEMET pyranometers (Fig. 5.38): SIAR photodiodes tend

to overestimate before 2010 and underestimate since then. Antonanzas-

Torres et al. [131] validated a CM SAF SIS product against SIAR stations

during 2010-2011 obtaining a bias of +3.41%. The underestimation of

SIAR photodiodes in 2010 and 2011may explain this large positive bias for

a satellite-based database in Spain. Urraca et al. [59] compared SARAH-1

against SIAR stations in Castilla la-Mancha from 2001 to 2013 obtaining

a mean bias of +0.22%, which is lower than that obtained in Section 5.38

when validating SARAH-1 against AEMET stations (+1.4%). The overesti-

mation of SIAR photodiodes before 2010 may also explain this difference.
Besides, both studies obtained particularly large biases at locations where

the BQC identified operational defects. Rodriguez-Amigo et al. [212] in-

terpolated measurements from SIAR stations in Castilla y Leon from 2007
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to 2013, validating them against four AEMET stations. Most interpola-

tion techniques showed a positive bias, which agrees with the positive dif-

ference of +0.7% obtained in our comparison between SIAR and AEMET

stations in the same period (Fig. 5.38). Ruiz-Arias et al. [210] corrected

the WRF NWP model against AEMET stations during 2003-2012 and val-

idated it against several SIAR stations. They observed an increasing bias

in the corrected dataset that was attributed to the increasing number of

AEMET stations after 2007. However, this trend also agrees with the de-

creasing bias observed in SIAR photodiodes from 2007 to 2013 (Fig. 5.38).

Our comparison of SIAR and AEMET stations was made with a constant

number of stations having data during all the years in the study period,

so the trend observed by Ruiz-Arias et al. [210] was most likely due to the

uncertainty and re-calibrations of SIAR photodiodes rather than to the in-

creasing number of AEMET stations.

Uncertainties in solar radiation measurements did not directly affect
the validation of locally-calibrated models, such as those based on em-

pirical correlations with meteorological variables [209, 69, 79]. However,

they did affect these studies when locally-calibrated models were bench-

marked against satellite-based or NWP models. For instance, the CM SAF

SIS database obtained strong positive biases at mountain stations of SOS

Rioja (Urbaña and Moncalvillo) [69], which are explained by the shad-

ows detected by the BQC at those stations. Conversely, empirical models

showed moderate errors because they were able to "learn" the shading pat-

terns. Interpolation techniques are another type of locally-calibrated mod-

els that have exploited the high-density of SIAR stations [129, 130, 212].

The consequences of interpolating data with measuring errors may be visi-

ble in the irradiancemaps obtained, which presented "spotty" distributions

with sharp irradiance gradients around the stations. This was attributed

to particular model configurations or the presence of anomalies in the ex-

planatory variables [129]. However, systematic deviations of photodiodes

or operational errors in SIAR stations may also contribute to these "spotty"

distributions, and this possibility was not discussed in any of the previous

studies.

Patterns observed in the previous studies evidence the critical impor-

tance of using solar radiation measurements with low uncertainty since

this is the foundation where the conclusions of these studies are built. The

quality of the sensors and the maintenance protocols of the stations should

always be checked. Besides, the use of advanced QC procedures such as the

BQC is strongly recommended to identify any operational or equipment

failure, which can occur even in high-quality networks such as national

services. In the specific case of Spain, these results also highlight the ne-

cessity of making freely available AEMET data to improve the quality of



5.4. Propagation of the bias in GH through PV simulations 151

solar radiation studies in Spain.

5.4 Propagation of the bias inGH through PV simula-
tions

The propagation of the bias in GH through PV simulations was analyzed

by comparing simulations made with SARAH PVGIS, COSMO-REA6, and

ERA5 against a simulation based on station measurements. The annual

bias in GH and GPOA was analyzed separately below and above 55◦N
(Fig. 5.41) because the performance of radiation databases changes in high

latitudes due to seasonal snow, low solar elevation angles, and low satellite

viewing angles.

SARAH PVGIS obtained the smallest annual bias in GH below 55◦N
(biasy = −0.06%). It showed a decreasing bias with increasing latitude,

obtaining negative biases in northern Germany and particularly in the

Nordic countries (biasy = −4.87%). SARAH PVIGS underestimate near the

edge of satellite images due to an overestimation of cloud thickness be-

cause satellites view clouds at very shallow angles [195, 21]. This issue

has been addressed in SARAH-2 with an empirical correction of the cloud

index as a function of the satellite zenith angle, but it has not been im-

plemented in SARAH PVGIS yet. The negative bias was stronger in winter

(Fig. 5.45) probably due to the over-prediction of clouds over snow-covered

surfaces [195]. COSMO-REA6 showed the largest bias by underestimating

GH across all latitudes (-4.99% and -5.98%) due to the overestimation of

aerosols mentioned above. The most homogeneous distribution of the an-

nual bias in GH across Europe corresponded to ERA5, with a moderate

overestimation of GH below 55◦N (biasy = +1.67%) and a low underesti-

mation in high latitudes (biasy = −1.43%). Thus, ERA5 was the database

with the smallest bias above 55◦N, while the smallest bias below 55◦N cor-

responded to SARAH PVGIS.

Annual biases in PDC differed from those obtained in GH at some loca-

tions. SARAH PVGIS obtained the most stable bias through simulations

(Fig. 5.42), with Δbiasy within ±1.8% in the transposition model and a

negligible Δbiasy within ±0.1% in the PV module model. In the trans-

position model, the bias got more positive below 55◦N (Δbiasy = +1.8%)

and more negative in the Nordic countries (Δbiasy = -1.46%). COSMO-

REA6 presented a similar propagation pattern to that of SARAH PVGIS

in the transposition model, but COSMO-REA6 obtained a non-negligible

Δbiasy of +0.92% in the PV module model. The increase in bias below

55◦N canceled out the negative bias in GH leading to a moderate bias in
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Figure 5.41: Distribution of rMBD in GH and PDC for sim-

ulations using radiation databases.

Values in the boxes represent the mean bias at locations over and under 55◦N.

PDC, whereas the decrease of bias in high latitudes accentuated the nega-

tive bias in PDC. The largest change in the bias through the simulations was

obtained by ERA5 below 55◦N, with Δbiasy = +6.09% in the transposition

model and Δbiasy = +1.52% in the PV module model. This led to a large

bias in PDC (+9.29%) despite the moderate bias in GH (+1.67%) obtained

by ERA5. ERA5 performance sharply changed in Northern Europe becom-

ing the best radiation database in terms of GH and the one showing the

most stable bias through simulations (Δbiasy = +1.44%). Therefore, ERA5

was the best performing database in high latitudes with an annual bias in

PDC of +0.01%, whereas SARAH PVGIS remained as the database with the

smallest annual bias in PDC below 55◦N (+1.64 %).

These results evidence that, despite the bias inGH is the primary driver

of the bias in PDC, the bias significantly changes through the simulations.

Deviations observed were exclusively due to the source of radiation data,

so changes in the bias through the simulations were caused by secondary
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Figure 5.42: Propagation of rMBD in the transposition and

PV module model.

Values in the boxes represent the mean bias at locations over and under 55◦N.

effects of uncertainties in estimated irradiance on the modeling chain. The

magnitude and sign of these changes varied between databases and loca-

tions, and in some cases, they were even higher than the magnitude of

the annual bias in GH . For example, the annual bias in GH of ERA5 was

smaller than that of COSMO-REA6 (+1.67 vs. -4.99%), but the amplifi-

cation of ERA5 bias through the simulations made that its annual bias in

PDC was greater than that of COSMO-REA6 (+9.29 vs. -2.79%). In the

following sections, we analyze the root of these variations by studying in-

dependently the bias propagation through the transposition model (Sub-

section 5.4.1) and the PV module model (Subsection 5.4.2).

5.4.1 Bias propagation in the transposition model

The propagation of the bias in the transposition model was studied based

on the distribution of daily deviations against KT (Fig. 5.44), the deviations
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Figure 5.43: Validation of BH and DH from radiation

databases.

(a) Distribution of rMBD in DH and BH from radiation databases. (b) Daily deviations in BH and
DH between radiation databases and station measurements. Values in the boxes represent the bias at
locations over and under 55◦N.

of BH and DH (Fig. 5.43), and the intra-annual distribution of these devi-

ations (Fig. 5.45). The role of radiation components in the transposition

model is essential because they are transposed separately and the contribu-

tion of each component varies with the inclination angle: the contribution
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of beam irradiance increases up to the optimum inclination angle whereas

the contribution of diffuse irradiance decreases. Therefore, an unbalanced

estimation of radiation components (biasy(GH ) � biasy(DH ) � biasy(BH ))

will be accentuated through the transposition model leading to large er-

rors in GPOA. The bias in GPOA will get more negative when BH is un-

derestimated (biasy(BH ) < biasy(GH )) and will get more positive when BH

is overestimated (biasy(BH ) > biasy(GH )) because beam irradiance plays a

dominant role close to the optimum inclination angle. Regarding reflected

irradiance, the relative bias in RPOA will be equal to that in GH because

RPOA was calculated from GH assuming an istropic distribution and a con-

stant ρg . Therefore, RPOA is not analyzed in this section because the bias of

RPOA does not change through the transposition model.

Figure 5.44: Propagation of the bias in the transposition

model (from GH to GPOA).

(a) Daily deviations in GH and GPOA between radiation databases and station measurements. (b) 2D
density plot of the variation of the daily deviations against the KT .

The bias of SARAH slightly changed through the transposition model

below 55◦N (Δbiasy = +1.8%) because of a balanced estimation of the ra-

diation components (biasy(BH ) = -0.91%, biasy(DH ) = +0.97%) (Fig. 5.43).

The increase of the bias may be partly explained by the presence of missing

values at low solar elevations. These values were set to 0 for the validation

of horizontal irradiance while they were reconstructed for PV simulations,

introducing a small negative bias in GH , BH , and DH when compared to
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GPOA and PDC. The Δbiasy was more negative with an increasing latitude

(Fig. 5.42b) due to the greater underestimation of BH (Fig. 5.43a) that can-

celed out the overestimation caused by missing values. Therefore, Δbiasy
was -1.46% above 55◦N driven by the strong imbalance between the radi-

ation components (biasy(BH ) = -14.91%, biasy(DH ) = +8.18%). The under-

estimation of SARAH in GH and GPOA was stronger under clear conditions

in winter and spring (Fig. 5.45), so this effect may be related to the known

limitations of SARAH over snow-covered surfaces [195]. In high latitudes,

the imbalance between BH and DH (positive bias in DH , negative bias in

BH ) was also large in summer under clear conditions (Fig. 5.45), which

may be related to other issues such as aerosols modeling.

The bias of COSMO-REA6 got more positive through the transposition

model below 55◦N (Δbiasy = +1.27%) and more negative in high latitudes

(Δbiasy = -2.67%). Compared to SARAH, COSMO-REA6 presented an un-

even intra-annual distribution of the deviations (Fig. 5.44), strongly under-

estimating under clear sky due to an excess of aerosols, and overestimating

under cloudy conditions due to the under-prediction of clouds. Negative

deviations under clear conditions were the dominant effect leading to the

underestimation of GH , DH and BH in mid and low latitudes. These de-

viations were particularly visible in central months of the year (Fig. 5.45).

Below 55◦N, both effects virtually balanced each other (Fig. 5.43b) and the

bias of COSMO-REA6 slightly got more positive due to the overestimation

of BH under cloudy conditions and the predominantly high-cloudiness at

the sites evaluated. Above 55◦N, the overestimation of BH under cloudy

conditions was somehow mitigated. Therefore, the underestimation of BH

under clear conditions prevailed leading to a negative Δbiasy through the

transposition model of -2.67%. The bias became more negative as well at

southern locations because the underestimation of BH was accentuated by

the high frequency of clear conditions (Fig. 5.43). Overall, both SARAH

PVGIS and COSMO-REA6 presented a similar propagation pattern in the

transposition model, with a moderate positive Δbiasy below 55◦N and a

large negative Δbiasy in high latitudes, though the causes of these changes

differed in each database.

ERA5 showed a significantly positive Δbiasy of +6.09% through the

transposition model below 55◦N, which may be explained by the great

imbalance between beam and diffuse irradiance (biasy(BH ) = +17.81%,

biasy(DH ) = -14.15%) (Fig. 5.43). Similarly to COSMO-REA6, ERA5 over-

estimatedGH under overcast conditions and underestimated it under clear

skies. However, the overestimation of GH under cloudy conditions was

substantiallymore accentuated in ERA5 than in COSMO-REA6 (Fig. 5.44a)

due to different failures in the prediction of clouds. The under-prediction

of clouds led to an overestimated BH for KT < 0.5 (Fig. 5.44b), and thus, to
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Figure 5.45: Heatmap of monthly-aggregated rMBD in

GH , DH and BH .

Stations are sorted from left to right by increasing latitude.
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an overestimated GPOA. The performance of ERA5 completely changed

in the Nordic countries because of a reduced overestimation of BH un-

der cloudy conditions, leading to a better balanced estimation of radiation

components (Fig. 5.43). The overestimation of BH for KT < 0.6 canceled

the underestimation of BH for KT > 0.6, producing a moderate Δbiasy =

+0.86%. Thus, ERA5 presented the smallest Δbiasy through the transposi-

tion model above 55◦N, which contrasts with its poor performance below

55◦N where it obtained the largest Δbiasy overall.

5.4.2 Bias propagation in the PV module model

The PV module model comprises the estimation of Geff from GPOA, and

the estimation of η ′ for temperature and irradiance values different from
those under STC. In this study, the estimation of Geff only accounted for

AOI losses, which depend on solar geometry and are virtually indepen-

dent of the radiation database. Therefore, variations of the bias through

the PV module model primarily occurred in the estimation of η ′ and they

were caused by second-order effects of irradiance errors on the model that

calculates η ′. These effects are two-fold because η ′ depends on irradiance

directly (Fig. 5.46a) and indirectly via module temperature (Fig. 5.46b). Ir-

radiance and temperature were the predominant factors at low and high

irradiances, respectively. Therefore, η ′ increases with irradiance until a

value of around 400 W/m2, after which the heating of the cell by the radi-

ation causes efficiency to decrease again (Fig. 5.46c) [213].

Figure 5.46: Variation of the relative module efficiency (η ′)
of c-Si modules under conditions different from STC.

(a) η′ as a function of irradiance for constant module temperature, (b) as a function of module temper-
ature for constant irradiance, and (c) and as a function of irradiance for constant ambient temperature.
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Figure 5.47: Propagation of the bias in the PV module

model (from GH to GPOA).

(a) 2D density plot of the daily deviations in GPOA between simulations using radiation
databases and that using station measurements against GPOA. (b) 2D density plot of the
variation of the daily deviations against GPOA.

The Δbiasy through the PV module model can be explained by the

interaction of curves shown in Fig. 5.46c with the distribution of daily

deviations with irradiance (Fig. 5.47a). SARAH PVGIS exhibited a neg-

ligible Δbiasy in the PV module model within ±0.1% because its devia-

tions were evenly distributed with irradiance (Fig. 5.47a). Conversely, a

positive Δbiasy was obtained in the PV module model with both reanaly-

ses: +0.92% and +0.14% for COSMO-REA6, and +1.52% and +0.58% for

ERA5, for locations below and above 55◦N, respectively. This is because

both products present an unbalanced error distribution with positive de-

viations under cloudy conditions (low irradiance days) and negative devi-

ations under clear conditions (primarily high irradiance days). Irradiance

effects dominate η ′ in low irradiance days, so an overestimated irradiance

led to an overestimated η ′, and hence to a positive Δbiasy . On the other

hand, temperature effects dominate η ′ in high irradiance days. Here an

underestimated irradiance led to a too low module temperature, and as a

consequence, to an overestimated η ′ that resulted in a positive Δbiasy as

well. The combination of both effects results in the banana-shaped curves

obtained in Fig. 5.47b, explaining why the bias got more positive in the PV

module model. In COSMO-REA6, the positive Δbiasy was mostly driven
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by an underestimated temperature in days with high irradiance due to the

excess of aerosols (Fig. 5.47b). The positive Δbiasy of ERA5 was primarily

caused by an overestimated irradiance in days with low irradiance due to

the underestimation of clouds (Fig. 5.47b). In summary, the bias was am-

plified through the PV module model in simulations based on reanalyses

due to the intra-annual variations of the deviations with the atmospheric

transmissivity.

5.4.3 Influence of module inclination angle on bias propagation

Figure 5.48: Influence of module inclination angle on bias

propagation.

The dashed line shows the optimum inclination angle at each location.

The propagation of the bias through the transposition model showed

a clear dependence on the module inclination angle. The Δbiasy grew lin-

early with the inclination angle up to the optimum inclination at each loca-

tion (Fig. 5.48). This trend was common to all databases and locations re-

gardless of the sign of the Δbiasy , and it was caused by the increasing con-

tribution of beam irradiance with the inclination angle. Δbiasy increased

more rapidly for databases with an imbalanced estimation of beam and

diffuse components, such as ERA5 in Germany (DWD-662) and COSMO-

REA6 in high latitudes (FMI-4714). In general, the trend in bias continued

at a smaller rate beyond the optimum angle. This may be related to the

fact that for an interval above the optimum angle BPOA still increases while

DPOA continues to fall. Thus, the trend in bias caused by an imbalance of

B and D will continue.
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The Δbiasy in the PV module model was small and virtually constant

along different inclination angles because the inclination angle does not

directly affect the PV module model. The changes of the bias observed

were side effects of the propagation of the bias in the transposition model.

A large Δbiasy in the transposition model accentuates the defects in the

radiation databases, leading to a more irregular distribution of errors in

GPOA. This alters the calculation of the energy conversion efficiency of the

module, explaining the amplification of the bias in the PV module model.

5.4.4 Selection of solar radiation databases for yield predictions

Figure 5.49: Summary of the annual relative deviations be-

tween the simulations using radiation databases and the

one using solar radiation measurements.

(a) Latitude > 55◦N. (b) Latitude < 55◦N. The labels represent the bias ± 95% CI.
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We compared PV simulations made with SARAH PVGIS, ERA5, and

COSMO-REA6 against a simulation based on station measurements to an-

alyze the propagation of the bias in GH through the PV modeling chain.

The bias in GH is the traditional metric for selecting radiation databases

because it propagates proportionally to the bias in PDC, and thus to the

bias in YAC [157, 10]. The uncertainty in annual GH is also considered

because it is the main driver of the uncertainty in YAC and sets the risk

and financial cost of the investment [10, 11, 13]. However, our results evi-

denced that these two indicators alone are insufficient to select solar radia-

tion databases because the bias in GH may get amplified through the mod-

eling chain, as also suggested by Cole et al. [25]. These changes are most

likely caused by the source of solar radiation data used because the remain-

ing parameters were similar between simulations. In particular, the bias is

amplified due to the effect of large intra-annual deviations in GH and an

incorrect prediction of radiation components on sub-models depending on

the irradiance level. Cole et al. [25] estimated that these effects may change

the bias about a ±2% using satellite-based data, but substantially larger

changes were obtained in the present study with both satellite-based and

reanalysis databases.

Themost significant changes occurred through the transpositionmodel

ranging from ±1% up to +6%. Their magnitude increased linearly with the

inclination angle, and they are related to the incorrect estimation of beam

and diffuse irradiance. The amplification of the bias through the PV mod-

ule model was smaller (around +1%). It was also caused by the effects of
high intra-annual errors in GH on module efficiency, which depends on

irradiance directly, and indirectly via module temperature. These results

suggest that these second-order effects cannot be neglected when selecting

a radiation database for simulating PV systems, because databases show-

ing the smallest bias in GH may not always provide the least biased yield

predictions (Fig. 5.49). The amplification of the bias also affects energy

rating studies used to assess the performance of PV materials in a specific

region because they alter the estimated real efficiency of the modules, and

hence the performance ratio.

The interpretation of the results is constrained by the uncertainty in

the reference simulation (Subsection 4.7.2). The annual bias of horizontal

irradiance variables was higher than the uncertainty of the reference sim-

ulation at the majority of stations (Table 5.6). The exceptions were SARAH

PVGIS below 55◦N and ERA5 above 55◦N, where around half of the sta-

tions were within the uncertainty limits due to the low deviations of both

databases in those regions. The patterns showed by SARAH and ERA5 at

those locations should be interpreted cautiously. For GPOA and PDC, the

number of stations within the uncertainty limits increased because both
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variables were not measured but estimated by feeding horizontal irradi-

ance measurements to the simulation model. The uncertainty ranges of

simulations using estimated and measured radiation increasingly overlap

through the modeling chain, explaining the decrease of the uncertainty in

GPOA and PDC (Fig. 5.49). Therefore, the effects of high intra-annual errors

and an incorrect estimation of radiation components on the annual uncer-

tainty could not be evaluated due to the lack of measurements of GPOA and

PDC.

Table 5.6: Percentage of annual biases greater than the an-

nual uncertainty of the reference simulation.

Database GH BH DH GPOA
* PDC

*

Latitude < 55◦
SARAH 57 42 62 30 24

COSMO-REA6 91 75 74 34 20

ERA5 60 96 100 73 77

Latitude > 55◦
SARAH 62 91 81 38 34

COSMO-REA6 82 95 75 70 52

ERA5 30 34 64 11 11

* In the reference simulation, GPOA and PDC are estimated us-

ing the irradiance measurements as inputs to the PV simulation

model.

Values shown in Table 5.6 are the worst-case scenario. The true number

of biases greater than the uncertainty in the reference simulation should be

considerably larger because test and reference simulations used the same

transposition and PV module model. Thus, systematic deviations intro-

duced by these models cancel out. Nonetheless, GPOA and PDC deviations

were significant for ERA5 below 55◦N and for COSMO-REA6 above 55◦N,

even in this worst-case scenario. Concerning the uncertainties at DWD and

FMI stations, we did not observe any significant difference between the re-

sults obtained at BSRN stations and those obtained at FMI or DWD. This

suggests that the variation of uncertainty between stations was negligible

and did not interfere significantly with the interpretation of the results.

5.4.5 Performance of PVGIS radiation databases in Europe

We have evaluated the performance of the three radiation databases cur-

rently implemented by PVGIS for simulating PV systems over Europe.

PVGIS includes a fourth database, the CM SAF Operational product, but

this database was excluded because its spatial coverage overlaps with that

of SARAH PVGIS while it has a larger uncertainty than SARAH PVGIS

(Section 5.2). The CM SAF operational is kept in PVGIS for historical rea-

sons to keep consistency with the results produced by the initial PVGIS
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versions, but SARAH PVGIS should be preferred. The study was particu-

larly focused on the analysis of ERA5 and COSMO-REA6 performance in

Northern Europe. Both reanalyses were included in PVGIS to complement

SARAH in high latitudes after their promising results in the validation

against the European and Global datasets. However, their suitability for

simulating PV systems had not been assessed yet.

Figure 5.50: Solar radiation databases included in PVGIS

below 65◦N.

Source: http://re.jrc.ec.europa.eu/pvg_tools/en/tools.html#PVP.

Significant differences were observed between geographic areas and

databases. In mid and low European latitudes, the bias of reanalyses was

substantially amplified through the simulations, especially that of ERA5.

COSMO-REA6 showed a strong negative bias in GH (-5.0%) due to an

overestimation of aerosols. The bias of COSMO-REA6 got more positive

through the simulation (+2.2%) reducing by chance the bias in PDC (-2.8%).

ERA5 showed a moderate bias in GH (+1.7%) that was sharply amplified

through the modeling chain leading to a bias in PDC of +9.3%. These am-

plifications were most likely caused by the incorrect modeling of clouds
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that led to a substantial variation of daily deviations in GH with the atmo-

spheric transmissivity and an incorrect estimation of the radiation com-

ponents. The strong variation of deviations with atmospheric conditions

limits the capacity of reanalyses to produce accurate yield predictions de-

spite showing moderate biases and uncertainties in annual GH . On the

contrary, SARAH showed the smallest bias in GH (-0.1%) and the most sta-

ble bias through the simulations (+1.7%). These results corroborate that

SARAH is the best database to simulate PV systems in most European re-

gions below 55◦N. Even though PVGIS offers reanalysis data to assess PV

systems within the region covered by SARAH (Fig. 5.50), the use of these

databases should be avoided.

Figure 5.51: Solar radiation databases included in PVGIS

above 65◦N.

Source: http://re.jrc.ec.europa.eu/pvg_tools/en/tools.html#PVP.

The performance of SARAH PVGIS sharply changed in Northern Eu-

rope. The annual bias became more negative through the transposition

model caused by an underestimation of beam irradiance (Δbiasy = -1.46%),

aggravating the underestimation in GH , and leading to significant negative

biases in PDC . This may be related to the above-discussed underestimation
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caused by shallow viewing geometries at the edge of satellite images and

snow-detection problems. Thus, replacing SARAH PVGIS by SARAH-2

may partly correct these issues. COSMO-REA6 showed a similar propa-

gation to that of SARAH PVGIS in high latitudes (Δbiasy = -2.67%) that

accentuated its underestimation in GH over Europe. Conversely, ERA5

showed the smallest Δbiasy and the best annual bias in both GH (-1.4%)

and PDC (+0.0%) due to a reduced overestimation of clouds under over-

cast conditions. Therefore, ERA5 not only complements SARAH above

65◦N but also outperforms it between 55◦N and 65◦N. These promising

results validate the inclusion of ERA5 in PVGIS to assess PV systems in

Northern Europe. Nonetheless, ERA5 still shows large intra-annual devi-

ations in high latitudes due to cloud-related errors. PVGIS users should

keep in mind that the uncertainty of yield predictions from ERA5 in high

latitudes may be larger than that from SARAH in Central Europe, and sub-

stantially larger than that from station measurements in both regions. The

uncertainty may increase even more at coastal locations due to the coarse

resolution of ERA5 (31 km). Therefore, the uncertainty of the yield pre-

dictions obtained with ERA5 may be too high for the financial analysis of

utility-scale plants. However, it is acceptable for preliminary assessments

of the solar resource or planning residential PV systems in Northern Eu-

rope, which is indeed one of the main goals of PVGIS.
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Chapter 6

Conclusions and Future work

6.1 Conclusions

The estimation of the total energy yield produced by a PV system is one

of the most critical stages when planning new installations since it serves

to identify the best sites, dimension their size, and analyze the financial

viability of the project. The uncertainty of yield predictions is driven by

that of solar radiation data, which currently accounts for around 50% of

total uncertainty because it depends on stochastic atmospheric processes

that are not easily predictable. The objectives of this thesis are to quan-

tify the uncertainty in GH measurements and estimations and analyze the

propagation of this uncertainty through the modeling chain for reducing

the uncertainty in PV system simulations.

Solar radiation measurements are the most accurate source of data

when following strict measuring guidelines. The top-end secondary stan-

dard pyranometers have uncertainties in annual GH below ±2% if they

are correctly calibrated and maintained. However, we found substantially

higher uncertainties in the low-cost photodiodes of SIAR when comparing

them with nearby AEMET secondary standards (less than 20 km). After

removing the uncertainty of secondary standards and operational defects,

the uncertainty in annual GH of SIAR photodiodes (+0.7+6.9−5.4%) was even

higher than that of the best satellite-based databases. Although part of

this uncertainty may be attributed to the validation procedure, most of it

is probably due to equipment errors such as cosine error, spectral response,

or linearity, and the incorrect correction of these defects. This uncertainty

will be even higher for daily or hourly GH . Special attention must be paid

to the calibration of the sensors when developing applications based on

data from photodiode pyranometers because their equipment errors can

skew the results obtained. We recommend to use data from secondary

standards when the quality of solar radiation measurements is crucial;

such is the case of the analysis of climate trends or the validation of ra-

diation databases.
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The uncertainty of solar radiation measurements increased even more

due to operational defects caused by the poor placement of stations or low

maintenance. We estimated that common defects such as soiling, shading,

or large errors introduced annual biases around ±9%. We found opera-

tional defects at 29 out of the 335 European stations and at 264 out of

the 732 Spanish weather stations. Some agricultural (SIAR) and regional

networks (SOS Rioja, MeteoGalicia, Euskalmet) presented defects in more

than 50% of their stations. Operational errors occurred equally in photo-

diode or thermopile pyranometers. In stations with photodiodes, such as

those from SIAR, operational defects further increased the equipment un-

certainty. In stations with thermopiles, such as those from Euskalmet or

MeteoGalicia, operational errors ruined the high quality of sensors. Top-

end sensors should be only installed if the adequate level of maintenance

can be kept.

We observed that most operational defects produced low-magnitude

deviations that introduced large annual biases because they persisted in

time. However, the values obtained were physically plausible, and they

easily pass common QC procedures such as the BSRN tests, which only

detect time lags and some large errors. We developed and validated a

new QC procedure, referred to as the Bias-based QC (BQC) method, to

detect low-magnitude defects by analyzing the stability of deviations be-

tween several radiation databases and ground measurements. Specifically,

the BQC flags groups of consecutive days when the deviations of all radia-

tion databases differ statistically from the typical value for that region and

time of the year. Compared to the BSRN tests, the BQC detected all opera-

tional defects identified in the European and Spanish networks, and it also

found some equipment errors related to systematic deviations in photo-

diodes and incorrectly calibrated pyranometers. The use of advanced QC

methods such as BQC is strongly recommended to avoid the inclusion of

measuring errors in solar radiation studies.

The extensive validation performed of several radiation databases over

Europe and worldwide confirmed the high-quality of satellite-based mod-

els, with most of them showing biases below ±3% over most of Eu-

rope. Databases derived from geostationary satellites, such as SARAH

or NSRDB, should be preferred as they show the lowest uncertainty with

spatiotemporal resolutions up to 15 min and 3 km. Their uncertainty in-

creases in the mountains, over snow-covered surfaces, and at the border of

satellite images. However, their main limitation is that their spatial cover-

age is limited to latitudes within ±65◦. Hence, we explored the use of at-

mospheric reanalyses, which have global coverage and predict many other

variables besides GH , as an alternative to satellite data to assess the solar



6.1. Conclusions 169

resource. We confirmed that former ERA-Interim and MERRA2 reanaly-

ses should be avoided due to their low accuracy. Both reanalyses showed

biases above +10% over Europe caused by cloud-related errors and their

coarse spatial resolution. However, we discovered that the new ERA5 and

COSMO-REA6 substantially improved former reanalyses showing a re-

duced bias of +3.75% and -6.00% over Europe, respectively. Their main

limitation is that their moderate biases are a result of the compensation

of large intra-annual deviations that vary with the atmospheric conditions

due to cloud-related errors. This leads to absolute errors and uncertainties

still larger than those of satellite-based models. Hence, both reanalyses

should be used by taking into account their limitations; ERA5 still mispre-

dicts clouds limiting its accuracy in regions with high cloudiness, whereas

COSMO-REA6 overestimates aerosols underestimating GH in sunny re-

gions. However, both ERA5 and COSMO-REA6 are valid complements to

satellite-based databases in regions where those are missing. Indeed, based

on these results the online simulator PVGIS included ERA5 and COSMO-

REA5 to assess PV systems in Northern Europe.

Solar radiation databases used for yield predictions are typically se-

lected based on the bias and uncertainty in annual GH . The prior propa-

gates proportionally to the bias in YAC whereas the latter drives the uncer-

tainty in YAC . However, we found that the bias in GH may be substantially

amplified through the PV modeling chain after comparing simulations

based on the radiation databases implemented by PVGIS against a sim-

ulation based on station measurements. These amplifications are caused

by the effects of large intra-annual deviations in GH and an incorrect es-

timation of the radiation components on sub-models that depend on the

irradiance level. The bias was amplified around ±6% in the transposition

model and ±1% in the PVmodule. The amplification at some locations was

higher than the bias of solar radiation measurements, so these effects have
to be accounted for selecting radiation databases to simulate PV systems.

We also confirmed that SARAH generates the best yield predictions in

Central and South Europe. By contrast, the large intra-annual deviations

of COSMO-REA6 and ERA5 caused by cloud-related errors amplified their

biases through the simulation, making them inadequate to simulate PV

systems despite showing moderate biases in GH . Importantly, the per-

formance of ERA5 improved in Northern Europe. ERA5 not only com-

plements SARAH above 65◦N but also outperforms it between 55◦N and

65◦N because SARAH is affected by snow issues and shallow viewing ge-

ometries. These promising results validate the inclusion of ERA5 in PVGIS

to complement SARAH in Northern Europe.
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6.2 Future work

We developed the BCQ during the initial stage of this thesis using SARAH-

1/SARAH PVGIS, CLARA-A1, and ERA-Interim. However, we later veri-

fied the improvement of SARAH-2, CLARA-A2, and ERA5 over their pre-

decessors. It would be interesting to update the BQC using the newest ver-

sion of each database, mainly by replacing ERA-Interim with ERA5. The

reduction in the variance of the estimations would increase the robustness

of the confidence intervals. This may allow finding currently undetected

defects such as low-magnitude equipment errors. We could also test if

adding a fourth database, such as COSMO-REA6, increases the number of

defects identified and reduces the number of false alarms. Replacing ERA-

Interim with ERA5 would also improve the graphical analysis of the BQC

because there would be a second database with an intra-daily resolution

to generate the plot of instantaneous irradiance. This will also enable to

create this plot at high-latitudes, which currently is not possible due to the

lack of coverage of SARAH above 65◦N.

The principal obstacle to implementing the BQC is the requirement of

solar radiation databases. Even though all databases used in this thesis

are free, retrieving and processing the raster files requires minimum com-

putational skills, especially if we want to implement the BQC over broad

regions. Therefore, it would be interesting to develop an online implemen-

tation of the BQC that integrates the solar radiation databases, as online

PV simulators do. In this way, users would only have to enter their GH

records and analyze the plots generated. The application would automati-

cally compare the measurements against radiation databases, flag the data,

and produce the two plots used to inspect the flags visually. This applica-

tion may be extrapolated to other radiation and meteorological variables.

For instance, the BQC could be used to quality control diffuse and beam ir-

radiance thanks to the increasing number of satellite-based databases esti-

mating the radiation components. Besides, it could be used to detect errors

in temperature or wind speed by comparingmeasurements against estima-

tions from different NWP models. The BQC could be even integrated into

online PV simulators to automatically quality control irradiance, tempera-

ture, and wind speed measurements when provided by users.

Concerning the quality of pyranometers, we found that photodiodes

may have substantially larger annual uncertainties than thermopile sen-

sors, but we could not identify the exact cause of these deviations. We

assumed that most of them were caused by equipment errors such as spec-

tral effects, linearity, or temperature dependence, and by the use or incor-

rect empirical corrections for these errors. It would be interesting to make

a detailed analysis of these errors using sub-daily collocated data from
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high-quality pyranometers at the stations showing defects. At least one

year of data would be needed. Another option would be to use satellite-

based models as the reference, but even the uncertainty of the most accu-

rate databases might be too high for analyzing equipment errors. Finding

the exact cause of photodiode deviations would provide a better under-

standing of their limitations facilitating their correction. This would allow

exploiting the advantages of photodiode pyranometers, such as their low

cost of quick response time.

Finally, we observed that the bias in GH may be amplified through PV

simulations due to high intra-annual deviations in GH and the incorrect

estimation of beam and diffuse irradiances. However, we could not eval-

uate the consequences of these errors in the uncertainty of annual yield

predictions due to the lack of GPOA and PDC measurements. It would be

interesting to repeat the same analysis in a set of locations monitoring both

GPOA and PDC to evaluate whether the annual uncertainty in yield predic-

tions is amplified as well.

6.3 Contributions

6.3.1 Main contributions

The main results of the thesis have been published in the following inter-

national journals and conferences.

International journals

• Urraca, R., Martinez-de-Pison, E., Sanz-Garcia, A., Antonanzas, J., Antonanzas-

Torres, F.J.. Estimation methods for global solar radiation: Case study evaluation of

five different approaches in central Spain. Renewable and Sustainable Energy Reviews

2017;77:1098-1113. URL: http://dx.doi.org/10.1016/j.rser.2016.11.222

This publication was our first evaluation of solar radiation databases

using SIAR data as the reference in Castilla-La Mancha. This study

motivated most of the work presented in this thesis; such is the case

of the analysis of photodiode pyranometers or the development of

the BQC.

• Urraca, R., Gracia-Amillo, A.M., Huld, T., Martinez-de-Pison, F.J., Trentmann, J.,

Lindfors, A.V., Riihelä, A., Sanz-Garcia, A.. Quality control of solar radiation data

with satellite-based products. Solar Energy 2017;158:49-62. URL: http://dx.doi.

org/10.1016/j.solener.2017.09.032

This study describes the BQC and its implementation at European

weather stations.
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• Urraca, R., Gracia-Amillo, A.M., Koubli, E., Huld, T., Trentmann, J., Riihelä, A.,

Lindfors, A.V., Palmer, D., Gottschalg, R., Antonanzas-Torres, F.. Extensive valida-

tion of CM SAF surface radiation products over Europe. Remote Sensing of Environ-

ment 2017;199:171-186. URL: http://dx.doi.org/10.1016/j.rse.2017.07.013

This publication presents the validation of the CM SAF satellite-

based databases used in this thesis.

• Urraca, R., Huld T., Gracia-Amillo, A., Martinez-de-Pison, F.J., Kaspar, F., Sanz-

Garcia, A.. Evaluation of global horizontal irradiance estimates from ERA5 and

COSMO-REA6 reanalyses using ground and satellite-based data. Solar Energy

2018;164:339-354. URL: https://doi.org/10.1016/j.solener.2018.02.059

This study shows the evaluation of ERA5 and COSMO-REA6 in Eu-

rope and worldwide. Both reanalyses were benchmarked against for-

mer reanalysis versions (MERRA-2 and ERA-Interim) and satellite-

based databases (SARAH and NSRDB). It was the first publication

evaluating ERA5 and COSMO-REA6 surface irradiance estimates.

• Urraca, R., Huld, T., Martinez-de-Pison, F.J., Sanz-Garcia, A.. Sources of uncertainty

in annual global horizontal irradiance data. Solar Energy 2018;170:873-884. URL:

https://doi.org/10.1016/j.solener.2018.06.005

This study shows the analysis of the uncertainty in solar radiation

measurements and estimations over Spain presented in Section 5.3.

• Urraca, R., Huld, T., Lindfors, A.V., Riihelä, A., Martinez-de-Pison, F.J., Sanz-Garcia,

A.. Uncertainties in estimated irradiance amplify bias propagation in PV simula-

tions. Solar Energy 2018 (under review).

This publication summarizes the analysis of the uncertainty propa-

gation through PV simulations presented in Section 5.4.

International conferences

• Urraca, R., Antonanzas, J., Sanz-Garcia, A., Aldama, A., Martinez-de-Pison, F.J.. An

algorithm based on satellite observations to quality control ground solar sensors:

Analysis of Spanish meteorological networks. In: International Conference on Hybrid

Artificial Intelligence Systems, Oviedo, Spain, June 20-22. 2018. URL: https://doi.

org/10.1007/978-3-319-92639-1_51

This contribution presents the implementation of the BQC at Spanish

weather stations.

• Huld, T., Urraca, R., Gracia-Amillo, A., Trentmann, J.. A global hourly solar radia-

tion data set using satellite and reanalysis data. In: 33rd European Photovoltaic Solar

Energy Conference and Exhibition (EU PVSEC), Amsterdam, 25-29 September. 2017.

https://doi.org/10.4229/EUPVSEC20172017-6BV.3.4

This contribution presents the combination of satellite-based

(SARAH) and reanalysis (ERA5 and COSMO-REA6) databases for as-

sessing the solar resource at any European location.
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• Huld, T., Pinedo Pascua, I., Gracia-Amillo, A. Urraca, R., Dunlop, E.. PVGIS version

5: improvements to models and features. In: 33rd European Photovoltaic Solar Energy

Conference and Exhibition (EU PVSEC), Amsterdam, 25-29 September. 2017. https:

//doi.org/10.4229/EUPVSEC20172017-6DO.6.1

This contribution presents PVGIS version 5. One of the new features

is the inclusion of ERA5 and COSMO-REA6 for simulating PV sys-

tems in Northern Europe.

6.3.2 Other related contributions

International journals
• Urraca, R., Antonanzas, J., Martinez-de-Pison, F.J., Antonanzas-Torres, F.. Estima-

tion of solar global irradiation in remote areas. Journal of Renewable and Sustainable

Energy 2015;7: 023136. URL: https://doi.org/10.1063/1.4919084

• Urraca, R., Antonanzas, J., Alia-Martinez, M., Martinez-de-Pison, F.J., Antonanzas-

Torres, F.. Smart baseline models for solar irradiation forecasting. Energy Con-

version and Management 2016;108:539-548. URL: https://doi.org/10.1016/j.

enconman.2015.11.033

• Antonanzas, J., Urraca, R., Martinez-de-Pison, F.J., Antonanzas, F.. Optimal solar

tracking strategy to increase irradiance in the plane of array under cloudy con-

ditions: A study across Europe. Solar Energy 2018;163:122-130. URL: https:

//doi.org/10.1016/j.solener.2018.01.080.

International conferences
• Urraca, R., Antonanzas-Torres, F., Martinez-de-Pison, F.J., Perpiñan-Lamigueiro, O.,

Antonanzas J.. Irradiation forecasting using genetic algorithms and random forests.

In: XIV World Renewable Energy Congress, Bucarest, June 8-12. 2015.

• Urraca, R., Antonanzas, J., Antonanzas-Torres, F., Martinez-de-Pison, F.J.. Es-

timation of daily global horizontal irradiation using extreme gradient boost-

ing machines. In: International Joint Conference SOCO’16-CISIS’16-ICEUTE’16.

San Sebastián, Spain, October 19-21. 2016. https://doi.org/10.1007/

978-3-319-47364-2_11
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Appendix A

List of weather stations

A.1 Global dataset

Table A.1: List of weather stations included in the global

dataset.

Network ID Lon.[º] Lat.[º] Network Id Lon.[º] Lat.[º]

BSRN ALE -62.42 82.49 BSRN IZA -16.50 28.31

BSRN BER -64.67 32.27 BSRN KWA 167.73 8.72

BSRN BIL -97.52 36.60 BSRN LAU 169.69 -45.05

BSRN BON -88.37 40.07 BSRN LER -1.18 60.14

BSRN BOU -105.01 40.05 BSRN LIN 14.12 52.21

BSRN BRB -47.71 -15.60 BSRN MAN 147.43 -2.06

BSRN CAB 4.93 51.97 BSRN MNM 153.98 24.29

BSRN CAM -5.32 50.22 BSRN NAU 166.92 -0.52

BSRN CAR 5.06 44.08 BSRN NYA 11.93 78.92

BSRN CLH -75.71 36.91 BSRN PAL 2.21 48.71

BSRN CNR -1.60 42.82 BSRN PSU -77.93 40.72

BSRN COC 96.83 -12.19 BSRN PTR -40.32 -9.07

BSRN DAR 130.89 -12.43 BSRN REG -104.71 50.20

BSRN DRA -116.02 36.63 BSRN SAP 141.33 43.06

BSRN E13 -97.48 36.60 BSRN SXF -96.62 43.73

BSRN EUR -85.94 79.99 BSRN TAM 5.53 22.79

BSRN FLO -48.52 -27.60 BSRN TAT 140.13 36.06

BSRN FPE -105.10 48.32 BSRN TIK 128.92 71.59

BSRN FUA 130.38 33.58 BSRN TOR 26.46 58.25

BSRN GOB 15.04 -23.56 BSRN XIA 116.96 39.75

BSRN ISH 124.16 24.34
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A.2 European dataset

Table A.2: List of weather stations included in the Euro-

pean dataset.

Network ID Lon.[º] Lat.[º] Network ID Lon.[º] Lat.[º]

BSRN Ler -1.18 60.14 SMHI Visby 18.35 57.67

BSRN Cam -5.33 50.22 SMHI Östersund 14.50 63.20

BSRN DWD_3015 14.12 52.21 Met Office 23 -2.90 58.95

BSRN Car 5.06 44.08 Met Office 44 -4.44 58.29

BSRN Pal 2.21 48.71 Met Office 48 -3.92 58.23

BSRN Pay 6.94 46.81 Met Office 54 -6.32 58.21

BSRN Cnr -1.60 42.82 Met Office 66 -5.31 57.61

FMI Parainen 21.37 59.78 Met Office 67 -4.89 57.73

FMI Kaarina 22.55 60.39 Met Office 79 -3.97 57.82

FMI Turku 22.18 60.45 Met Office 105 -4.71 56.87

FMI Vantaa 24.96 60.33 Met Office 113 -3.83 57.21

FMI Helsinki 24.96 60.20 Met Office 132 -3.56 57.65

FMI Jokioinen 23.50 60.81 Met Office 161 -2.20 57.21

FMI Asikkala 25.52 61.26 Met Office 163 -2.14 57.13

FMI Lappeenranta 28.57 61.04 Met Office 177 -2.26 56.85

FMI Parikkala 29.46 61.44 Met Office 212 -3.73 56.33

FMI Kauhajoki 22.19 62.41 Met Office 235 -2.86 56.38

FMI Virrat 23.55 62.33 Met Office 268 -2.38 55.71

FMI Jyväskylä 25.68 62.40 Met Office 315 -1.60 55.42

FMI Juva 27.89 61.89 Met Office 326 -1.58 54.77

FMI Seinäjoki 22.49 62.94 Met Office 370 -0.44 53.87

FMI Kuopio 27.32 63.14 Met Office 384 -0.52 53.18

FMI Rautavaara 28.66 63.38 Met Office 395 0.14 52.87

FMI Ilomantsi 30.98 62.77 Met Office 429 1.35 52.76

FMI Toholampi 24.17 63.82 Met Office 435 0.57 52.26

FMI Pyhäjärvi 25.71 63.74 Met Office 440 0.96 52.12

FMI Sotkamo 28.34 64.11 Met Office 456 -0.24 52.40

FMI Siikajoki 25.09 64.68 Met Office 458 -0.59 52.01

FMI Oulu 25.40 65.01 Met Office 461 -0.46 52.23

FMI Rovaniemi 25.84 66.56 Met Office 471 -0.36 51.81

FMI Sodankylä 26.63 67.37 Met Office 533 -1.20 53.84

FMI Rovaniemi_2 26.01 66.58 Met Office 534 -1.32 53.87

FMI Muonio 24.12 67.97 Met Office 535 -1.15 53.83

FMI Utsjoki 27.01 69.76 Met Office 554 -1.25 52.84

SMHI Borlänge 15.43 60.48 Met Office 556 -1.25 53.01

SMHI Göteborg 12.00 57.70 Met Office 583 -0.46 52.61

SMHI Karlstad 13.47 59.37 Met Office 586 -1.92 52.45

SMHI Kiruna 20.43 67.83 Met Office 587 -1.93 52.48

SMHI Luleå 22.13 65.55 Met Office 595 -1.33 52.36

SMHI Lund 13.22 55.72 Met Office 643 -2.66 52.79

SMHI Norrköping 16.15 58.58 Met Office 669 -2.88 52.24

SMHI Stockholm 18.07 59.35 Met Office 676 -2.58 51.52

SMHI Umeå 20.25 63.82 Met Office 692 -1.69 51.86

SMHI Växjö 14.73 56.93 Met Office 708 -0.45 51.48
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Network ID Lon.[º] Lat.[º] Network ID Lon.[º] Lat.[º]

Met Office 1023 -3.21 55.31 Met Office 57199 -2.38 53.36

Met Office 1033 -4.01 54.80 Met Office 57247 -1.42 50.78

Met Office 1035 -3.95 54.93 Met Office 57250 -5.20 50.04

Met Office 1046 -4.63 54.09 Met Office 57254 -2.50 55.30

Met Office 1083 -2.68 54.50 Met Office 61843 0.49 52.83

Met Office 1125 -2.18 53.61 Met Office 61844 -2.35 52.39

Met Office 1144 -2.98 53.18 Met Office 61846 -1.92 50.97

Met Office 1145 -4.54 53.25 Met Office 61847 -1.08 50.98

Met Office 1161 -4.74 52.79 Met Office 61915 1.47 52.69

Met Office 1190 -3.46 52.76 Met Office 61937 -2.37 54.18

Met Office 1198 -4.57 52.14 Met Office 61938 -3.72 50.59

Met Office 1205 -4.02 52.43 Met Office 61948 -2.32 52.78

Met Office 1285 -3.61 51.09 Met Office 61949 -2.73 52.92

Met Office 1302 -2.64 51.01 Met Office 61973 -1.73 53.26

Met Office 1352 -3.90 50.77 DWD 183 13.43 54.68

Met Office 1378 -3.40 50.74 DWD 656 10.60 51.72

Met Office 1415 -4.67 50.50 DWD 662 10.45 52.29

Met Office 1450 -6.22 54.66 DWD 691 8.80 53.05

Met Office 1467 -6.15 55.18 DWD 853 12.87 50.79

Met Office 1568 -7.64 54.40 DWD 1048 13.75 51.13

Met Office 4911 1.28 52.68 DWD 1358 12.95 50.43

Met Office 17314 -1.53 54.30 DWD 1443 7.83 48.02

Met Office 17346 -2.70 53.76 DWD 1580 7.95 49.99

Met Office 18904 -2.25 53.47 DWD 1684 14.95 51.16

Met Office 18905 -1.34 53.45 DWD 1957 11.95 51.51

Met Office 18974 -6.88 56.50 DWD 1975 9.99 53.63

Met Office 18993 0.12 52.21 DWD 2290 11.01 47.80

Met Office 18995 -1.28 52.78 DWD 2712 9.19 47.68

Met Office 19144 -0.11 51.52 DWD 3028 8.84 51.79

Met Office 19187 -1.69 52.48 DWD 3032 8.41 55.01

Met Office 19206 -3.44 51.40 DWD 3098 7.64 51.25

Met Office 19260 -3.34 55.93 DWD 3631 7.15 53.71

Met Office 24102 -1.53 52.42 DWD 3668 11.05 49.50

Met Office 24125 -4.53 55.91 DWD 3987 13.06 52.38

Met Office 24942 -1.12 52.62 DWD 4271 12.08 54.18

Met Office 24948 -2.13 52.59 DWD 4336 7.11 49.21

Met Office 25046 -2.98 53.41 DWD 4466 9.55 54.53

Met Office 25054 -2.27 53.00 DWD 4642 11.73 52.89

Met Office 25351 -1.22 54.57 DWD 4928 9.20 48.83

Met Office 25727 -1.39 50.89 DWD 5100 6.66 49.75

Met Office 30437 -7.57 54.15 DWD 5404 11.69 48.40

Met Office 30620 -0.23 51.14 DWD 5419 11.31 50.98

Met Office 55511 -2.15 53.34 DWD 5440 10.93 49.01

Met Office 55827 -3.40 57.01 DWD 5705 9.96 49.77

Met Office 56214 -0.66 51.49 DWD 5779 13.75 50.73

Met Office 56286 -0.45 51.48 DWD 5792 10.98 47.42

Met Office 56424 -1.93 52.46 DWD 5856 13.35 48.55

Met Office 56471 -0.01 51.54 DWD 5906 8.55 49.51

Met Office 56472 -0.02 51.54 Meteo France 5183001 6.64 44.88

Met Office 56963 -6.95 55.16 Meteo France 6088001 7.21 43.65

Met Office 57063 -7.59 54.33 Meteo France 6094002 6.93 44.10
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Network ID Lon.[º] Lat.[º] Network ID Lon.[º] Lat.[º]

Meteo France 8401001 4.49 49.42 AEMET 0201D 2.20 41.39

Meteo France 9024004 1.69 42.72 AEMET 0367 2.76 41.91

Meteo France 10228002 4.47 48.35 AEMET 1014A -1.79 43.36

Meteo France 11069001 2.29 43.22 AEMET 1024E -2.04 43.31

Meteo France 12145001 3.02 44.12 AEMET 1082 -2.91 43.30

Meteo France 12254001 2.48 44.41 AEMET 1111 -3.80 43.49

Meteo France 13054001 5.22 43.44 AEMET 1249X -5.87 43.35

Meteo France 14066001 -0.43 49.33 AEMET 1387 -8.42 43.37

Meteo France 14137001 -0.46 49.18 AEMET 1387E -8.37 43.31

Meteo France 17300009 -1.19 46.18 AEMET 1428 -8.41 42.89

Meteo France 18033001 2.36 47.06 AEMET 1479I -8.81 42.58

Meteo France 20004002 8.79 41.92 AEMET 1495 -8.62 42.24

Meteo France 21131001 5.17 47.03 AEMET 1549 -6.60 42.56

Meteo France 21154001 4.58 47.85 AEMET 1700X -8.09 42.42

Meteo France 21473001 5.09 47.27 AEMET 2030 -2.48 41.77

Meteo France 25056001 5.99 47.25 AEMET 2422 -4.75 41.64

Meteo France 26198001 4.73 44.58 AEMET 2462 -4.01 40.79

Meteo France 27056003 0.56 49.10 AEMET 2661 -5.65 42.59

Meteo France 29075001 -4.41 48.44 AEMET 2867 -5.50 40.96

Meteo France 33281001 -0.69 44.83 AEMET 2871D -5.67 40.96

Meteo France 34154001 3.96 43.58 AEMET 3129 -3.56 40.47

Meteo France 35281001 -1.73 48.07 AEMET 3194U -3.72 40.45

Meteo France 37179001 0.73 47.44 AEMET 3260B -4.05 39.88

Meteo France 44020001 -1.61 47.15 AEMET 3469A -6.34 39.47

Meteo France 47091001 0.59 44.17 AEMET 4121 -3.92 38.99

Meteo France 49020001 -0.61 47.48 AEMET 4478G -7.01 38.88

Meteo France 55386002 5.76 48.93 AEMET 4642E -6.91 37.28

Meteo France 58218006 3.37 47.17 AEMET 5402 -4.85 37.85

Meteo France 60175001 2.52 49.25 AEMET 5514 -3.63 37.14

Meteo France 61169003 -0.59 48.75 AEMET 5530E -3.79 37.19

Meteo France 61214002 0.66 48.76 AEMET 5783 -5.88 37.42

Meteo France 62516002 2.50 50.58 AEMET 5860E -6.74 37.10

Meteo France 63113001 3.15 45.79 AEMET 5960 -6.06 36.75

Meteo France 64316003 -1.03 43.03 AEMET 5973 -6.26 36.50

Meteo France 64549001 -0.42 43.38 AEMET 6156 -4.48 36.72

Meteo France 66136001 2.87 42.74 AEMET 6325O -2.36 36.85

Meteo France 67124001 7.64 48.55 AEMET 7031 -0.80 37.79

Meteo France 68205001 7.41 47.93 AEMET 7031X -0.81 37.78

Meteo France 69029001 4.94 45.73 AEMET 7178I -1.17 38.00

Meteo France 71105001 4.80 46.30 AEMET 8019 -0.57 38.28

Meteo France 73171002 6.05 45.49 AEMET 8178D -1.86 39.01

Meteo France 75114001 2.34 48.82 AEMET 8368U -1.12 40.35

Meteo France 80379002 2.38 49.87 AEMET 8414A -0.47 39.48

Meteo France 85191003 -1.38 46.70 AEMET 9091R -2.73 42.87

Meteo France 87085006 1.18 45.86 AEMET 9170 -2.33 42.45

Meteo France 95527001 2.53 49.02 AEMET 9263D -1.65 42.78

AEMET B228 2.63 39.55 AEMET 9433 -1.07 41.68

AEMET B278 2.74 39.56 AEMET 9443R -0.91 41.63

AEMET B954 1.38 38.88 AEMET 9771C 0.60 41.63

AEMET 0016A 1.16 41.14 AEMET 9981A 0.49 40.82

AEMET 0076 2.07 41.29 LMT Apelsvoll 10.87 60.70
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Network ID Lon.[º] Lat.[º] Network ID Lon.[º] Lat.[º]

LMT Arnes 11.39 60.13 LMT Landvik 8.52 58.34

LMT Åsbakk 10.77 59.67 LMT Løken 9.06 61.12

LMT Bø 9.03 59.42 LMT Mære 11.43 63.94

LMT Etne 5.95 59.66 LMT Njøs 6.86 61.18

LMT Fåvang 10.19 61.46 LMT Osäker 11.04 59.32

LMT Frosta 10.69 63.57 LMT Pasvik 30.04 69.46

LMT Fureneset 5.04 61.29 LMT Særheim 5.65 58.76

LMT Gausdel 10.26 61.22 LMT Sande 10.22 59.62

LMT Gjerpen 9.58 59.23 LMT Sortland 15.28 68.65

LMT Gran 10.56 60.36 LMT Tjøtta 12.43 65.83

LMT Gvarv 9.21 59.38 LMT Ullensvang 6.65 60.32

LMT Hjelmeland 6.15 59.23 LMT Vagones 14.45 67.28

LMT Holt 18.91 69.65 LMT Valnesfjord 15.10 67.28

LMT Kise 10.81 60.77 JRC Ispra 8.61 45.81

LMT Kvithamar 10.88 63.49
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A.3 Spanish dataset

Table A.3: List of weather stations included in the Spanish

dataset.

Network ID Lon.[º] Lat.[º] Network ID Lon.[º] Lat.[º]

SIAR TO04 -4.66 39.72 SIAR VA07 -4.27 41.64

SIAR TO05 -5.14 39.81 SIAR VA08 -5.07 41.86

SIAR TO06 -3.77 39.68 SIAR VA101 -4.70 41.71

SIAR TO07 -3.98 40.06 SIAR VA102 -4.90 41.31

SIAR TO08 -3.33 40.03 SIAR VA103 -4.98 41.40

SIAR TO09 -4.40 39.83 SIAR Z01 -1.33 41.45

SIAR TO10 -3.14 39.61 SIAR Z02 -0.72 41.35

SIAR TO11 -3.94 39.94 SIAR Z03 -0.52 41.39

SIAR TO12 -3.77 39.66 SIAR Z04 0.15 41.17

SIAR V01 -0.72 39.57 SIAR Z05 -1.28 41.58

SIAR V02 -0.63 39.69 SIAR Z06 -1.20 42.10

SIAR V03 -0.69 39.40 SIAR Z07 -1.31 42.27

SIAR V04 -0.46 39.28 SIAR Z08 -0.94 42.10

SIAR V05 -0.74 39.52 SIAR Z09 -1.33 41.92

SIAR V06 -0.24 39.10 SIAR Z10 -0.75 41.60

SIAR V07 -0.52 39.07 SIAR Z11 -0.82 41.71

SIAR V10 -0.22 39.73 SIAR Z13 -1.66 41.33

SIAR V101 -0.40 39.59 SIAR Z14 -1.51 41.86

SIAR V1010 -0.39 39.59 SIAR Z15 -1.75 41.92

SIAR V102 -0.45 39.11 SIAR Z16 -0.07 41.30

SIAR V1020 -0.45 39.12 SIAR Z17 -0.54 41.55

SIAR V103 -0.55 39.23 SIAR Z18 -1.42 41.11

SIAR V1030 -0.53 39.23 SIAR Z19 -0.75 41.87

SIAR V104 -0.36 38.94 SIAR Z20 -1.25 42.18

SIAR V106 -1.23 39.50 SIAR Z21 -1.14 42.00

SIAR V107 -0.49 39.48 SIAR Z22 -1.25 41.84

SIAR V14 -0.44 39.22 SIAR Z23 -0.73 41.59

SIAR V16 -0.47 39.60 SIAR Z24 -1.61 41.36

SIAR V17 -0.50 39.36 SIAR Z25 -1.31 41.91

SIAR V18 -0.64 38.95 SIAR Z26 -0.77 41.89

SIAR V19 -0.55 39.00 SIAR Z27 -1.06 41.76

SIAR V20 -0.29 39.65 SIAR ZA01 -5.81 42.00

SIAR V21 -1.16 39.43 SIAR ZA02 -5.65 41.48

SIAR V22 -0.20 38.89 SIAR ZA04 -5.39 41.88

SIAR V23 -0.25 38.96 SIAR ZA05 -5.90 41.78

SIAR V24 -0.36 39.19 SIAR ZA06 -5.67 41.93

SIAR V25 -0.69 39.07 SIAR ZA07 -5.52 41.50

SIAR V26 -0.47 39.60 SIAR ZA08 -5.37 41.51

SIAR V27 -0.83 39.68 Meteocat C8 1.30 41.68

SIAR VA01 -5.29 42.15 Meteocat CD 1.43 42.37

SIAR VA02 -5.21 41.23 Meteocat CT 0.74 42.40

SIAR VA03 -4.69 41.31 Meteocat D4 3.18 42.27

SIAR VA05 -4.10 41.77 Meteocat D9 1.52 41.22

SIAR VA06 -5.00 41.49 Meteocat DC 2.48 42.19
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Network ID Lon.[º] Lat.[º] Network ID Lon.[º] Lat.[º]

SIAR BA06 -7.06 38.72 SIAR CC104 -6.90 39.75

SIAR BA07 -6.35 38.58 SIAR CC105 -6.21 39.85

SIAR BA08 -5.90 38.93 SIAR CC106 -6.63 39.27

SIAR BA09 -6.35 38.58 SIAR CC11 -5.65 40.10

SIAR BA101 -6.32 38.85 SIAR CC12 -5.94 40.24

SIAR BA102 -5.71 38.39 SIAR CC13 -5.56 40.01

SIAR BA103 -5.10 39.07 SIAR CC14 -6.46 39.96

SIAR BA104 -6.31 38.21 SIAR CC15 -5.88 40.14

SIAR BA105 -5.86 38.98 SIAR CC16 -6.69 40.07

SIAR BA106 -5.99 39.01 SIAR CC17 -5.87 40.14

SIAR BA201 -7.08 38.77 SIAR CC18 -6.33 39.37

SIAR BA202 -6.91 38.91 SIAR CC19 -6.03 40.21

SIAR BA203 -6.83 38.88 SIAR CO01 -5.21 38.25

SIAR BA204 -6.73 38.91 SIAR CO02 -4.45 38.00

SIAR BA205 -6.67 38.86 SIAR CO03 -5.23 37.73

SIAR BA206 -6.47 38.86 SIAR CO04 -5.16 37.72

SIAR BA207 -6.35 38.66 SIAR CO05 -4.50 37.91

SIAR BA209 -5.86 38.99 SIAR CO06 -4.80 37.86

SIAR BA210 -5.74 39.10 SIAR CO07 -4.89 37.52

SIAR BU01 -2.97 42.69 SIAR CO08 -4.31 37.69

SIAR BU02 -4.13 42.75 SIAR CO09 -5.23 37.73

SIAR BU03 -3.77 42.04 SIAR CO101 -4.43 37.50

SIAR BU04 -3.80 42.35 SIAR CO102 -5.12 38.50

SIAR BU05 -3.58 41.64 SIAR CR01 -3.20 39.21

SIAR BU07 -3.08 42.70 SIAR CR02 -3.36 39.10

SIAR BU101 -3.24 42.97 SIAR CR03 -4.23 39.23

SIAR BU102 -2.78 42.74 SIAR CR04 -3.99 39.04

SIAR C01 -8.05 43.45 SIAR CR05 -3.62 38.95

SIAR C02 -8.14 43.03 SIAR CR06 -2.80 38.84

SIAR CA01 -6.02 36.76 SIAR CR07 -3.06 39.08

SIAR CA02 -6.01 36.64 SIAR CR08 -3.33 39.38

SIAR CA04 -5.62 36.84 SIAR CR09 -3.69 39.01

SIAR CA05 -6.13 36.33 SIAR CR10 -3.35 39.12

SIAR CA06 -5.84 36.29 SIAR CR101 -3.95 39.03

SIAR CA07 -5.38 36.41 SIAR CR11 -2.88 38.70

SIAR CA08 -6.15 36.62 SIAR CS01 -0.23 39.80

SIAR CA09 -6.31 36.78 SIAR CS03 0.37 40.59

SIAR CA10 -6.16 36.61 SIAR CS04 0.40 40.41

SIAR CA101 -6.40 36.75 SIAR CS05 -0.12 39.99

SIAR CA11 -6.33 36.72 SIAR CS06 -0.11 39.89

SIAR CC01 -5.68 39.87 SIAR CS07 0.15 40.13

SIAR CC03 -6.05 40.21 SIAR CS08 -0.17 39.88

SIAR CC04 -6.23 40.01 SIAR CS09 -0.48 39.82

SIAR CC05 -6.68 40.05 SIAR CS10 -0.21 39.97

SIAR CC07 -5.60 39.14 SIAR CS101 -0.14 39.94

SIAR CC08 -6.48 39.38 SIAR CS11 -0.19 39.97

SIAR CC09 -5.46 39.86 SIAR CU01 -2.30 39.36

SIAR CC10 -5.86 39.96 SIAR CU02 -2.76 39.47

SIAR CC101 -6.31 40.30 SIAR CU03 -2.09 39.45

SIAR CC102 -5.76 39.46 SIAR CU04 -2.94 40.11

SIAR CC103 -5.35 39.39 SIAR CU05 -1.65 40.03
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Network ID Lon.[º] Lat.[º] Network ID Lon.[º] Lat.[º]

SIAR CU07 -2.32 40.41 SIAR HU17 0.35 41.50

SIAR CU08 -1.85 39.40 SIAR HU18 -0.51 41.97

SIAR CU09 -2.14 40.15 SIAR HU19 0.30 41.88

SIAR GR01 -2.77 37.56 SIAR HU20 0.23 41.74

SIAR GR02 -2.38 37.88 SIAR HU21 -0.26 41.88

SIAR GR03 -4.14 37.17 SIAR HU22 -0.71 42.58

SIAR GR04 -3.77 37.26 SIAR IB01 1.44 39.01

SIAR GR05 -3.55 37.42 SIAR IB02 2.94 39.68

SIAR GR06 -3.15 37.19 SIAR IB03 3.17 39.55

SIAR GR07 -3.18 36.92 SIAR IB04 2.73 39.56

SIAR GR08 -4.15 36.99 SIAR IB05 3.09 39.48

SIAR GR09 -3.68 36.74 SIAR IB06 3.04 39.80

SIAR GR10 -3.60 37.02 SIAR IB07 2.71 39.78

SIAR GR101 -3.64 37.17 SIAR IB08 4.10 40.00

SIAR GR11 -3.68 36.75 SIAR IB09 3.36 39.70

SIAR GU01 -3.17 40.66 SIAR IB10 2.46 39.55

SIAR GU02 -2.95 40.93 SIAR IB101 3.85 39.97

SIAR GU03 -3.01 40.53 SIAR IB11 1.40 38.73

SIAR GU04 -3.25 40.59 SIAR J01 -3.06 37.75

SIAR GU05 -1.80 40.80 SIAR J02 -2.93 37.67

SIAR GU06 -2.99 40.21 SIAR J03 -3.23 37.86

SIAR GU07 -3.17 40.66 SIAR J04 -3.24 38.08

SIAR GU08 -3.25 40.59 SIAR J05 -3.69 37.99

SIAR GU09 -3.21 40.68 SIAR J06 -4.08 37.58

SIAR H01 -7.03 37.32 SIAR J07 -3.60 37.92

SIAR H02 -7.24 37.30 SIAR J08 -3.30 37.94

SIAR H03 -7.06 37.41 SIAR J09 -3.65 38.06

SIAR H04 -6.79 37.15 SIAR J10 -4.13 38.06

SIAR H05 -6.74 37.35 SIAR J101 -3.24 37.97

SIAR H06 -6.94 37.96 SIAR J102 -3.20 38.06

SIAR H07 -7.25 37.55 SIAR J103 -3.33 37.88

SIAR H08 -6.60 37.66 SIAR J104 -3.79 37.94

SIAR H09 -6.54 37.37 SIAR J11 -3.00 38.30

SIAR H10 -6.48 37.15 SIAR J12 -4.01 37.95

SIAR H101 -6.80 37.24 SIAR J14 -3.08 38.03

SIAR HU01 -0.15 41.53 SIAR J15 -3.77 37.89

SIAR HU02 0.29 41.64 SIAR J16 -4.18 38.05

SIAR HU03 0.07 41.74 SIAR LE01 -6.71 42.57

SIAR HU04 0.38 41.78 SIAR LE02 -5.43 42.51

SIAR HU05 -0.34 41.79 SIAR LE03 -5.51 42.40

SIAR HU06 0.13 41.94 SIAR LE04 -5.74 42.26

SIAR HU07 0.11 42.01 SIAR LE05 -5.84 42.22

SIAR HU08 -0.18 41.77 SIAR LE06 -5.90 42.46

SIAR HU09 -0.38 42.11 SIAR LE07 -5.77 42.46

SIAR HU10 0.09 41.46 SIAR LE08 -5.02 42.37

SIAR HU11 -0.36 41.94 SIAR LE09 -5.26 42.44

SIAR HU12 -0.14 41.95 SIAR LU01 -7.49 43.16

SIAR HU13 -0.73 41.99 SIAR LU02 -7.50 42.51

SIAR HU14 0.17 42.39 SIAR M01 -3.50 40.41

SIAR HU15 0.15 41.82 SIAR M02 -3.50 40.31

SIAR HU16 -0.72 42.56 SIAR M03 -3.63 40.04
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Network ID Lon.[º] Lat.[º] Network ID Lon.[º] Lat.[º]

SIAR M04 -3.18 40.11 SIAR MU15 -1.34 37.90

SIAR M05 -3.56 40.23 SIAR MU16 -1.69 37.50

SIAR M06 -3.47 40.19 SIAR MU17 -1.00 38.03

SIAR M102 -4.27 40.25 SIAR MU18 -1.19 38.66

SIAR MA01 -4.54 36.76 SIAR MU19 -1.12 37.83

SIAR MA02 -4.13 36.80 SIAR MU20 -1.26 38.19

SIAR MA03 -4.56 37.06 SIAR NA01 -1.57 42.07

SIAR MA04 -5.21 36.44 SIAR NA02 -1.84 42.05

SIAR MA05 -4.43 37.08 SIAR NA03 -1.72 42.03

SIAR MA06 -4.84 37.14 SIAR NA04 -1.64 42.00

SIAR MA07 -4.50 36.67 SIAR NA05 -1.32 42.56

SIAR MA08 -4.72 36.77 SIAR NA06 -1.61 42.51

SIAR MA09 -4.68 36.72 SIAR NA07 -1.49 42.38

SIAR MA10 -4.56 37.03 SIAR NA08 -1.75 42.69

SIAR MA101 -4.56 36.73 SIAR NA09 -1.79 42.58

SIAR MU01 -1.59 37.42 SIAR NA10 -1.81 42.51

SIAR MU02 -1.51 37.73 SIAR NA101 -1.72 42.21

SIAR MU03 -1.13 37.75 SIAR NA102 -1.66 42.26

SIAR MU04 -1.05 37.80 SIAR NA103 -2.05 42.36

SIAR MU06 -1.07 37.68 SIAR NA104 -1.66 42.42

SIAR MU07 -0.92 37.63 SIAR NA105 -1.62 42.36

SIAR MU08 -1.82 37.86 SIAR NA106 -1.72 42.81

SIAR MU09 -1.63 37.60 SIAR NA107 -1.28 42.67

SIAR MU10 -1.15 38.16 SIAR NA108 -2.17 42.66

SIAR MU101 -1.42 37.79 SIAR NA109 -1.84 42.12

SIAR MU102 -1.69 38.25 SIAR NA11 -1.79 42.41

SIAR MU103 -1.22 38.13 SIAR NA110 -1.81 42.29

SIAR MU104 -0.98 37.98 SIAR NA111 -1.98 42.50

SIAR MU105 -1.36 37.57 SIAR NA12 -1.89 42.34

SIAR MU106 -1.78 38.10 SIAR NA13 -2.30 42.48

SIAR MU107 -1.24 37.70 SIAR NA14 -1.52 42.30

SIAR MU108 -1.68 38.11 SIAR NA15 -2.18 42.54

SIAR MU109 -1.73 37.59 SIAR NA16 -2.13 42.47

SIAR MU11 -1.30 38.01 SIAR NA17 -1.90 42.36

SIAR MU110 -1.31 38.24 SIAR P01 -4.30 42.05

SIAR MU111 -1.50 38.29 SIAR P02 -4.49 41.95

SIAR MU112 -1.24 38.39 SIAR P03 -4.72 42.08

SIAR MU114 -1.11 38.56 SIAR P04 -4.59 42.27

SIAR MU115 -1.42 38.39 SIAR P05 -4.28 42.35

SIAR MU117 -0.90 37.77 SIAR P06 -4.25 42.49

SIAR MU119 -0.93 37.82 SIAR P07 -4.77 42.53

SIAR MU12 -1.33 38.13 SIAR P08 -4.28 42.35

SIAR MU120 -0.82 37.79 SIAR P101 -4.59 42.56

SIAR MU121 -1.13 37.94 SIAR SA01 -6.54 40.59

SIAR MU123 -1.47 38.04 SIAR SA02 -5.48 40.99

SIAR MU124 -1.99 38.04 SIAR SA03 -5.48 40.99

SIAR MU125 -1.33 38.32 SIAR SA101 -5.36 41.04

SIAR MU126 -1.05 38.17 SIAR SA102 -5.53 40.78

SIAR MU128 -0.99 37.75 SIAR SE01 -5.94 37.18

SIAR MU130 -0.88 37.85 SIAR SE02 -5.88 37.02

SIAR MU14 -1.81 38.20 SIAR SE03 -6.13 36.98
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Network ID Lon.[º] Lat.[º] Network ID Lon.[º] Lat.[º]

SIAR SE05 -6.27 37.15 SIAR V102 -0.45 39.11

SIAR SE07 -6.13 37.23 SIAR V1020 -0.45 39.12

SIAR SE08 -6.05 37.08 SIAR V103 -0.55 39.23

SIAR SE09 -5.08 37.59 SIAR V1030 -0.53 39.23

SIAR SE10 -5.23 37.53 SIAR V104 -0.36 38.94

SIAR SE101 -5.59 37.40 SIAR V106 -1.23 39.50

SIAR SE11 -5.13 37.26 SIAR V107 -0.49 39.48

SIAR SE12 -5.92 37.46 SIAR V14 -0.44 39.22

SIAR SE13 -6.26 37.42 SIAR V16 -0.47 39.60

SIAR SE14 -5.68 37.61 SIAR V17 -0.50 39.36

SIAR SE15 -5.54 37.66 SIAR V18 -0.64 38.95

SIAR SE16 -5.67 37.18 SIAR V19 -0.55 39.00

SIAR SE17 -6.06 37.51 SIAR V20 -0.29 39.65

SIAR SE18 -5.35 37.22 SIAR V21 -1.16 39.43

SIAR SE19 -5.96 37.51 SIAR V22 -0.20 38.89

SIAR SE20 -6.12 37.11 SIAR V23 -0.25 38.96

SIAR SE21 -5.95 37.19 SIAR V24 -0.36 39.19

SIAR SE22 -5.69 37.59 SIAR V25 -0.69 39.07

SIAR SG01 -4.30 41.30 SIAR V26 -0.47 39.60

SIAR SG02 -4.48 41.17 SIAR V27 -0.83 39.68

SIAR SO01 -2.50 41.46 SIAR VA01 -5.29 42.15

SIAR SO02 -3.22 41.57 SIAR VA02 -5.21 41.23

SIAR SO03 -2.43 41.83 SIAR VA03 -4.69 41.31

SIAR SO101 -2.09 41.74 SIAR VA05 -4.10 41.77

SIAR TE01 -0.21 40.96 SIAR VA06 -5.00 41.49

SIAR TE02 -0.24 41.10 SIAR VA07 -4.27 41.64

SIAR TE03 -0.53 41.22 SIAR VA08 -5.07 41.86

SIAR TE04 -1.36 40.78 SIAR VA101 -4.70 41.71

SIAR TE05 -1.17 40.35 SIAR VA102 -4.90 41.31

SIAR TE06 -1.29 40.53 SIAR VA103 -4.98 41.40

SIAR TO01 -4.70 39.96 SIAR Z01 -1.33 41.45

SIAR TO03 -4.97 39.87 SIAR Z02 -0.72 41.35

SIAR TO04 -4.66 39.72 SIAR Z03 -0.52 41.39

SIAR TO05 -5.14 39.81 SIAR Z04 0.15 41.17

SIAR TO06 -3.77 39.68 SIAR Z05 -1.28 41.58

SIAR TO07 -3.98 40.06 SIAR Z06 -1.20 42.10

SIAR TO08 -3.33 40.03 SIAR Z07 -1.31 42.27

SIAR TO09 -4.40 39.83 SIAR Z08 -0.94 42.10

SIAR TO10 -3.14 39.61 SIAR Z09 -1.33 41.92

SIAR TO11 -3.94 39.94 SIAR Z10 -0.75 41.60

SIAR TO12 -3.77 39.66 SIAR Z11 -0.82 41.71

SIAR V01 -0.72 39.57 SIAR Z13 -1.66 41.33

SIAR V02 -0.63 39.69 SIAR Z14 -1.51 41.86

SIAR V03 -0.69 39.40 SIAR Z15 -1.75 41.92

SIAR V04 -0.46 39.28 SIAR Z16 -0.07 41.30

SIAR V05 -0.74 39.52 SIAR Z17 -0.54 41.55

SIAR V06 -0.24 39.10 SIAR Z18 -1.42 41.11

SIAR V07 -0.52 39.07 SIAR Z19 -0.75 41.87

SIAR V10 -0.22 39.73 SIAR Z20 -1.25 42.18

SIAR V101 -0.40 39.59 SIAR Z21 -1.14 42.00

SIAR V1010 -0.39 39.59 SIAR Z22 -1.25 41.84
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Network ID Lon.[º] Lat.[º] Network ID Lon.[º] Lat.[º]

SIAR Z23 -0.73 41.59 Euskalmet 036 -2.62 43.17

SIAR Z24 -1.61 41.36 Euskalmet 039 -2.97 43.28

SIAR Z25 -1.31 41.91 Euskalmet 040 -2.69 42.86

SIAR Z26 -0.77 41.89 Euskalmet 042 -3.04 43.37

SIAR Z27 -1.06 41.76 Euskalmet 043 -2.18 43.05

SIAR ZA01 -5.81 42.00 Euskalmet 047 -2.54 42.77

SIAR ZA02 -5.65 41.48 Euskalmet 048 -2.68 42.60

SIAR ZA04 -5.39 41.88 Euskalmet 050 -2.89 42.67

SIAR ZA05 -5.90 41.78 Euskalmet 051 -3.00 43.03

SIAR ZA06 -5.67 41.93 Euskalmet 053 -2.71 43.07

SIAR ZA07 -5.52 41.50 Euskalmet 054 -2.66 43.04

SIAR ZA08 -5.37 41.51 Euskalmet 055 -2.49 42.91

Meteocat C8 1.30 41.68 Euskalmet 056 -2.52 42.84

Meteocat CD 1.43 42.37 Euskalmet 057 -2.85 43.36

Meteocat CT 0.74 42.40 Euskalmet 058 -2.16 43.14

Meteocat D4 3.18 42.27 Euskalmet 059 -3.28 43.16

Meteocat D9 1.52 41.22 Euskalmet 060 -2.60 42.56

Meteocat DC 2.48 42.19 Euskalmet 061 -3.07 43.29

Meteocat DF 3.04 41.98 Euskalmet 064 -2.15 43.29

Meteocat DQ 1.36 41.31 Euskalmet 065 -3.41 43.21

Meteocat U7 0.51 40.86 Euskalmet 069 -2.73 43.41

Meteocat UA 0.51 41.20 Euskalmet 0AA -2.50 42.89

Meteocat UU 0.63 40.71 Euskalmet 0DC -2.26 43.17

Meteocat V8 0.88 41.67 Euskalmet 0EC -2.02 43.25

Meteocat VK 0.45 41.68 M. Navarra Aguilar Codes -2.40 42.61

Meteocat W6 1.02 41.14 M. Navarra Aoiz -1.37 42.79

Meteocat WA 1.15 41.88 M. Navarra Aralar -1.96 42.95

Meteocat WP 1.69 41.49 M. Navarra Arangoiti -1.20 42.64

Meteocat WS 2.42 41.84 M. Navarra Bardenas (Yugo) -1.58 42.20

Meteocat X1 0.82 41.15 M. Navarra Bardenas (Loma) -1.38 42.07

Meteocat X4 2.17 41.38 M. Navarra Beortegi -1.43 42.80

Meteocat XE 1.20 41.10 M. Navarra Carcastillo -1.46 42.37

Euskalmet 001 -2.63 42.85 M. Navarra Carrascal -1.66 42.68

Euskalmet 001 -2.63 42.85 M. Navarra Doneztebe -1.66 43.13

Euskalmet 002 -2.66 43.35 M. Navarra El Perdon -1.71 42.73

Euskalmet 003 -2.87 43.29 M. Navarra Erremendia -1.19 42.88

Euskalmet 007 -2.00 43.32 M. Navarra Estella -2.03 42.67

Euskalmet 017 -1.97 43.29 M. Navarra Etxarri-Aranatz -2.06 42.91

Euskalmet 018 -1.80 43.39 M. Navarra Getadar -1.47 42.62

Euskalmet 019 -2.76 43.44 M. Navarra Gorramendi -1.45 43.21

Euskalmet 020 -2.70 42.72 M. Navarra Oskotz -1.76 42.95

Euskalmet 022 -2.65 43.10 M. Navarra Pamplona Upna -1.63 42.79

Euskalmet 023 -2.49 43.07 M. Navarra Pamplona -1.64 42.82

Euskalmet 024 -2.35 42.79 M. Navarra Tafalla -1.69 42.52

Euskalmet 026 -1.98 43.12 M. Navarra T. de Iturgoien -1.98 42.81

Euskalmet 027 -2.95 43.14 M. Navarra Tudela -1.65 42.13

Euskalmet 029 -2.06 43.19 M. Navarra Ujue -1.51 42.51

Euskalmet 030 -2.40 42.86 M. Navarra Urbasa -2.18 42.85

Euskalmet 033 -2.78 43.17 M. Navarra V. de Yerri -1.95 42.74

Euskalmet 034 -3.04 42.81 M. Navarra Yesa -1.19 42.62

Euskalmet 035 -2.87 42.96 MeteoGalicia 10045 -8.26 43.24
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Network ID Lon.[º] Lat.[º] Network ID Lon.[º] Lat.[º]

MeteoGalicia 10046 -7.89 43.34 MeteoGalicia 10120 -8.32 42.63

MeteoGalicia 10047 -7.08 43.54 MeteoGalicia 10121 -8.50 42.47

MeteoGalicia 10048 -7.34 42.12 MeteoGalicia 10122 -7.93 42.58

MeteoGalicia 10049 -9.03 42.56 MeteoGalicia 10124 -8.56 42.88

MeteoGalicia 10050 -8.25 43.49 MeteoGalicia 10125 -8.90 42.22

MeteoGalicia 10052 -8.77 42.75 MeteoGalicia 10126 -8.93 42.38

MeteoGalicia 10053 -7.55 42.99 MeteoGalicia 10127 -8.62 42.60

MeteoGalicia 10055 -7.78 43.23 MeteoGalicia 10128 -9.01 42.47

MeteoGalicia 10056 -7.50 42.47 MeteoGalicia 10129 -8.80 42.40

MeteoGalicia 10057 -7.59 42.30 MeteoGalicia 10130 -6.78 42.38

MeteoGalicia 10058 -7.40 41.98 MeteoGalicia 10131 -7.30 42.26

MeteoGalicia 10060 -8.68 42.08 MeteoGalicia 10132 -7.05 42.71

MeteoGalicia 10061 -8.14 42.62 MeteoGalicia 10135 -9.12 42.80

MeteoGalicia 10062 -6.92 42.82 MeteoGalicia 10136 -7.05 43.18

MeteoGalicia 10063 -8.43 42.23 MeteoGalicia 10137 -6.91 42.96

MeteoGalicia 10064 -8.66 42.41 MeteoGalicia 10138 -6.89 42.21

MeteoGalicia 10067 -8.70 42.46 MeteoGalicia 10141 -8.13 43.56

MeteoGalicia 10085 -8.80 42.58 MeteoGalicia 10143 -7.86 43.74

MeteoGalicia 10086 -8.40 42.32 MeteoGalicia 10144 -8.17 42.93

MeteoGalicia 10087 -8.87 42.97 MeteoGalicia 10146 -7.48 43.16

MeteoGalicia 10088 -7.44 43.46 MeteoGalicia 10153 -9.06 43.11

MeteoGalicia 10089 -7.98 42.91 MeteoGalicia 10154 -8.60 42.32

MeteoGalicia 10091 -8.86 42.00 MeteoGalicia 10161 -8.68 42.17

MeteoGalicia 10092 -8.05 43.71 MeteoGalicia 10162 -7.63 43.63

MeteoGalicia 10093 -8.83 43.34 MeteoGalicia 10500 -7.44 41.95

MeteoGalicia 10094 -8.28 43.13 MeteoGalicia 10800 -9.18 43.13

MeteoGalicia 10095 -8.46 42.82 MeteoGalicia 19065 -8.73 42.51

MeteoGalicia 10096 -8.69 43.10 MeteoGalicia 19066 -8.77 42.51

MeteoGalicia 10097 -7.79 43.59 MeteoGalicia 19068 -8.77 42.44

MeteoGalicia 10098 -7.25 42.75 MeteoGalicia 19069 -8.87 42.46

MeteoGalicia 10099 -7.47 42.65 MeteoGalicia 19070 -8.74 42.47

MeteoGalicia 10100 -7.27 42.49 MeteoGalicia 50500 -8.52 42.80

MeteoGalicia 10101 -7.89 43.04 SIAR Rioja Agoncillo -2.29 42.47

MeteoGalicia 10102 -7.19 42.60 SIAR Rioja Albelda -2.47 42.38

MeteoGalicia 10103 -7.28 43.56 SIAR Rioja Aldeanueva -1.90 42.22

MeteoGalicia 10104 -7.56 43.66 SIAR Rioja Alfaro -1.78 42.15

MeteoGalicia 10105 -7.28 43.16 SIAR Rioja Arenzana -2.72 42.39

MeteoGalicia 10106 -7.17 43.34 SIAR Rioja Ausejo -2.15 42.34

MeteoGalicia 10107 -7.79 43.15 SIAR Rioja Calahorra -2.00 42.33

MeteoGalicia 10108 -7.62 42.81 SIAR Rioja Casalarreina -2.90 42.54

MeteoGalicia 10109 -8.24 42.42 SIAR Rioja Cervera -1.89 42.01

MeteoGalicia 10110 -7.71 41.95 SIAR Rioja Foncea -3.04 42.61

MeteoGalicia 10111 -8.10 41.95 SIAR Rioja Igea -1.99 42.06

MeteoGalicia 10112 -7.97 42.17 SIAR Rioja Leiva -3.05 42.50

MeteoGalicia 10113 -7.63 42.23 SIAR Rioja Logroño -2.51 42.44

MeteoGalicia 10114 -6.93 42.46 SIAR Rioja Pazuengos -2.91 42.34

MeteoGalicia 10115 -7.01 42.36 SIAR Rioja Quel -2.04 42.25

MeteoGalicia 10116 -7.09 42.16 SIAR Rioja Rincón Soto -1.85 42.25

MeteoGalicia 10117 -7.30 42.40 SIAR Rioja San Vicente -2.73 42.57

MeteoGalicia 10118 -7.37 43.65 SIAR Rioja Sta.Engracia -2.26 42.37

MeteoGalicia 10119 -7.97 41.90 SIAR Rioja Sto.Domingo -2.94 42.43
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Network ID Lon.[º] Lat.[º] Network ID Lon.[º] Lat.[º]

SIAR Rioja Uruñuela -2.71 42.46 SOS Rioja Moncalvillo -2.62 42.33

SIAR Rioja Villar Torre -2.86 42.38 SOS Rioja Nájera -2.72 42.42

SOS Rioja Aguilar -1.97 41.97 SOS Rioja Ocón -2.23 42.29

SOS Rioja Alfaro -1.74 42.18 SOS Rioja San Román -2.46 42.23

SOS Rioja Arnedo -2.09 42.23 SOS Rioja Santa Marina -2.37 42.24

SOS Rioja Calahorra -2.00 42.29 SOS Rioja Torrecilla -2.62 42.25

SOS Rioja Ezcaray -3.01 42.33 SOS Rioja Urbaña -2.85 42.17

SOS Rioja Haro -2.84 42.57 SOS Rioja Villoslada -2.67 42.12

SOS Rioja Logroño -2.47 42.46 SOS Rioja Yerga -1.97 42.14




