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Abstract 

One of the significant challenges in identifying effective therapy in many chronic and 

neurodegenerative diseases is the need for reliable biomarkers. Thus, new point-of-care 

diagnostics tools are essential for unambiguously distinguishing diseased patients from 

healthy ones providing results in rapid time. 

In this doctoral thesis, an untargeted metabolomics approach based on high-

throughput analytical techniques such as vibrational spectroscopy and liquid 

chromatography-mass spectrometry (LC-MS) was evaluated in different studies related 

to the field of health and disease. Thus, this doctoral thesis's main objective is to provide 

an objective diagnosis of disorders such as Parkinson’s, Alzheimer’s, Amyotrophic lateral 

sclerosis and Metabolic Syndrome. Different studies were performed to obtain a 

metabolic profile of healthy and diseased patients. Thus, to obtain specific metabolomic 

fingerprinting multiple analytical strategies coupled with multivariate strategies were 

tested and combined in order to exploit their respective strengths and drawbacks. 

Therefore, distinct mid-infrared metabolic fingerprints in the diseases mentioned above 

were investigated for patient stratification and to guide an accurate and early 

differential diagnosis. In addition, UPLC-MS analysis successfully complemented 

vibrational spectroscopy, providing excellent patient discrimination based on specific 

blood biomarkers. 

The obtained results are very promising, giving place to the new hypothesis about 

disease pathogenesis and possible involved metabolic pathways that should be 

validated by a further targeted and multidisciplinary approach. 

 

  



Resumen 

Uno de los desafíos significativos en la identificación de terapias efectivas en muchas 

enfermedades crónicas y neurodegenerativas es la necesidad de biomarcadores 

confiables. Por lo tanto, nuevas herramientas de diagnóstico en los puntos de atención 

son esenciales para distinguir sin ambigüedades a los pacientes enfermos de los sanos, 

proporcionando resultados rápidos. 

En esta tesis doctoral, se evaluó un enfoque de metabolómica no dirigida basado en 

técnicas analíticas de alto rendimiento, como la espectroscopia vibracional y la 

cromatografía líquida-espectrometría de masas (LC-MS), en diferentes estudios 

relacionados con el campo de la salud y la enfermedad. Por lo tanto, el objetivo principal 

de esta tesis doctoral es desarrollar estrategias para el diagnóstico objetivo de 

trastornos como la enfermedad de Parkinson, la enfermedad de Alzheimer, la Esclerosis 

lateral amiotrófica y el Síndrome metabólico. Se llevaron a cabo diferentes estudios para 

obtener un perfil metabólico de pacientes sanos y enfermos. De este modo, para 

obtener un perfil metabólico específico, se probaron y combinaron múltiples estrategias 

analíticas acopladas con estrategias multivariadas con el fin de explotar sus respectivas 

fortalezas y debilidades. Por lo tanto, se investigó la existencia de huellas metabólicas 

distintas en el infrarrojo medio en las enfermedades mencionadas anteriormente, para 

la estratificación de pacientes y guiar un diagnóstico diferencial preciso y temprano. 

Además, el análisis UPLC-MS complementó con éxito la espectroscopía vibracional, 

proporcionando una excelente discriminación de pacientes basada en biomarcadores 

específicos de la sangre. 

Los resultados obtenidos son muy prometedores, dando lugar a nuevas hipótesis 

sobre la patogénesis de las enfermedades y las posibles vías metabólicas involucradas, 

que deberían ser validadas mediante un enfoque multidisciplinario y dirigido. 

  



 
 

 

CONTENTS 

1 Chapter 1. Introduction ........................................................................................ 3 

1.1 Presentation of the thesis .............................................................................. 3 

1.2 Objectives ....................................................................................................... 5 

1.3 Structure of the thesis .................................................................................... 6 

2 Chapter 2. Justification and theoretical bases ..................................................... 9 

2.1 Metabolomics: state of the art ...................................................................... 9 

2.1.1 Lipidomics ............................................................................................. 10 

2.1.2 Targeted and untargeted metabolomics .............................................. 14 

2.1.3 Blood as the main biofluid for metabolomics studies .......................... 16 

2.1.4 Metabolome measuring in human diseases. ........................................ 19 

2.1.5 Principal limits of metabolomics studies .............................................. 20 

2.2 Analytical instruments in metabolomic studies ........................................... 21 

2.2.1 Mass spectrometry ............................................................................... 21 

2.2.2 Understanding of LC/MS and its use in metabolomic and lipidomic 
studies 23 

2.2.3 Vibrational techniques .......................................................................... 30 

2.3 Analytical flow .............................................................................................. 35 

2.3.1 Sample design ....................................................................................... 36 

2.3.2 Sample collection and preparation ....................................................... 37 

2.4 Chemometric analysis .................................................................................. 39 

2.4.1 Pre-processing step ............................................................................... 41 

2.4.2 Chemometric methods ......................................................................... 44 

2.5 References .................................................................................................... 56 

3 Chapter 3. Methodology ..................................................................................... 73 

3.1 Chemicals and reagents ............................................................................... 73 

3.2 Methods of sample preparation .................................................................. 73 

3.2.1 Sample collection and storage .............................................................. 73 

3.2.2 Lipid extraction of plasma samples ...................................................... 74 

3.3 Analytical methods ....................................................................................... 74 

3.3.1 Analytical instruments .......................................................................... 74 



3.4 Software and programmes for data analysis ............................................... 79 

3.5 References .................................................................................................... 80 

4 Chapter 4. Metabolic Syndrome ........................................................................ 87 

4.1 Dual Classification Approach for the Rapid Discrimination of Metabolic 
Syndrome by FTIR ........................................................................................................ 87 

4.1.1 Introduction .......................................................................................... 87 

4.1.2 Methods ................................................................................................ 90 

4.1.3 Instrumentation .................................................................................... 91 

4.1.4 Data Analysis ......................................................................................... 91 

4.1.5 Results and Discussion .......................................................................... 92 

4.1.6 Biochemical Reasoning of Ten Extracted Signals ................................ 108 

4.1.7 Conclusions ......................................................................................... 109 

4.2 References .................................................................................................. 111 

5 Chapter 5. Parkinson’s disease ......................................................................... 121 

5.1 Extraction of reduced infrared biomarker signatures for the stratification of 
patients affected by Parkinson's disease: an untargeted metabolomic approach .. 121 

5.1.1 Introduction ........................................................................................ 121 

5.1.2 Aim of the study .................................................................................. 123 

5.1.3 Materials and Methods ....................................................................... 125 

5.1.4 Data analysis ....................................................................................... 126 

5.1.5 Limit of the study ................................................................................ 129 

5.1.6 Results and Discussion ........................................................................ 129 

5.1.7 FT-MIR spectral profiles ...................................................................... 130 

5.1.8 Conclusions ......................................................................................... 142 

5.1.9 References .......................................................................................... 147 

5.2 Identification of lipidomic traits in plasma samples for the discrimination of 
Parkinson’s disease: UPLC-MS untargeted approach ............................................... 153 

5.2.1 Introduction ........................................................................................ 153 

5.2.2 Materials and Methods ....................................................................... 155 

5.2.3 Results ................................................................................................. 159 

5.2.4 Discussion ........................................................................................... 168 

5.2.5 Conclusions ......................................................................................... 171 



 
 

 

5.2.6 References .......................................................................................... 172 

6 Chapter 6. Amyotrophic lateral sclerosis ......................................................... 181 

6.1 Emerging FTIR-chemometric approach for ALS patients’ discrimination based 
on selected spectra biomarkers ................................................................................ 181 

6.1.1 Introduction ........................................................................................ 181 

6.1.2 Experimental section .......................................................................... 183 

6.1.3 Results ................................................................................................. 185 

6.1.4 Conclusions ......................................................................................... 201 

6.1.5 References .......................................................................................... 203 

6.2 Spectrochemical differentiation of ALS onset and progression based on ATR-
FTIR spectroscopy: preliminary study ....................................................................... 207 

6.2.1 Data Analysis ....................................................................................... 207 

6.2.2 Results and Discussion ........................................................................ 208 

6.2.3 Conclusion ........................................................................................... 215 

6.3 UPLC-QTOF-MS based lipidomic blood profiling reveals biomarker of 
Amyotrophic disease progression and its differentiation from another related motor 
neuro disease ............................................................................................................ 217 

6.3.1 Introduction ........................................................................................ 217 

6.3.2 Material and method .......................................................................... 219 

6.3.3 Results ................................................................................................. 221 

6.3.4 Discussion ........................................................................................... 229 

6.3.5 Conclusions ......................................................................................... 232 

6.3.6 References .......................................................................................... 233 

7 Chapter 7: Conclusions ..................................................................................... 239 

 

 





I 
 

 

Abbreviations 

AD Alzheimer's disease 

ALS Amyotrophic lateral sclerosis 

Ala Alanine 

ATR Attenuated total reflection 

AUC Area under the curve 

CE Capillary electrophoresis 

Cer Ceramide 

CNS Central nervous system  

Cr Creatinine 

CSF Cerebrospinal fluid 

CV Cross-validation 

EMSC Extended multiple scatter correction 

FA Fatty acids 

FDR False discovery rate 

FIR Far infrared region 

FTIR Fourier transform infrared spectroscopy 

FWHM Full width half maximum  

GC Gas spectrometry 

GL Glycerolipids 

Glu Glutamate 

GP Glycerophospholipids 

HC Healthy controls 

HCA Hierarchical clustering analysis 

HMDB Human Metabolome Data Base 

IR Infrared  

kNN K-nearest neighbours  

KS Kennard-Stone 

LC Liquid chromatography 

LDA Linear discriminant analysis 

LLE Liquid liquid extraction 



 

II 
 

LOO  Leave one out cross validation 

LOOCV Leave one out cross validation 

LysPC Lysophosphatidilcoline 

LysPE Lysophosphatidiletanolamine 

MA Mooving average 

MetS Metabolic syndrome 

MIR Mid-infrared region 

MS Mass spectrometry 

MSC Multiplicative scatter correction 

MUFA Monounsaturated fatty acids 

NIR near infrared region 

NMR nuclear magnetic resonance 

OPLS-DA orthogonal partial least square discriminant analysis 

PC phosphatidylcholine 

PCA Principle component analysis 

PD Parkinson's disease 

PDD Parkinson-related dementia 

PDI Parkinson's initial stage 

PE Phosphatidiletanolamine 

PK Polyketides 

PLS-DA Partial least square-discriminant analysis 

POS Reactive oxygen species  

PR Prenol lipids 

PS Phosphoserine 

PUFA Polyunsaturated fatty acids 

QC Quality control 

Q-TOF Quadrupole time of flight 

RBC Red blood cells 

Rc Category c rate 

RF Random forest 

ROC Receiver operating curves 

ROS Reactive oxygen species  



III 
 

 

RS Raman spectroscopy 

SELECT Stepwise orthogonalization of predictors 

SG Savitsky-Golay 

SIMCA Soft independent modelling by class analogy 

SL Saccharolipids 

SM Sfingomyelin 

SNV Standard normal variate 

SP Sterol lipids 

SPE Solid phase extraction 

TOF Time of flight 

TR Total rate 

U(H)PLC Ultra-high performance liquid chromatography 

UA Uric acid 

UFA Unsaturated fatty acids 

VIP Variable in projection 





5 
 

 





 

3 
 

1 CHAPTER 1. INTRODUCTION 

1.1 PRESENTATION OF THE THESIS  

Nowadays the magnitude of chronic diseases in the last years created an urgent need 

for point-of-care diagnostics. Chronic diseases are characterised by long-lasting and, in 

most cases, rapidly progressive disease which strikes mostly ageing patients. Since the 

ageing population is increasing, these diseases have increased in prevalence worldwide. 

Among the chronic diseases, metabolic disorders and neurodegenerative disorders 

should be outlined. Precisely, this PhD dissertation focuses on studying Metabolic 

syndrome (MetS) and the most common motor and cognitive neuro disorders such as 

Parkinson’s (PD), Alzheimer’s (AD) and Amyotrophic lateral sclerosis (ALS).  

The commensurate prevalence of MetS represents a significant socio-economic 

problem worldwide since it is often associated with an increased risk of diabetes and 

cardiovascular disease. Patients affected by MetS are diagnosed through clinical 

indicators which reveal global physiological disturbances and not specific metabolic 

changes. Often these clinical indicators require more standardisation and a more 

accurate collection of all parameters to perform a more conclusive diagnosis. In 

addition, people affected by metabolic syndrome are often misdiagnosed due to the 

heterogeneity of clinical factors. 

Whereas the conventional diagnosis of PD, AD and ALS remains essentially clinical 

based on the subjective observations of clinicians and confirmatory electromyography 

tests. In addition, the symptoms may appear only late in the disease course; therefore, 

there could be a significant gap between the first clinical visit and the acclaimed 

diagnosis, compromising a patient's survival rates. Consequently, it is necessary to 

develop an objective diagnostic tool, which would be characterised by high sensitivity, 

accuracy, and objectivity, allowing the prevention at an early stage.  

All these disorders differ in their pathogenesis. Nevertheless, they share a commune 

point; no specific biomarkers exist for their diagnosis.  
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Many advances have been reached in genetic studies. Thus, many diseases are 

diagnosed based on invasive tests, and genetic screening is carried out. It should be said 

that the results of these tests are not immediate, delaying the diagnosis from days to 

sometimes weeks due to the complicated processing of these tests and the fact that 

many national health systems are saturated. Indeed, what does it mean for a patient 

with a very short life prognosis to have to wait months for a result? In such cases, it 

would be vital to have a tool that could provide a real-time answer enabling one to 

classify a patient into a specific category and, two, predict his status: positive or 

negative, diseased or healthy, at an early or advanced stage. This way, a patient could 

start treatment and take measures according to his health status. 

Considering that the disease initiation or progression encompasses a set of metabolic 

changes and disarrangements, it would be possible to approach the disease’s diagnosis 

from a holistic, functional perspective. In recent years, investigating the metabolomic 

changes in patients’ profiles has been very important and is already highly exploited in 

many studies.  

The metabolomic studies are conducted in two principal ways: targeted and 

untargeted. Thus, an untargeted strategy is undertaken without a preliminary 

hypothesis about metabolites that should be determined. Therefore, herein, only 

untargeted studies were performed aiming to extract a diversity of metabolites that do 

not belong to the same biological class or biochemical pathway. This approach creates 

big data sets; therefore, multivariate statistical analyses are applied to obtain valuable, 

meaningful information. 

In this context, vibrational spectroscopy relying on infrared absorption, such as 

Fourier transform infrared (FTIR) spectroscopy, has become a promising methodological 

approach in biomedical applications thanks to advances in instrumentation and 

chemometrics. Thus, this vibrational technique provides a rapid ‘’spectroscopic 

fingerprinting’’ of the sample to effectively explore disease processes and find early 

signs of disease onset. In addition, it requires a small sample volume; it is rapid, non-

invasive, low-cost and easy to use—all these characteristics promise an accessible 

diagnostic platform. 
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Moreover, mass-mass spectrometry (MS/MS) remains the gold standard in 

metabolomic studies since it is a suitable technique to analyse and provide the exact 

mass value of almost any biological molecule susceptible to ionisation. For this reason, 

besides the FTIR-based approach coupled with chemometric techniques, blood samples 

from the same cohort of patients were submitted to hyphenated liquid chromatography 

associated with the MS technique to deepen the information obtained by FTIR studies. 

The research of specific biomarkers is still an ambitious challenge in metabolomic 

studies; therefore, the results obtained from LC-MS analysis should confirm the 

significance of the extracted spectra variables by FTIR approach and give insights about 

possible biomarkers involved in metabolic pathways, discriminating patients with 

different metabolic profiles and disease stages.  

1.2 OBJECTIVES 

Given this perspective, the global objective of the present doctoral thesis is focused 

on evaluating how the metabolomic profile can be altered in patients with the above-

cited diseases and how these metabolic changes, recorded as an infrared (IR) signature, 

can be associated with pathological conditions, thus facilitating early diagnosis, 

treatment and follow-up of the disease. In addition, the results obtained by MS analysis 

are hypothesis-generating, giving place to further targeted analysis for absolute 

quantification of found biomarkers. 

The global objective can be broken down into the following specific objectives.  

1) Evaluating the potential of FTIR combined with a classification approach to detect 

spectra markers indicative of Metabolic syndrome. Afterwards, the classification’s 

performance on reduced spectra fingerprints and measured clinical parameters will 

be compared.  

2) To propose an efficient sequential classification strategy using MIR spectra variables 

to discriminate between three main categories of patients: PD patients from 

subjects with AD and healthy controls (HC). Moreover, the discrimination ability of 

this strategy in discriminating patients based on the progression of the disease will 

be tested. In addition, tentative biochemical reasoning of the selected spectral 

variables will be performed. 
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3) Another objective regarding Parkinson’s disease is based on lipid extraction of PD 

plasma samples performing UPLC-MS/MS untargeted analysis of plasma samples to 

identify specific lipid biomarkers responsible for separating diseased groups such as 

PD and AD from healthy controls. 

4) Metabolic profiling using untargeted FTIR and ATR-FTIR spectroscopy will be 

performed for the discrimination of patients with ALS and other motor-related 

neuro disorders, comparing them to healthy controls. 

5) Final specific objective is focused in obtaining a specific lipid biomarker responsible 

of the onset of ALS disease and/or ALS progression by performing untargeted LC-

MS/MS analysis. 

1.3 STRUCTURE OF THE THESIS  

The doctoral thesis is presented as a traditional doctoral thesis in accordance with 

the regulations of the University of La Rioja, passed by the Governing Council on 10th 

May 2022. 

This doctoral thesis is divided into seven main chapters: the introduction and general 

objectives, theoretical foundations, methodology, and three chapters with the results 

obtained during these years of research. Thus, the general conclusion represents the 

final chapter. 

Each chapter is divided into sections and subsections, and each chapter has its own 

bibliography, numbered independently. For better visualisation of each chapter, they 

are also divided by colours. 

1) The introduction gathers the fundamental aspects of this thesis to provide an 

overview of how it was carried out and the main reasons that conducted us to 

study determined diseases and use specific analytical instrumentation. This 

chapter also includes the general and specific objectives that underlie the 

development of this doctoral thesis. 

2) This chapter encompasses all the theoretical parts that serve to understand and 

justify the development of the current dissertation thesis; herein, the main 

sections are dedicated to the studies of metabolomics and lipidomics, justifying 
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the latest findings made in these fields. In addition, explanations for using blood 

as the main matrix for metabolomic studies will be found. Furthermore, the 

sections regarding the instrumental techniques mainly used in this thesis, their 

main advantages and drawbacks, are described. Finally, this chapter's last 

section and subsections are devoted to the chemometrics part, describing the 

most performed univariate and multivariate statistical methodologies in the 

studies presented in this thesis. 

3) This chapter encompasses the methodological part, enclosing the details on the 

methods and instruments of the analytical workflow that underlie the results of 

this doctoral thesis. Thus, details on sample collection and experimental 

parameters are provided. 

The following chapters represent the so-called ‘’core’’ of this thesis, enclosing the 

results obtained over the years (some of which have been published in international 

scientific journals, while others are under review). Therefore, the results of this thesis 

follow according to the specific disease studied. Each chapter is dedicated to a specific 

disease, encompassing the disease’s background and the principal aim, methods, 

results, and discussions. 

4) This chapter is dedicated to Metabolic syndrome, describing a dual classification 

approach to obtain rapid discrimination of patients with Metabolic Syndrome 

using FTIR spectroscopy. 

5) Herein, studies dedicated to Parkinson’s disease are collected. Thus, the principal 

results obtained using vibrational spectroscopy and liquid chromatography-mass 

spectrometry have been encompassed.  

 

6) This chapter is addressed to studies on Amyotrophic lateral sclerosis. Thus, the 

results obtained with FTIR, ATR-FTIR and UPLC-Q-TOF -MS are discussed. 

 

7) The main conclusions are reassumed in this last chapter, discussing if the pre-

established aims were achieved. 
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2 CHAPTER 2. JUSTIFICATION AND THEORETICAL BASES  

2.1 METABOLOMICS: STATE OF THE ART 

For decades, all scientific studies have focused on obtaining a deeper understanding 

of the pathological mechanisms of complex diseases. Techniques are developing fast, 

with the continual introduction of new instruments provided within powerful software. 

The main driving force in the path of these studies is the concept of the so-called "omics" 

sciences. This dynamic concept includes sciences such as genomics, transcriptomics, 

proteomics, metabolomics and metabonomic [1]. Analysis at the ‘’omics ‘’ level is 

becoming increasingly popular, quickly acquiring more power and significance, resulting 

in widespread use. Metabo-’omics’ is one of the most recent ‘’omics’’ sciences and, as 

the name suggests, provides a comprehensive characterisation of the metabolite 

component in the biological system. Many authors use these terms interchangeably to 

define the same scientific strategies and processes. Metabolomics is more concerned 

with the phenotype of organisms than genomics, transcriptomics, and proteomics; thus, 

minimal gene and protein expression changes will be reflected in metabolites in a 

specific disease state. Several changes that cannot be reflected in these two fields can 

be detected in metabolomics [2]. 

Today, a fragile line separates these concepts of metabolomics and metabonomic:  

metabolomics aims to determine all metabolites in the cell, tissue or biofluid to make 

the so-called ‘’metabolic profile’’; while metabonomic is a multiparametric response of 

the living system to genetic or pathophysiological changes [3]. Regardless of the term 

applied, this type of ‘’omics’’ casts light on the organism’s biochemistry, mainly 

responsible for characterising the composition of a wide range of metabolites, from 

organic to inorganic and elemental species.  The human metabolome system currently 

comprises thousands of endogenous metabolites ranging from high to low molecular 

weight, and from hydrophilic to hydrophobic, in various biological matrices, such as 

cells, tissue, organ or biofluids.  The identified compounds in the human body may be 

consulted in free and publicly accessible databases [4].  
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Considering that metabolome composition reflects the current status of the organism 

and metabolites are the end products of cellular regulatory processes required for 

homeostasis, growth, activity, maintenance and everyday function, the characterisation 

of metabolic phenotypes represents an attractive diagnostic tool in clinical practice.  For 

this purpose, various disease-related challenges could be addressed in metabolome 

studies to i) provide insights into the flow of biological information; ii) unravel disease 

mechanisms; iii) predict biomarkers capable of stratifying patients; iv) disease subtyping 

and classification based on metabolomic profile. 

The metabolomic approach provides insights into biological levels of features 

determined by systematic or instant metabolic changes. The internal changes in the 

organism, when passed from ‘’balanced’’ status to ‘’non-balanced’’, are detectable and 

generally correlated with disease initiation or progression. For this reason, the primary 

purpose of current studies in the field of metabolomics is to identify new metabolic 

biomarkers and metabolic pathways capable of deflating the disease process, 

differentiate patients’ rational therapies and highlight future directions in clinical 

diagnosis. Moreover, classifying samples into subtypes could improve our 

understanding of disease and lead to adopting more suitable interventions and 

treatments for patients with different subtypes.  Therefore, metabolomics is frequently 

applied to many diseases, from neonatal disorders to diabetes, cancer, and 

neurodegenerative disorders [6]– [13]. In addition, the application of metabolomics in 

the human organism is comprehensive, ranging from the context of cytology and 

histopathology [13–15] to the discovery of biomarkers in biofluids [2,16,17]. Often 

metabolomics is combined with other ‘’omics’’ disciplines, such as proteomics or 

transcriptomics, to integrate information on the disorder studied and provide a deeper 

insight into the organism [18]. 

2.1.1 Lipidomics 

In this era of omics sciences, lipidomics is a relatively young subdiscipline of 

metabolomics but an equally important field of biomedical research. Lipids are one of 

the prominent exponents of biological molecules in the human body, and the number 

of distinct chemical lipid entities is estimated between 10.000 and 100.000. 

Advancements in analytical technology and the development of new integrated tools 
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for understanding the biological roles of lipids dive into the emerging field of lipidomics. 

More studies focus on defining human plasma lipidome to quantify lipids and establish 

novel analytical methodologies [18–24]. Lipid analysis is now a regular part of every 

patient’s blood test. Thus, the lipid profile of human plasma reveals the vast structural 

diversity of lipids that fall into main categories: fatty acyls (FA), glycerolipids (GL), 

glycerophospholipids (GP), sphingolipids (SP), sterol lipids (ST) and prenol lipids (PR), 

saccharolipids (SL) and polyketides (PK) [25,26]. These lipid categories are divided into 

main classes and subclasses based on the molecular structure and sub-structure Figure 

2-1. 

 

Figure 2-1. Structural classification of the main lipid classes in biological systems. 

Many studies are directed towards exploring lipidomic changes and understanding 

the pathological mechanism behind various diseases [27–31]. Different families of lipids 

are implicated in a wide variety of biological processes and have a wide range of chief 

functions in human health and disease. Lipids play a crucial role in multiple positions in 

the organism: energy homeostasis, membrane structure and dynamics, storage and 

provision of energy, cell signalling and hormonal regulation. The systems-level scale 

analysis in lipidomics is displayed in Figure 2-2. 
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Figure 2-2. The scheme of different ''omics '' disciplines and the system-level scale 
analyses in lipidomic studies. 

Thus, imbalances in lipid metabolism may contribute to diverse phenotypes and 

disease states. In addition, multiple known and novel drugs are made for targeting lipid 

metabolic and signalling pathways, such as those commonly used in the case of the 

inflammation process as cyclooxygenase inhibitors or those used in metabolic diseases, 

like statins, to decrease cholesterol levels. Moreover, lipids play a critical role in the 

structure of the central nervous system, particularly at the cell membrane level, not to 

say that they are responsible for membrane fluidity and the transmission of electrical 

signals [32].  

Since lipids are the main constituents of cellular membranes and more complex 

molecules, changes in lipids mean changes in membrane fluidity. Thus, lipids alteration 

may lead to a cascade of processes, such as ligand-receptor signal transduction or 

membrane trafficking, influencing cell functions and survival. It was shown that the 

enrichment of sphingolipids and cholesterols, as well as content in polyunsaturated fatty 

acids (PUFA), directly determines membrane fluidity and movement of membrane 

proteins in lipid rafts [33,34], whereas phosphatidylcholine (PC) intermediates 

membrane fusion, and ceramides are potent regulators of cellular growth and death 

[35]. Thus, ceramide synthesis and metabolism are highly studied as promising targets 

for cancer therapy.  
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Gangliosides are abundant in the central nervous system (CNS) and involve multiple 

essential functions such as cell-cell recognition, signal transduction, synaptic 

transmission, cognition and oligodendrocyte differentiation. Changes in their levels have 

been associated with various neurodegenerative disorders, namely Huntington’s 

disease, Alzheimer’s and Parkinson’s, and amyotrophic lateral sclerosis. Meanwhile, 

sterols and derivates are implicated in synaptic formation, axonal growth, signal 

transduction, learning and memory. 

Given this perspective, it seems reasonable that defects and abnormalities in lipid 

synthesis and metabolism are involved in the onset and development of many disorders 

and diseases, most of all those that affect CNS. The brain requires a constant source of 

metabolites to maintain its functions and contains the second-highest lipid 

concentration in the human body after adipose tissue. Therefore, it is becoming 

increasingly evident that many neurological disorders involve altered lipid metabolism. 

The brain’s energy requirement derives from the oxidation of fatty acids, entirely taking 

part in astrocytes [28].  

Thus, for example, PUFAs play an essential role in the membrane structure and exert 

additional functions on cell signalling, particularly neuroinflammation and regulation of 

energetic metabolism. Furthermore, PUFA can be converted into active molecules, 

presenting anti-inflammatory or neuroprotective effects. Therefore, it was 

demonstrated that the omega-3 fatty acids derived from PUFA have an anti-

inflammatory and neuroprotective effect in neurodegenerative diseases such as 

Parkinson’s and Alzheimer’s [36].  

Imbalanced protein-protein and protein-lipid interaction also give place to the above-

cited neuro disorders. Thus, aberrant cholesterol metabolism is linked to Alzheimer’s 

[37]. Likewise, aggregates of beta-amyloid protein on the membrane surface and 

peptide aggregation are promoted by interaction with gangliosides [38,39]. Synucleins 

bind to fatty acids and lipids and regulate their oligomerisation [40]. Mutation in alpha-

synuclein is associated with familial cases of early onset of Parkinson’s’ disease [41].  

Likewise, aberrant accumulation of ceramides[42], precursor molecules of the 

sphingolipid’s metabolism, which could be converted to sphingomyelin and 
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gangliosides, is commonly considered toxic. In addition, they mediate neuron death by 

oxidative stress and apoptosis in patients with neurodegenerative diseases [32].  

Reactive oxygen species (ROS) lead to cellular damage by modification of the protein, 

DNA and lipid inventory [35]. Thus, determining oxidative events in membrane lipids and 

identifying the lipid species involved may provide critical information on the molecular 

mechanisms of ROS damage. Furthermore, slight or chronic imbalance of the levels of 

altered lipids contributes to altered cellular function. Therefore, it could lead to the 

onset of the pathology. Consequently, it is often proposed that lipids profiles are used 

as prognostic or diagnostic markers since they correlate with the physiological condition 

of the organism.  

All these shreds of evidence suggest a strong correlation between lipid metabolism 

and motor neuron degeneration. Moreover, changes in lipid metabolism are frequently 

observed not only in patients with neuro disorders but in chronic infectious states such 

as HIV, metabolic disorders [43], cardio pathologies [44–46] and cancers[47–51]. 

2.1.2 Targeted and untargeted metabolomics 

Metabolite detection and identification easily represent the two main aims of 

metabolomics research. Thus, the metabolite profiling/fingerprinting methods and 

biomarkers identification could be distinguished into targeted, untargeted and semi-

targeted strategies. Targeted metabolic profiling requires certain preliminary 

assumptions and knowledge about the compounds, and it is usually based on the 

analysis of concentrations or spectra intensities of a small number of known groups of 

compounds, generally of the most abundant metabolites, which belong to standard 

physiochemical classes or biochemical pathways [52]. Since GC/LC-MS instruments are 

prone to batch and time drift effects due to instrument sensitivity and intensity changes, 

targeted methods could correct batch and drift effects by including labelled internal 

standards. However, this step would also require more sample preparation. Usually, the 

generated data would require a more straightforward statistical method. When the 

study aims to evaluate a specific metabolic pathway, targeted metabolomic is 

particularly recommended because it enables the creation of quantitative metabolite 

databases for diverse populations, allowing results to be compared with published 

literature, therefore, the performance of more sensitive and accurate detection [53]. 
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Nevertheless, the targeted strategy presents certain risks because if the preliminary 

assumption regarding the compound searched was uncertain, the whole study would 

result in so-called ‘’much effort for nothing’’. Many current targeted methods, discussed 

below, focus on enabling large-scale metabolic profiling, even if the untargeted process 

would still conserve the priority of maintaining a more extensive data set.  

Compared to the previous strategy, the untargeted process does not require 

preliminary hypotheses regarding the metabolites that should be determined. 

Metabolic fingerprinting, as an untargeted approach, employs qualitative and 

quantitative holistic analyses with sufficient scope to identify as many metabolites as 

possible in the sample. Furthermore, untargeted studies aim to extract diverse 

metabolites that do not belong to the same biological class or biochemical pathway from 

a single sample. Usually, relative quantification is performed, and no metabolite 

concentration is reported. Due to its metabolome coverage, it is often the most applied 

approach for discovering potential disease biomarkers. However, the metabolite’s 

quantity limitation depends on the sample type, sample extraction method, and 

analytical technique used. In addition, this approach is challenging and time-consuming 

since it requires metabolite annotation/identification; typically, some but not all 

metabolites are annotated or identified. Usually, after an untargeted strategy, new 

hypotheses are generated. 

For example, using non-targeted metabolomics is also essential to obtain new 

endogenous up- or down-regulated metabolites, showing that metabolic pathways are 

impacted by food intake, demonstrating that not only the exogenous metabolites are 

relevant [54].  Plasma metabolomics-based studies do not usually aim to identify a 

specific metabolite but rather to comparens and ‘’fingerprints’’ of metabolite changes 

resulting from disease progression or severity. Untargeted metabolomics would 

subsequently generate hypotheses relevant to biological pathways, disease mechanisms 

or drug response, ideally creating inputs and targets for new biomarker discovery. 

However, this approach generates larger data sets and would consequently require the 

subsequent use of multivariate statistical analysis. Recently, a semi-targeted approach 

was introduced in metabolomics studies [55]. As can be deducted, the semi-directed 

strategy lies between the two processes described above. This approach investigates 
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from ten to hundreds of metabolites at a time. For example, multiple metabolites are 

quantified (instead of one metabolite at a time, as in the targeted approach), applying a 

single specific calibration curve. This strategy is hypothesis generating and hypothesis 

testing. However, one method does not exclude another; all of theme complementary 

and used sequentially. The main differences between the two strategies are reassumed 

in Figure 2-3. Further ore, recent studies highlighted the promising contribution of 

analytical techniques to all strategies. Thus, Savolainen et al. [56] developed a combined 

method to acquire targeted and non-targeted metabolomic profiling in an accurate, 

reproducible and reliable way. Given the overall premise regarding metabolomics, the 

following sections will describe accessible authenticated instruments and procedures 

mainly applied during this doctoral thesis. Our findings are based principally on non-

targeted metabolomics method development, focusing primarily on the techniques 

such as FTIR and UPLC for the metabolic profiling of human blood samples. 

 

Figure 2-3. Principal aims of targeted and untargeted strategies in metabolomic-based 
studies. 

2.1.3 Blood as the main biofluid for metabolomics studies  

Modern metabolomics consists of comprehensively identifying and quantifying 

metabolites in complex biological samples. For instance, the type of biological sample 

selected is critical, as it would define the whole metabolomic study.  
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A suitable analytical technique can be applied to each type of biological matrix. 

Sometimes focusing only on a single matrix may entail the loss of relevant information 

originating from another physiological pathway, which can provide significantly greater 

coverage of the system’s metabolome. A unique multi-matrix platform could be of great 

relevance and utility. Still, it cannot always be provided with different sample types and 

not every instrument can be adopted for multi-matrix analyses. Biofluids, namely blood, 

serum, plasma, saliva, urine, cerebrospinal fluid, tears, and exhaled biofluids, are 

analysed separately due to their relatively easy collection and abundant biochemical 

information; they are analysed independently as diagnostic resources. Therefore, 

selecting an appropriate biofluid requires careful consideration, as it may impact the 

design and results of metabolic phenotyping studies. Due to its manageability and easy 

sample collection and preparation, blood is often the most suitable sample type. 

Together with plasma, it is the second most frequently applied biofluid in metabolic 

studies after urine [57]. Much metabolomic data has been generated from studies on 

blood since it is a uniform biofluid that is usually unaffected by factors such as diet or 

diurnal cycles, or fluid consumption, as occurs with urine and which could confound and 

interfere with the analysis [53,58–66]. As a small quantity of sample is needed, it 

appears ideal in studies incorporating metabolic approaches. Thus, there is an increasing 

interest in using ‘’liquid biopsy’’ based on blood collection. Since blood biopsies are less 

invasive than tissue biopsies and hence amenable to the serial collection, providing 

crucial molecular information in real-time makes it more appropriate than other sample 

types (e.g., tissues), which require more preparation and are more invasive procedures 

[67]. Some limitations of blood could be associated with cases where venous access in 

patients is problematic or when personal aversion to blood sampling is present. 

For centuries, illnesses were believed to be due to ‘’ lousy blood’’. As early as the 

times of Hippocrates, antically one of the most influential doctors, everybody believed 

that the human body was composed of 4 biofluids (yellow bile, black bile, urine, and 

blood). These biofluids were applied in the qualitative diagnosis of pathological state: 

so,. Soy yellow urine was an indicator of high urea or bilirubin concentration, whereas 

excessively dark blood was associated with low oxygenation. Moreover, the ancients 

recognised the importance of blood for thermoregulation and knew that this biofluid 

integrates many tissues in the human body. Today’s knowledge is much more easily 



 

18 
 

accessible and has acquired greater speed. Blood is known to carry much biochemical 

information ‘’to’’ and ‘’from’’ tissues; it is a vector of multiple substances and 

compounds, especially metabolites. As both polar and non-polar metabolites are 

present in this type of matrix, a wide range of biochemical information is currently 

available [68] when compared with, for example, urine, which contains principally 

water-soluble waste metabolites, making this type of matrix limited and less suitable for 

the analysis of chemical functionalities. Blood composition could be divided into three 

main parts: 55% plasma, 1-2% buffy coat and 45% of formed elements Figure 2-4. 

 

Figure 2-4. The scheme of different ''omics '' disciplines and the system-level scale 
analyses in lipidomic studies 

Careful consideration of the potential impact of sample type on the design results of 

metabolic phenotyping studies should be considered. Plasma is a liquid volume of whole 

blood. It is mainly used for analytical purposes because the principal composition 

comprises water, lipids, sugars, amino acids, metabolites and higher molecular mass 

compounds such as proteins, DNA and RNA. Moreover, the plasma component of blood 

contains proteins and metabolites, including those that leak into the bloodstream from 

damaged cells after cellular injury; for this reason, post-mortem blood samples have 

been the most frequently analysed in metabolomic forensic analysis [69]. 
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Usually, primary differences among blood sample types are explained by inter-

individual variation and require individual correction techniques to detect differences 

attributed to sample type [70]. Furthermore, metabolites that discriminated serum from 

plasma included glycerophospholipids, lipoproteins, and energy pathway metabolites, 

while amino acids, glycerophospholipids, and energy pathway metabolites distinguished 

plasma samples with variable platelet content. It is evident that metabolomic analyses 

do not focus solely on endogenous compounds but comprise exogenously-derived 

metabolites, such as xenobiotics and their products deriving from phase 1 and 2 

metabolisms [71]. For this purpose, plasma is usually highly suited for pharmacokinetic 

drug monitoring (e.g., direct oral anticoagulant quantification [17]. Nevertheless, 

compared to other biofluids, such as urine, blood is less prone to the influence of diet 

and diurnal variation of endogenous and exogenous metabolite levels, which do not 

contain discriminant power of pathological relevance [53]. 

So far, the application of plasma metabolomics is highly suited for accessing and 

understanding various illnesses, from diabetes to cancer [18,72–75]. Thus, cancer 

patients' blood lipid levels were associated with cancer pathogenesis and progression 

[51].  All these studies focused on identifying biomarkers in human plasma, providing 

encouraging results in terms of instrumental performance.   

2.1.4 Metabolome measuring in human diseases. 

‘’Omics’’ technologies have promoted the understanding of the complex gene-

environment interactions that impact health. Thus, clinical metabolic profiling evaluates 

gene-environment interactions that are usually connected to disease risk factors. 

Localised metabolic, physical or histological perturbations in the human body result in 

system-level changes in the organism. These changes are detectable by profiling the 

whole metabolome in the biological samples.  The choice of a suitable analytical 

technique is influenced by many factors, principally due to variations in metabolite levels 

and their physiochemical diversity in blood samples. The ideal system would be precise, 

accurate and easy to use, with easily interpretable biological results.  Despite the 

limitations mentioned above, metabolomic science fulfils most of these requisites. 

Moreover, the maturity of metabolomics has stimulated a worldwide ‘’boom’’ in 
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metabolomics applications, capturing the principal directions of emerging metabolomic 

technologies from micro-organism engineering to plant-based applications [76,77].  

Therefore, numerous analytical platforms are commonly suited to this matrix type 

and are widely applied for targeted and untargeted metabolomics. Hyphenated 

techniques such as liquid chromatography-mass spectrometry (LC/MS), gas 

chromatography-mass spectrometry (GC/MS), or capillary electrophoresis-mass 

spectrometry accomplish the metabolic profiling strategy, providing a detailed 

chromatographic profile of samples and measuring a wide range of metabolites. 

Otherwise, so-called ‘’high-throughput’’ analytical platforms such as nuclear magnetic 

resonance (NMR) spectroscopy or vibrational spectroscopy, namely techniques such as 

Fourier-transform infrared spectroscopy (FTIR) and Raman spectroscopy (RS), belong to 

the ‘’fingerprinting’’ methods. These platforms are generally faster and non-destructive, 

producing a comprehensive profile of metabolite spectra [78–86]. 

2.1.5 Principal limits of metabolomics studies 

Unlike this, there is a growing interest in extracting biomarkers from biofluids. 

However, this involves some hurdles, considering that most metabolites detected in a 

complex biological mixture, such as plasma, tend to be ambiguous or completely 

unknown. Like every technique or approach, metabolomics is also affected by certain 

limitations, which should be considered and improved. For example, multiple parallel 

processes coincide in the organism, making the resulting target molecule or molecular 

signature ambiguous. Generally, the influence of individual phenotypic response on 

external or internal disturbances such as drug treatment, gender, diet, age or 

environmental stimuli, and genetic-related factors, could significantly affect metabolic 

balance in the human body, therefore making the metabolomic approach essential in 

disease detection. For example, the human body and human hare exposed to 

environmental factors such as Pb, which significantly affects metabolic profiling [87]. 

Not to mention that the increasingly ageing population, predominantly influenced by 

cancer and chronic diseases, make metabolomic analyses even more laborious and 

susceptible to errors, hence the need for superior diagnostic capabilities [88,89]. In 

addition, and interestingly enough, structural similarities or variables in the solution 

behaviour of metabolites may cause complications during the analysis. For this purpose, 
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a versatile and robust analytical technique is required. Each analytical method applied 

in the metabolomics exhibits unique and favourable characteristics, but which 

approaches does a better job? Which tecmethodovides a deeper understanding of the 

disease and is better adjusted to modern scientific requirements regarding sensitivity, 

reproducibility and accuracy. 

2.2 ANALYTICAL INSTRUMENTS IN METABOLOMIC STUDIES 

Due to the large number of chemical compounds and their diversity in physical-

chemical characteristics, a universal technique cannot be selected to approach any 

problem in metabolomics. Instead, a wide variety of techniques exist and are used 

separately or combined to provide detection in metabolomic studies. Therefore, each 

technique individually provides determined characteristics that should be considered 

when selecting one or more. 

The research group's experience in infrared spectroscopy and increased sensitivity 

that can provide mass spectrometry were decisive in developing this doctoral thesis. 

Thus, the following section will highlight the advantages and limits of MS and FTIR 

techniques in blood-based metabolomics studies.  

2.2.1 Mass spectrometry 

Current literature on plasma metabolomics highlights mass spectrometry as one of 

the main analytical techniques used in the ‘’omics’’ field. MS provides information on 

measured compounds based on their mass-to-charge ratio (m/z) [90]. This analytical 

tool consists of three parts: an ion source, a mass analyser and a detector Figure 2-5.  
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Figure 2-5. Schematic representation of mass spectrometry instrument. The mass 

analyser is the second component of a typical mass spectrometer sandwiched between 

the ion source and the ion detector. Its primary function is to separate ions based on 

their mass-to-charge ratio (m/z) so that they can be detected and analysed. 

Before detection, each biological sample must be ionised, and the electron ionisation 

forms gaseous compounds, separating a multitude of ions present in the sample. 

Therefore, the MS instrument has many advantages since it can detect a wide range of 

metabolites in a minimal concentration range, from millimolar to nanomolar. 

Furthermore, due to its broad metabolic coverage, high sensitivity, mass resolving 

power and mass accuracy, MS suits perfect for the metabolic profiling of blood samples. 

MS performance could be improved by selecting the appropriate instrumental or 

technical variants; thus, an ionisation approach could increase metabolite coverage. For 

example, electrospray ionisation (ESI) is the most preferable and utilised technique in 

biofluid analyses due to its ability to generate many ions. At the same time, selecting an 

adequate mass analyser could overcome the resolution limitations of the chosen 

separation technique. 

Technological advances in high-resolution tandem mass spectrometry (MS/MS) have 

undeniably facilitated biomarker identification.  

Unfortunately, many spectra still need to be assigned during analysis. MS 

fragmentation presents certain fundamental limitations, considering the complexity of 

metabolomic samples. Direct injection rarely provides accurate mass information.  Even 

if biological samples could be analysed by direct injection, mass spectrometry-based 
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metabolomic studies are generally preceded by a separation step within a liquid or gas 

column.  This combination typically uses hyphenated techniques through coupling two 

or even three analytical methods, mainly combining one chromatographic and one 

spectroscopic technique. The integrated system's basic workflow consists of separated 

metabolites deriving from interaction with adsorbent material inside the column that 

enters the spectroscopic instrument through an interphase [91]. The need for coupling 

arises from the existence of more complex problems, such as a need for efficient 

diagnostic and prognostic biomarkers in complex human illnesses. Nowadays, the 

coupling of MS is limited not only to chromatographic techniques, but it also 

complements high-resolution proton spectroscopy (1H NMR) [78,92–94], GC [56,84,95–

98] or capillary electrophoresis (CE) [6,99–104]. Coupled systems help overcome many 

limitations a single instrument faces, providing more comprehensive information and 

enabling access to enhanced opportunities for resolving complex biological mixtures 

such as blood.  

2.2.2 Understanding of LC/MS and its use in metabolomic and lipidomic studies 

Liquid chromatography hyphenated to mass spectrometry (LC-MS) is currently the 

most widely used and well-integrated technique in metabolomic studies. LC-MS-based 

metabolomics has revolutionised the study of small molecules and our understanding 

of drug discovery[105], chronic disease [106,107] and biomarker identification [108–

110]. However, an untargeted disease phenotyping, searching for biomarkers that can 

give direct insight into the disease process, could be very frustrating. Therefore, the LC-

MS approach is considered a good compromise regarding the speed of analysis, 

metabolites coverage and sample throughput. In addition, LC-MS is suitable for both 

qualitative and quantitative analytical strategies of metabolic phenotyping. Considering 

its ease of use, HPLC-MS with ESI in positive and negative modes are the most applied 

techniques for untargeted metabolic phenotyping. 

Considering that the LC-MS approach was used to obtain results in this doctoral 

thesis, some experimental workflow steps will be deepened, dwelling on points that 

could create a real bottleneck in the analysis, adding bias to results or even nullifying 

them.  
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2.2.2.1 UPLC 

The HPLC platform has been surpassed by the ultra-high-performance U(H)P LC-MS 

technique. Compared to the HPLC standard platform, UPLC operates with a smaller 

particle size of stationary phase (≤2 µM) and higher pressure, offering significantly 

improved chromatographic efficiency and higher resolution separations. The reduction 

of peak width also increases sensitivity compared to conventional HPLC. Because of the 

higher sensitivity and speed, UPLC has a better peak resolution, reducing the ion 

suppression problem, which is very important in complex mixture separation [111]. 

Careful selection of the column and LC conditions also provides rapid analysis and high 

sensitivity in metabolome coverage. A combination of reversed-phase (RF) and 

hydrophobic interaction (HILIC)-LC are utilised in metabolomics studies to monitor 

metabolites with different polarities.  

2.2.2.2 Mass analyser 

In addition to the higher resolution and sensitivity, frequent technical updates make 

liquid chromatography one step forward, among other techniques, to perform 

metabolic profiling analysis. When conventional coupling with ESI instrumentation 

results is insufficient to achieve confidence in identification, LC and MS are combined 

with a second analyser to ulteriorly improve sensitivity, mass accuracy, and isotope 

abundance accuracy [112]. 

Among the most frequently used mass analysers in untargeted metabolic 

phenotyping time-of-flight (TOF), hybrid quadrupole/time-of-flight (Q-TOF), and 

Orbitraps should be highlighted. These mass analysers provide achievable high mass 

resolutions, typically up to 50,000 full-width half maximum (FWHM) for TOF and Q-TOF 

mass analysers and a scan rate of up to 100 Hz [52]. 

The Q-TOF hybrid configuration allows ions of a specific m/z ratio (ideally related to 

a single metabolite) to be isolated in the quadrupole mass analyser that can only 

measure ions with nominal mass. The TOF, on the other hand, propels the ions entering 

the analyser by applying an electric potential orthogonally and accelerating them. In this 

way, by using equal energy to all ions, which will turn into kinetic energy, those with 

lower mass reach higher speeds and arrive at the detector first, showing a shorter flight 

time. Therefore, the time it takes an ion to cross the flight tube is measured, and both 
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small and large ions must arrive at the detector, making the equipment only capable of 

working in full scan mode. In addition, due to its characteristics, the TOF presents a 

better resolution for ions with a higher m/z ratio (Figure 2-6).  

 

Figure 2-6: Scheme of ion behaviour in principal analyser used in metabolomic studies. 
A) The quadrupole analyser comprises four parallel cylindrical or hyperbolic metallic 
bars, to which a direct current and a radio frequency voltage are applied two by two. 
With the application of these potentials, ions entering one part of the quadrupole are 
intermittently attracted by one or the other bars so that only one m/z ratio can traverse 
it without colliding. Ions that traverse the quadrupole describe a helical trajectory 
without colliding (resonant ions) and finally exit the quadrupole, which. At the same 
time, they do not meet the m/z ratio; they collide before reaching it (non-resonant ions). 
B) Schematic representation of TOF analyser. 

The hybrid instruments such as Q-TOF have, in addition to the first (quadrupole) and 

second analyser (time of flight), another "intermediate" analyser (initially a quadrupole, 

but currently it can be a hexapole or other designs) that acts as a collision cell. Thus, ions 

passing through the first quadrupole collide with an inert gas in this cell. Depending on 

the collision energy being applied, therefore, fragmentation can occur in a collision cell 

operated between the quadrupole and TOF mass analysers. Finally, they reach the TOF, 

obtaining a complete high-resolution spectrum of all ions (full scan).  

This means that we work by acquiring two sequential functions, one of low energy 

and one of high energy; in the first acquisition (function), the ions do not fragment, and 

we can observe the pseudo molecular ion ([M+H]+ or [M-H]-). In contrast, the fragments 
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generated from all ions that pass through the quadrupole filter are observed in the 

second function. Because chromatographic peaks last a few seconds (in UHPLC around 

6s) and simultaneous acquisitions are performed several times per second (about 0.3s 

per acquisition), in a 6-second peak, we can have 20 acquisition points, 10 of which will 

correspond to the low energy function (unfragmented ion) and 10 points of high energy 

(fragments), so we have information about the intact molecule and structural 

information in a single analysis with sufficient points to define the chromatographic 

peak. This mode of operation is called full-scan MS/MS analysis. However, higher scan 

frequencies allow many scans to be collected across a chromatographic peak, including 

complete scan data acquisition and data-dependent analysis. For this reason, the main 

advantages of the Q-TOF analyser, compared with other analysers, are the high 

sensitivity, the increased scanning speed and the high resolution, enabling a 

determination of the exact mass of the ions in the detector. Furthermore, it is incredibly 

advantageous for the structure elucidation process to use tandem mass spectrometry 

(MS/MS) made possible by hybrid instruments such as the Q-TOF. This allows us to 

isolate the ion of interest through the first quadrupole, fragment it at different collision 

energies, and then analyse its product ions to clarify the compound's structure without 

incurring errors in assigning fragments to the observed m/z relationships. 

 In this type of analysis, a huge amount of data is obtained, making bioinformatics 

necessary to extract the information required for metabolic analysis. In addition, it also 

provides isotopic pattern information, which is extremely useful in establishing the 

correct elemental composition of the observed ions. 

Considering that this hybrid analyser is often combined with a UPLC instrument of 

separation, these technological advances maximise the benefits of UPLC-based 

metabolome profiling analysis.  

2.2.2.3 Matrix 

The use of biological matrices in metabolomic studies is pretty frequent since they 

are easier to treat as they are composed of a large percentage of water. Meanwhile, 

urine is a cleaner sample which requires dilution before chromatographic analysis; in 

contrast, plasma is a complex matrix rich in proteins. Thus, adequate bio-analytical 

procedures must be first applied to remove endogenous compounds and 
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isolate/concentrate the analytes of interest during biomarker detection [17]. This step 

often requires using organic solvents and different instrumentation, increasing times 

and costs. In this sense, matrices such as blood (serum or plasma) are treated to remove 

the present macromolecules (e.g., DNA and proteins) with acetonitrile (ACN), methanol, 

or ethanol, avoiding possible interferences in the metabolic analysis, which focuses on 

lower molecular weight molecules. Once deproteinised and centrifuged, the matrix can 

be analysed directly by liquid chromatography or undergo different treatments to adapt 

it to other separation techniques. Since lipids are involved in many cellular processes in 

the organism, lipid disbalance and alteration give place to multiple diseases; therefore, 

LC-MS lipidomic studies have gained popularity in recent years. Thus, for example, for 

lipid profiling in plasma/serum extracts, the mobile phase condition is usually studied 

and optimised to maximise the resolution of these analytes [113]. However, since the 

blood metabolome is widely extended, specific metabolic ranges must still be completed 

and undiscovered. Thus, serum might be more suited for small molecule analyses 

because the protein content is lower. Therefore, competing ionisation is reduced, and 

overall sensitivity increases [35]. However, the comparison of non-targeted serum and 

plasma studies revealed more peptide/protein fragments in serum, which resulted in 

additional disturbing effects during ionisation [114]. Implementing ulterior matrix type 

would provide a comprehensive overview of disorders not well reflected only in blood. 

Thus, a multi-matrix platform approach is already highly implemented by utilising polar 

metabolic fingerprinting of plasma, urine and faeces in UPLC-MS studies [115]. An 

acceptable performance criterion of these novel methods highlighted the merits of 

performing a multi-matrix platform for disease-related biomarker detection and 

potential pathway elucidation. 

2.2.2.4 Extraction 

LC-MS-based lipidomic analyses typically start with extracting the lipids from the 

biological samples, followed by LC separation. The extraction methods in lipidomic 

studies should meet the primary requisites, namely, be fast and reproducible. In 

addition, samples are often available in minimal amounts; thus, the main advantage of 

LC-MS-based analysis is that they require a small sample. Usually, for the analysis of 

lipids in the biofluids such as plasma or serum, the samples are collected if 10-100μL. 
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Several sample-preparation methods can be applied to biological samples, such as 

liquid-liquid extraction (LLE), solid-phase extraction (SPE), and organic solvent 

precipitation, to improve the overall lipid coverage. Most of the cited sample-

preparation methods still rely on the extraction procedure that Folch et al. 

proposed.[116] years ago, which is based on a mixture of chloroform/MeOH (2:1, v/v) 

for extraction. This method is obsolete and is replaced by the procedure proposed by 

Matyash et al.  [117], which involves the addition of MeOH and MTBE (1.5:5, v/v) to 

the sample. The phase separation is induced by water addition. Therefore, the organic 

phase containing the lipidic part will be situated in the upper layer, and its collection is 

much more simplified, minimising dripping losses. In addition, chloroform is listed as a 

toxic and cancerogenic chemical. Thus, utilising the MTBE method became preferable 

in laboratory practice, reducing significant health risks and environmental problems.  

2.2.2.5 Column and mobile phase 

Metabolite separation could be improved by appropriate column selection. Many 

commercially available columns are usually 100% compatible with the aqueous phase, 

maximising the retention of polar compounds. However, many parameters in this step 

offer the usual advantages and drawbacks; on the one hand, the column length could 

provide better separation performance; on the other, it would increase the time and 

costs of metabolomic studies. Besides the column, an adequate mobile phase regarding 

flow rate and separation capabilities should be considered. Indeed, the separation and 

detection of blood metabolites could be affected by many parameters, from the type of 

sample injection responsible for a resolution to gradient elution that could drastically 

improve or deteriorate the entire analytical flow. Thus, the mobile phase's acidification 

permits avoiding significant baseline disruption. Moreover, lipidomic studies implicate 

MeOH, which is known to facilitate lipid elution, avoiding its accumulation in the column, 

which may further contribute to the minimisation of matrix effects [118]. Nevertheless, 

LC-MS untargeted metabolomic studies require using other solvents such as ACN, which 

could not be considered” environmentally friendly”, involving all the problems related 

to its use. Nevertheless, many protocols are standardised, entirely green and cost-

reduced protocols in LC-MS-based metabolomics studies are still lacking. 
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2.2.2.6 Quality control 

Untargeted metabolomics studies perform the metabolic profiling of hundreds and 

thousands of metabolites in the sample, where these analytes’ nature has not been 

discovered previously or is partially hypothesised. Thus, the major problem in these 

studies is that adding internal standards for each compound could be more technically 

and economically feasible. Therefore, quality control (QC) samples are implemented in 

untargeted metabolic profiling to ensure the validity of analytical data. QC is used to 

demonstrate the goodness and accuracy of analytical performance and that results are 

reported correctly. The general approach of ‘’pooled’’ QC samples, initially proposed 

by Sangster et al.[119], where aliquots of samples are combined to provide a ‘’mean’’ 

sample, which is used to ensure the acceptable repeatability/reproducibility of the 

analysis. Therefore, features detected in the QCs are grouped based on the 

comprehensive CV, which acceptance criterion in untargeted studies is a maximum of 

30% CV [120]. Different procedures can generate pooled QC samples, but the same 

storage and sample preparation protocol must be used to guarantee analytical 

precision. 

2.2.2.7 LC-MS data processing  

The LC-MS metabolomic analysis generates a massive amount of data. Each 

biological or QC sample analysed generates a single raw data file containing information 

related to retention time, m/z, and intensity and metadata listing instrument variables 

and operating parameters. The raw data format and the metadata included depend on 

the instrument platform. Thus, besides all the previous steps, which can increase time and 

cost and reduce the accuracy of the analysis, raw data processing is another challenging 

task in metabolomic studies. Converting data from all raw data files into a single data 

matrix requires using a range of software. Modifying this data format to a universal 

format should usually be applied before raw data processing, typically NetCDF with 

scientific instrument company software or mzML with ProteoWizard [19]. Modern 

instruments are provided with software that directly converts all the files of measured 

samples, but this process takes time.  
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2.2.2.8 Compound identification 

The advances in mass accuracy and isotopic abundance accuracy are essential to 

reduce compound candidates. In addition, a series of MS2, MS3 and MSn derive from a 

sequential fragmentation of selected ions, thus, containing important structure 

information such as feasible elemental composition and identification of core 

molecules, which allows the logical tracing of structure [106]. Therefore, a precursor ion 

mass (MS1), a fragment mass (MS2), and chromatographic retention time in combination 

with a chemical standard are used to confirm a specific compound in a peak 

unambiguously. 

There are still two unsolved issues in LC-MS-based metabolomic studies i) currently, 

none of the available technologies is capable of providing a comprehensive analysis of 

all structurally diverse classes of metabolites in a single separation [121], ii) the 

structural elucidation of specific metabolites is limited to reduced coverage of spectral 

libraries. Thus, many discriminative features/compounds cannot be found in any 

spectral library or are stereoisomers. Furthermore, the improvements in informatics and 

growth of spectral libraries such as Human Metabolome DataBase (HMDB)[122], 

METLIN (https://metlin.scripps.edu), MassBANK[123], LipidMaps[124] still present 

some gaps, namely pure reference standards are non-available for many compounds. 

Therefore, metabolomics analysis could not consider the most potentially useful 

compounds or endogenously expressed unidentified metabolites. Thus, the main issue 

in LC-MS-based studies is that structural elucidation of unknown metabolites is intricate 

due to the incompleteness of measured MS/MS data in public or commercial 

databases[106]. Meanwhile, on the one hand, LC-MS can avoid the chemical 

derivatisation step typically requested during GC-MS analyses; on the other, non-

targeted LC-MS-based metabolomic biomarker identification could present specific 

bottlenecks in terms of spectral library utility, which is much more limited compared to, 

for example, GC–MS [125]. 

2.2.3 Vibrational techniques  

2.2.3.1 Fourier transform infrared spectroscopy and its use in metabolomic studies 

Over the last decade, vibrational techniques have been highly implemented for 

biomedical applications demonstrating high specificity and sensitivity for disease 
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classification. Vibrational approaches, such as FTIR spectroscopy, are classical methods 

that provide non-invasive structural information about compounds.  

Fourier-transformed infrared spectroscopy is an interesting diagnostic tool. Its great 

potential has already been demonstrated in a myriad of studies in different research 

areas [126–137]. The infrared approach is auspicious compared with other techniques, 

as it provides a faster, more accessible, low-cost diagnostic platform, thus fulfilling 

current clinical necessities. Furthermore, based on the Lambert-Beer law's selective 

absorbance of specific infrared wavelengths, where absorbance is directly proportional 

to concentration, it can accurately identify and quantify multiple compounds [138]. 

The electromagnetic spectrum of the IR region covers a range of wavelengths from 

10 to 12800 cm-1 and is divided into three principal zones: far IR (FIR) from 10-400 cm-1, 

mid-IR (MIR) from 400-4000 cm-1 and near IR (NIR) from 4000-12800 cm-1. 

 From the bio-analytical point of view, the most critical region is the MIR spectral 

region.  The spectrum is acquired when the sample is placed in an IR beam's path [139]. 

The biological sample’s absorption spectrum derives from the capacity of organic 

chemical bonds present in the model to undergo transitions in the MIR region.  

Molecules have naturally occurred frequencies of rotation and vibration since they are 

not rigid sticks (e.g., stretching or bending). Based on the chemical bond vibrations of 

samples, MIR provides a wavenumber-absorbance intensity, typically called ‘’fingerprint 

spectra”.  

The metabolic fingerprints can be extracted from different matrices, such as tissues, 

cells or biofluids. Therefore, blood-based IR spectroscopy, whose use is widespread. 

Blood could be considered an ideal biofluid for IR analyses, as it is homogeneous and 

readily available. For this purpose, FTIR spectroscopy lends itself very well to clinical 

routine. In addition, the significant advantage of FTIR spectroscopy resides in its 

sensitivity to small changes in the composition of an ensemble of known and unknown 

biomarkers of a complex fluid such as blood, which provide a unique FTIR signature that 

can be used as a ‘’barcode’’ of the disease.  
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The driving force behind this transition from traditional laboratory analysis is the 

need for diagnostic information in a timelier manner, not forgetting additional 

arguments such as costs, safety and environmental considerations.   

All these characteristics make FTIR instrumentation one step forward in clinical 

implementation for diagnostic purposes. Vibrational spectroscopy has been generally 

described as an easy-to-use, non-invasive, non-destructive and reagent-free method, 

significantly reducing analysis costs [140]. Furthermore, FTIR enables the simultaneous 

determination of multiple constituents through a single analysis; thus, it is ideally suited 

for determining the structural features of proteins in biofluids. Independently of the 

initial aim of the study, FTIR spectroscopy is twofold in terms of the purpose of analysis, 

allowing both quantitative and qualitative applications.  

In addition, current FTIR instruments are small and portable, with easy installation 

(e.g., no purge of nitrogen is required). Not less important, the instruments are very 

affordable and intuitive in their utilisation, requiring minimum user training preparation. 

Modern instrument configurations such as Attenuated Total Reflection (ATR) 

spectrometers are becoming very popular in point-of-care diagnosis. In ATR 

spectroscopy, the sample (in order of a few microliters) is deposited directly onto the 

surface of an ATR crystal (typically Zn-SE) with a high refractive index compared to the 

sample Figure 2-7. Therefore, the deposition system on ATR crystal is easily cleaned after 

each examination, compared to standard analysis in a cuvette. Nevertheless, on the one 

hand, ATR allows for performing multiple and reproducible analyses with minimum 

effort; on the other, the measured sample could not be recuperated after each 

measurement.  
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Figure 2-7. Diagram of Attenuated Total Reflectance accessory (ATR), in which the 
infrared radiation passes through the optical material- ATR crystal. The main advantage 
of using this accessory is that the measurement is very simple, just by placing a drop on 
the accessory window (the drop size does not matter).  

It should be said that IR analyses are often affected by spectral perturbation, such as 

dispersion effects due to water content in the samples. Sometimes, the experimental 

factors (e.g., temperature) could add ulterior spectral artefacts. Nevertheless, these 

limitations are easily resolvable with opportune informatics techniques and 

compensated with little or any sample preparation time.  

2.2.3.2 ATR-FTIR instrument 

ATR-FTIR spectroscopy platform is highly used to detect spectral biomarkers in 

different malignancies and disorders. Moreover, it allows the delivery of rapid 

information, which is particularly useful in cases when a result is urgently required. The 

utility of this analytical platform has been demonstrated in many fields, from studies 

investigating saliva in rodents [141] to studies of a wide range of cancers [142,143] such 

as meningioma, colon, tissues or even ovarian cancer [144]. Considering that cancer has 

a high mortality rate, the correct identification and early diagnosis of cancer would 

significantly improve success in this field, enabling early-stage therapeutic intervention. 

However, defining the chemical phenotype in affected human subjects often requires 

laborious and time-consuming analysis. Therefore, searching for the best analytical 

technique to predict cancer incidence, severity and progression continue. Some 

progress has already been made, but other branches remain uncovered and must be 

elucidated [145]. 

In addition, the potential of the ATR technique is often reinforced by the results in 

accuracy. Thus, Bury et al. [146] performed a study in which ATR-spectroscopy analysed 
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various brain tumours from blood plasma. Their study demonstrated the potential of 

ATR-FTIR for detecting patients with primary metastatic brain tumours, with up to 100% 

accuracy for high-grade glioma vs low-grade glioma, achieving 88-100% accuracy for 

meningiomas. Their results are auspicious and could improve future clinical workflows. 

Further research has demonstrated the potential of ATR-FTIR as a spectroscopic 

diagnostic tool, confirming that it can detect and quantify malaria parasite infection in 

wet packer red blood cells (RBC) samples [147]. Furthermore, untargeted metabolic 

fingerprinting strategies based on FTIR were used to exploit the disturbance of 

metabolic patterns and biomarker candidates of childhood obesity [148] field is critical 

to safeguard more fragile populations, as obesity could lead to several severe 

complications in the future, namely cardiovascular diseases or type 2 diabetes mellitus. 

All these studies highlighted the main advantages of ATR:  

1. Minimal sample preparation: ATR requires minimal sample preparation, making 

it a simple and easy-to-use technique. 

2. Wide range of sample types: ATR can analyse a wide range of sample types, 

including solids, liquids, and gases. 

3. High sensitivity: ATR has high sensitivity, allowing it to detect small amounts of 

analyte. 

4. Minimal interference: ATR measurements are minimally affected by water 

vapour, carbon dioxide, and other substances that interfere with FTIR 

measurements. 

Non-destructive analysis: ATR is a non-destructive technique, allowing for further 

study of the sample.  

As we can see, the development of medical diagnosis based on vibrational 

spectroscopy is based on two steps: i) identification of the collected biomarkers and ii) 

classification of spectral biomarkers. Usually, the spectral wavenumbers used for 

biomarker identification and elucidation are considered variables. Thus, these 

untargeted analyses are coupled with chemometric techniques to reduce the spectral 

variables (from hundreds to approximately a dozen) and minimise the influence of noisy 
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and redundant information. As a last step, biochemical assignment of the selected 

important essential performed, which should be further validated by other targeted 

studies and with the utilisation of additional analytical platforms.  

Despite its potential, FTIR spectroscopy is not currently used in clinical practice 

because most available studies were proof of concept studies. 

This analytical method does not purport to resolve the question of the final diagnosis. 

Still, it could help screen blood samples of multiple disorders, providing spectral 

biomarkers for initial objective diagnosis or monitoring of the disease progression. Given 

this perspective, the FTIR technique was used in this dissertation thesis to evaluate 

spectra biomarkers of normal vs diseased samples, identifying spectral biomarkers 

responsible for metabolic-specific changes. 

2.3 ANALYTICAL FLOW 

To ensure the efficient handling of large data sets, each analytical platform follows 

an analytical workflow that includes a sequence of steps. Defining a standard workflow 

to obtain valuable and conclusive results and avoid errors is crucial. This process usually 

starts with the experimental design and with the validation of results. Thus, the most 

widely reported and applied steps include sample collection, sample pre-treatment, 

metabolite detection and data treatment. All of this process will be discussed 

throughout this chapter. The selection of steps depends on the type of analytical 

method used in the study and the kind of sample to be analysed, i.e., liquid or solid. 

Most of the required steps are similar regardless of the chosen analytical platform and 

could reveal unintended sources of variation in analytical yield. Thus, decisions about 

sample preparation, pre-treatment or experimental conditions to be used during the 

analysis could significantly alter the quality of the analytical results and increase 

challenges during metabolomic analysis [8]. Moreover, these analytical steps are often 

time-consuming, laborious, and error-prone. Due to the diversity of blood components 

and the need to improve the coverage of various metabolites, an effective and suitable 

protocol for sample storage and pre-treatment should be selected. Figure 2-8 provides 

an overview of the main steps in analytical workflow in blood metabolomics-based 
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studies, describing the most resilient analytical steps independently of the analytical 

platform. 

 

 

Figure 2-8. Schematic representation of the analytical workflow of the results obtained 
in this doctoral thesis. 

2.3.1 Sample design 

The metabolomic workflow begins with sample design. The samples in the model 

should be “well distributed" to uniformly represent all potential sources of variability in 

the population of interest or at least the most important ones. Since sample design is 

often underestimated in the analytical routines, this study emphasised its importance, 

as it plays a crucial role in analytical workflow and could be considered the cornerstone 

of nearly every research study. Unfortunately, most scientific publications attach little 

importance to this step, and sample collection results are often unrepresentative, 

making the whole research worthless. Generally speaking, the analytical model can only 

be developed using appropriate standards, and clearly, these same standards must be 

well distributed over the concentration range of interest. Therefore, it is good practice 

in classification problems to be provided with something comparable in concept to a set 

of standards for developing the model. 
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 Two strategic aspects of this concept must be highlighted: firstly, it could be a 

preliminary step to sample acquisition to allow a design of a representative population 

sample, thus achieving not only the whole population in similar proportions of 

subgroups but contemporary the whole sample set large enough to provide meaningful 

information and avoid bias; and secondly, sample design could be seen as a subsequent 

step of sample collection, selecting previously collected samples for further statistical 

steps. We have discussed this topic in previous studies, in which we provided detailed 

explanations of the main principles of developed techniques for appropriate sample 

selection [149].  

 Since this method represents a crucial part of statistics, Forina et al. [150] 

exhaustively described the theoretical details of the method, evaluating that a good 

sampling design selects the samples for calibration or regression with a uniform 

distribution. A subset of samples representative of the population of all possible samples 

can be chosen by applying different methodologies. The strategy to be adopted could 

be straightforward or, on the very contrary, complex; therefore, many techniques for 

uniform design are proposed.  Having available the necessary information 

(corresponding to the most important sources of variability), a good sampling design can 

be obtained using methodologies such as Kennard-Stone (KS) or Pugwain's method for 

uniform design. Thus, the K-S design can get one or more sets of samples and can be 

applied separately for each class (60% for training, 20% for validation and 20% for 

prediction) to maximise the minimum Euclidean distances between selected and 

unselected samples [151]. Likewise, the K-S sample selection algorithm could be used in 

IR analysis, dividing spectra into training (70%) and test (30%) sets using, where the 

training set is required for constructing classification models. In contrast, the test set is 

often used for final model evaluation [152]. Other methodologies are applied when it is 

necessary to consider other unknown or less important factors, which encompass 

different types of variability in the population data set.  

2.3.2 Sample collection and preparation 

 Long-term experiences have shown that basic steps, like sample analysis, could lead 

to undesired variations even at the first view. Once the patients are selected, sample 

collection is the next important step. Often, it is widely underestimated, leading to 
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analytical errors that could be not fixable anymore. Independently of the chosen 

analytical tool, the necessary precaution should be taken before proceeding with any 

analytical step to avoid ulterior bottlenecks in laboratory workflows. Thus, concepts of 

good laboratory practice, such as randomised sample order or batch acquisition, are 

often underestimated, therefore, could be a source of internal variations too.  

To start, it is essential to have a thorough understanding of the type of samples to be 

worked with, as the more information we have about the sample type, the less chance 

there will be of making errors that compromise the results. We must ensure the samples 

have common characteristics (e.g., not mixing plasma with serum); otherwise, 

uncontrolled differences could mask differences in the compound of interest. Thus, 

sample homogeneity allows us to work with many samples and obtain more robust 

results. 

In addition, since blood is readily available, uniform and homeostatic biofluid, 

biological replicates should still be accurately considered to obtain high data quality and 

reliability of the studies. It is important to perform a universal and straightforward 

sample treatment, or if not possible, perform several simple treatments to cover the 

broadest possible range of polarities in terms of compounds. Therefore, plasma samples 

should be collected similarly throughout the study and stored under the same condition. 

Usually, blood samples are stored at -80 °C to stop any metabolic activity which could 

continue in the cells [52]. The plasma samples tend to have specific stability in room 

temperature conditions; repeat freeze-thaw cycles should be avoided because they 

could lead to ulterior variance [153]. For example, the study of Lovergne et al. [127] 

observed that the sample drying at room temperature resulted in a difference in the 

sample residual water content that was dependent on the relative environmental 

humidity; they concluded that additional devices such as purging systems could be 

implemented better to control the ambient air humidity for plasma based FTIR analyses. 

When the serum is the matrix of choice, a clotting process could be involved during 

sample collection, and centrifugation should be executed to separate the liquid plasma 

from red and white blood cells. In this case, when the analysis is performed by liquid 

chromatography, often, anticoagulants are required to avoid the clotting process. In 

addition, sample preparation workflow generally involves an extraction of the 
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metabolites based on the metabolite under investigation and the method used for the 

analyses. Compared to cells and tissues, plasma samples would not require 

lyophilisation, which in other matrices is necessary to prevent peak overlapping. Usually, 

the first step in plasma studies involves the precipitation of proteins. Some techniques 

require only drying samples for IR, while others require LLE [63] by adding solvents to 

precipitate higher molecular mass biochemicals such as proteins. Sample drying could 

be avoided in LC-MS when an appropriate solvent is selected, decreasing the analysis 

time. When unextracted blood samples are used, it could lead to false positive results 

making the differences in lipoprotein particle composition look important [53]. In 

addition, comparing the sample preparation protocols for urine, plasma and tissue 

samples showed that plasma sample metabolic profiling is relatively similar to specimen 

preparation of urinary metabolic profiling but without the need for incubation with 

urease enzymes [84]. To highlight another advantage of plasma samples, the metabolite 

stability of plasma in the storage condition is less susceptible to changes than urine, 

which has more possibility of bacterial contamination [154]. Thus, the sensitivity of the 

UHPLC plasma profiling could be enhanced significantly by applying a novel approach to 

sample preparation [71]. For example, plate removal and extraction with different solid 

phase extraction (SPE) phases to concentrate plasma samples for the following direct 

injection of concentrated plasma demonstrated to improve the detection of less 

abundant xenometabolites in UHPLC untargeted metabolomic studies. Moreover, 

continuous improvements in instrument automation could reduce costs and time 

associated with sample preparation.  

2.4 CHEMOMETRIC ANALYSIS 

Once data are collected, they must be interpreted and transformed into valuable 

information. Most of the time, analytical techniques generate spectra, and the resultant 

metabolite data interpretation relies on the application of chemometrics. The term 

‘’chemometric’’, according to the definition of the Chemometrics Society, is “the 

chemical discipline that uses mathematical and statistical methods to design or select 

optimal procedures and experiments, and to provide maximum chemical information by 

analysing chemical data”. This term was introduced in the early 1970s by Svante Wold. 

It is now an indispensable discipline in analytical studies, especially in metabolomics. 
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Almost two decades ago, Workman [155] summarised the critical advantages of 

chemometric applications, such as speed in obtaining high-quality information in real 

time from data. Furthermore, the author mentioned that chemometrics promises to 

improve measurements and knowledge of existing processes. Moreover, last but not 

least, it is economical, which is why chemometrics became an integral part of metabolic 

profiling.  

As spectroscopic chemistry generates large and complex datasets, a fast and accurate 

statistical tool is required to deal with the complexity and volume of data generated in 

metabolomic studies and to interpret the relative metabolic changes, for example, at 

different stages of a disease. Therefore, the analytical step in chemometrics is 

recommended and essential. This chapter will discuss the strengths and drawbacks of 

each analytical technique. In addition, the role that takes chemometrics in the analytical 

workflow will be highlighted, summarising the most frequently applied chemometrics 

methods in blood-based metabolomic studies performed in this thesis.  

The chemometric data analysis workflow in metabolomic studies consists of various 

steps, such as data pre-processing and unfolding, discriminant class-model generation 

and finally-validation. Figure 2-9 provides a comprehensive insight into the main aims of 

different chemometric stages, suitable for targeted and untargeted blood metabolomic 

analysis.  
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Figure 2-9. Overview of main steps of chemometrics analysis applied for discovering 
biomarkers in blood-based metabolomic studies. 

2.4.1  Pre-processing step 

Metabolomic studies are performed with many samples, expressed in different 

formats, such as ‘’ppm’’, ‘’retention time’’ o ‘’wavelengths’’, relative to the intensities 

of spectra or concentrations. Long years of studies have demonstrated that generated 

raw omics data could not be processed directly before a proper pre-processing step. So, 

once the raw data is acquired, it goes through data storage, conversion and import. Once 

these steps have been completed, the data are ready for pre-processing. Applying pre-

treatment techniques to spectroscopic and chromatographic signals minimises 

variations in the measurement conditions since the data obtained from these platforms 

may show fluctuations due to temperature changes or modifications in the optical 

length causing overlapping bands. Such variations can also be observed as scattering, 

shifts between signals, or irrelevant information in the spectra or chromatograms. As 

mentioned, blood contains heterogeneous molecules, some in the form of long-chain 

lipids or proteins. For example, during the analysis, they could appear as baseline 

distortion, thus precluding and impacting metabolite quantification [156] [52]. Suppose 

a suitable algorithm is not applied to correct initial spectral distortion. In that case, these 
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minor and innocent variations will introduce significant bias in the subsequent 

multivariate analysis, obscuring valuable information relating to biomarkers. 

Various pre-processing tests were studied and used in this doctoral thesis to correct 

specific issues associated with spectral data acquisition and build robust and accurate 

models. Thus, these methods can be categorised as signal correction methods and 

classical pre-processing methods [157].  

2.4.1.1 Signal correction methods 

In spectroscopic data, the different perturbations can be addressed to light scattering 

effects, which induce a photon loss (additive effect) and an increased path length 

(multiplicative effect). Almost all of the pre-processing methods indicated below are 

‘’row-wise’’ and the most widely applied include: 

Normalisation methods such as multiplicative scatter correction (MSC) and extended 

multiplicative scatter correction (EMSC), fit each spectrum to a reference spectrum; 

standard normal variate (SNV) is extensively applied to correct a non-desired intensity 

variation between objects. Normalisation could be done to a particular peak, for 

example, to avoid variations in signal intensities attributed to experimental sources or 

ion intensities in the case of LC-MS analysis or to the area (area normalisation). 

Baseline correction removes experimental and instrumental artefacts; this method can 

be used to eliminate background noise in IR spectra by subtracting the lowest value of 

each spectrum from all variables, 

 Smoothing is also used to correct random noise through different available digital 

filters (e.g., Gaussian, Savitsky-Golay, and Moving Average). Thus, Savitzky-Golay 

smoothing is a digital filtering technique that uses a type of moving window in which a 

set of adjacent data points are averaged. Still, unlike other smoothing techniques, it also 

fits a polynomial function to the data within the window. Once the polynomial is fitted 

to the data within the window, the function’s value at the window’s centre is used as 

the smoothed value for that point. This process is repeated for each position of the 

window along the signal, resulting in a smoothed signal. Likewise, the Moving average 

uses the average of neighbouring points to calculate the new value. The window moves 

along the data set, and the average value is recalculated for each point in the series. The 

window size is an important parameter in this method, and it can be chosen based on 
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the desired level of smoothing or noise reduction. A larger window size will result in a 

smoother data set, but it may also introduce some lag or delay in detecting changes in 

the data. A smaller window size will provide more sensitivity to changes but may also 

result in more variability or noise in the data. 

Derivatives are generally used to correct for additive effects in spectroscopy (e.g., 

Savitsky-Golay, which smooths and enhances the noise). 

Alignment methods are often applied to chromatographic data by means of signal 

comparison. It is required that the peak corresponding to the same compound does not 

show any variation in retention time in the different spectra or replicates. To solve such 

variations, an alignment pre-treatment is usually applied to the chromatographic data. 

One of the most relevant techniques for correcting the shift between chromatograms 

consists of making shifts concerning specific chromatogram signals, using them as an 

internal reference. 

2.4.1.2 Classical pre-processing methods 

Scaling is applied to avoid higher signals having a more significant influence than smaller 

signals and spectral alignment to correct local signal shifts (typically observed across the 

retention time axis of MS data). Thus, Row Autoscaling or Standard Normal Variate 

(SNV) treatment consists of centring the column and normalising it. Pareto scaling 

consists of adjusting each variable's magnitude to equalise the noise level in all variables. 

Therefore, it is used when noise is expected to be proportional to the square root of the 

standard deviation of the variables.  

Mean centring is the most common pre-processing in projection methods such as PCA 

or PLS, which will be discussed below. It is applied to centre the subspace to the 

barycentre of the original data set for better data visualisation.  

Each technique could require the application of more than one pre-processing step. 

Indeed, in the case of hyphenated approaches, data processing proceeds through 

multiple stages, including filtering and feature detection (or peak picking), for the 

removal of noise and accurate peak detection and peak matching across samples; 

alignment and normalisation for the correction of drifts in retention time and intensity 

between samples, respectively [158]. Furthermore, MS-based datasets are usually 

affected by chemical noise, which is typically induced by molecules in buffers and 
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solvents and can be especially strong at the beginning and the end of elution. This type 

of noise causes a shift in the baseline in the intermediate mass range of LC-MS, and the 

noise filtering of LC-MS data could be more challenging compared to other analytical 

techniques [125]. 

Once the data are improved by an adequate pre-processing method, ensuring the 

robustness and accuracy of the subsequent steps, multiple univariate and multivariate 

techniques are performed. Conventionally, this step leads to metabolomic feature 

extraction, which removes outliers and irrelevant information and reduces data 

dimensionality. 

2.4.2 Chemometric methods 

One of the main aims of applying chemometric algorithms is to identify the 

relationship between chemo-metrically characterised objects. Thus, pattern 

recognition, classification and class modelling methods are used to pursue this scope.  

Pattern recognition methods depend on a priori knowledge of the system under study. 

Thus, having a series of objects that belong to different categories already known, it is 

necessary to establish a classification model that allows the classification of future 

unknown objects into one of the categories provided by the initial objects. Usually, the 

chemometric techniques could be divided into two main categories- univariate and 

multivariate. 

The main statical methods performed in this doctoral thesis to analyse and interpret 

the biological results will be described hereunder. 

2.4.2.1 Univariate statistic 

The univariate approach and multivariate analysis study variation and test the 

statistical significance of parameters and variables in metabolomic studies. The standard 

statistical tests applied in the univariate method are divided into parametric and non-

parametric tests.  

Parametric tests, such as Student’s t-test or ANOVA, assuming that normality is 

verified, seek to identify differences among two or more groups. Usually, the Student's 

t-test and the false discovery rate (FDR) are applied to determine significant differences 

(p < .05, q < 0.01) in metabolite expression and pathways between diseased and control 
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samples. In addition, they are used to show correlation and display significantly altered 

levels of possible biomarkers between groups [159]. The Kolmogorov-Smirnov normality 

test often confirms the two tests’ output. Usually, heatmaps based on Student’s t-test 

or ANOVA are performed for better visual interpretation to indicate each biomarker's 

contribution to group separation Figure 2-10. 

Figure 2-10. Schematic representation of heatmaps. 

Non-parametric tests, such as the Mann-Whitney U or Kruskal-Wallis tests, are 

applied when the data normality cannot be assumed. This test is usually used for 

metabolite peaks to find a significant difference between case and control (p-value 

<0.05), indicating changes in several metabolic pathways involved in the disease under 

study. In addition, in metabolomic studies, the Bonferroni correction is often applied to 

minimise the probability of at least one false positive in many metabolic features. Thus, 

for example, when searching for metabolic biomarkers for differentiation of 

diseased/controls, after Bonferroni correction, the defined significance level could 

reduce or confirm the initially suspicious metabolites [160].  

One main advantage of the univariate statistic is that it is easy to use and interpret. 

In addition, many problems could be directly solved by applying only the univariate 

statistic, such as finding disturbed metabolic patterns or the severity of the disease 

[161].  Therefore, many metabolomics studies obtained valuable knowledge about 

plasma biomarkers and potential therapeutic targets associated with infection by 
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applying the univariate approach to the problem. Furthermore, these findings serve as 

an essential resource for further research into the pathogenesis of the disease under 

study.  

However, high-dimensional data, so typically attributable to modern metabolomic 

studies, have placed the univariate approach slightly on the back burner. The so-called 

‘’rule of one’’, changing just one feature at a time, does not enable the visualisation of 

large-scale datasets. Moreover, considering the features independently does not yield 

satisfactory analytical results regarding data interpretability. 

2.4.2.2 Multivariate statistics  

Since the differences between groups are rarely known in advance, using multivariate 

techniques is essential to highlight these differences. Moreover, the multivariate 

approach considers that generated analytical datasets could be affected by substantial 

correlation among features, variable collinearity or interactions, thus revealing their 

relationship pattern.  

Many different multivariate methods have been described in the literature for data 

modelling. As mentioned before, one of the primary steps during multivariate analysis 

is extracting features from the obtained data set. Feature extraction methods can be 

divided into supervised methods (samples are allocated into pre-established classes) 

and unsupervised methods (no prior assumption is made on the samples).  

Due to the large number of features involved in the study that could correspond to 

spectral wavelengths or registered peak intensities, the analyst applies methods to 

reduce the dimensionality of features to produce a smaller number of variables with 

statistical significance. 

 This section provides an overview of the methods that were widely applied to 

perform this doctoral thesis, such as principal component analysis (PCA), selection of 

predictors, linear discriminant analysis, partial least squares-discriminant analysis (PLS-

DA), etc. [162–166]. A schematic representation of these methods is reported in Figure 

2-11. 
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Figure 2-11. Summary of the most applied multivariate technique in this doctoral thesis. 

2.4.2.2.1 Unsupervised methods  

PCA is one of the most widely applied unsupervised methods, based on decomposing 

the data matrix into principal components and generating plots of scores and loadings, 

respectively. The score vectors represent the projection of each sample. The loading 

vectors correspond to the individual contribution of each variable. The first principal 

component typically explains most of the data variance. The generated plots offer a 

quick insight into exploring the data, providing a preliminary global overview of the 

metabolomic dataset. In addition, the PCA method provides simultaneous detection of 

a broad range of features to detect trends, groups or outliers Figure 2-12 [167]. 

Moreover, PCA analysis is often used to confirm the analytical system’s index of stability 

and repeatability [9]. 

Sometimes, it is even used to suggest good instrumental precision and confirm 

correlation and similarities in the features [115]. PCA has been used in several studies 

to suggest or confirm good and satisfactory analytical results. PCA outputs are often 

applied for PLS-DA and OSC-PLS-DA models. 
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Figure 2-12: Example of the PCA score plot showing group segregation and sample 

outliers. 

When no apparent clustering is possible, hierarchical cluster analysis (HCA) could be 

helpful. Another unsupervised tool for data visualisation and clustering, based 

principally on the Euclidean or Mahalanobis distance, this method measures the degree 

of membership of each sample for each of the subgroups, providing dendrograms [168] 

Figure 2-13. In most cases, the dendrogram is constructed using Pearson’s correlation 

and average linkage algorithm to show a relationship between normal and diseased 

samples, thus, providing classification and differentiations between the patient groups 

[169]. The tree-like structure usually indicates which samples are joined in which cluster 

as a function of the distance between them. The major disadvantage is the difficulty 

interpreting data, especially when there are too many samples or variables.  
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Figure 2-13: Example of how can appear hierarchical clustering analysis with 
representative groups clustering. 

Usually, to interpret classification results, the receiver operating curves (ROC) 

validate the discriminating power of the compounds responsible for each classification. 

ROC curve analysis is widely considered the most objective and statistically valid method 

for biomarker performance evaluation, searching for a classifier that can maintain a high 

rate of true positives and a low rate of false positives. Thus, the area under the curve 

(AUC) with values (>70, p-value < 0.05) allowed the evaluation of the sensitivity and 

specificity of each compound to be considered as a relevant biomarker Figure 2-14. The 

higher the AUC value, the better the classification performance of the features in the 

specific classification. In addition, this method is helpful if it should be decided between 

different parts, thus, better performance and prediction. 
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Figure 2-14: Schematic representation of AUC curves. The AUC lines represent the 
performance of possible biomarker candidates in binary classification. The pink traced 
line represents random guessing classifier. On the contrary, the green line indicates the 
perfect classifier with zero error rates, namely a 100% rate of true positive and a 0% rate 
of false positive. In most cases, all biomarkers are placed somewhere between these 
two lines. Therefore, the ‘’perfect’’ biomarker should be placed close to the left-high 
corner, procuring more predictive power. 

2.4.2.2.1.1 Variable selection 

In this doctoral thesis, all metabolic profiling studies utilised the untargeted strategy 

for biomarkers detection, evaluating potential metabolites as best as possible without 

prior knowledge. Thus, the obtained data sets were characterised by containing an 

excessive amount of irrelevant information, specifically irrelevant variables, that could 

probably deteriorate and confuse the subsequent analyses. Therefore, a chemometric 

step, including variable selection, is imperative in these studies. Thus, variable selection 

methods perform contemporary: variable elimination to avoid overfitting and extracting 

important features from the data set. Numerous variable selection methods are 

proposed in the literature and are widely applied during the analysis using different 

analytical techniques. Two central problems must be considered: which criterion to use 

for optimisation of the number of variables; and which is the best strategy to operate 

according to the aim of the study [170]. Is the best method to search for the best subset 

by comparing all possible models through forward selection to find the single best 
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variable? Otherwise, is the strategy based on backward elimination to delete 

uninteresting variables one at a time?   

A stepwise orthogonalisation of predictors (SELECT) method could be applied to the 

whole spectra dataset so that the information responsible for the successful 

discrimination between categories would be compressed into reduced variables subset, 

evaluating disease-specific signature/features/bands in samples. To assess significant 

metabolomic signatures in analysed samples, the SELECT method was widely applied in 

this doctoral thesis to develop a reliable classification that could discriminate between 

patients in different stages of disease progression.  

Searching for the optimal combinations of variables to overcome very optimistic 

results from a prediction standpoint is a good practice for validating the predictors with 

an independent dataset. For the same purpose, variable selection methods are 

combined or followed through other strategies, which shall be discussed below.  

2.4.2.2.2 Supervised techniques  

While unsupervised techniques do not a priori support data knowledge, supervised 

methods generally do to predict, discriminate and classify new data. Generally, the 

combination of PCA and LDA has often been applied in plasma metabolomic studies 

[120].  

Much like PCA, linear discriminant analysis (LDA) is a feature reduction method 

which maximises the ratio of between-class variance and minimises the percentage of 

within-class variance based on the Mahalanobis distance [172] or instead removes 

redundant and dependent features by transforming them from a higher dimensional 

space to a space with lower dimensions [173]. The terms ‘’classification’’ or 

‘’discrimination’’ are widely applied for biomarker discovery in metabolomics studies. 

Thus, the LDA approach is used to identify a linear transformation that discriminates 

between different classes in the data set. LDA methods are broadly applied for patient 

stratification and differentiation, different biochemical signatures based on the degree 

of disease [174].  

SIMCA (Soft independent modelling of class analogies) is a type of multivariate 

analysis that combines PCA and Discriminant analysis to classify data into different 

groups based on their properties [175,176]. Thus, classification methods such as LDA are 
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based on developing classification rules and delimiters between classes, whereas in class 

models, significance limits are built for the specified classes. These limits define the 

membership parameters for each class; thus, an unknown sample can be classified as 

not belonging to any defined categories because it is not included in any of its class 

spaces. Coomans’s plots are built in SIMCA to better visualise group differentiation 

(Figure 2-15). 

 

Figure 2-15. The two axes represent the first two principal components of the data. Each 
point on the plot represents an observation in the data set. The colour or shape of the 
point is used to indicate which group the observation belongs to. The location of a point 
on the plot indicates its similarity to other observations in the data set. 

Another method based on the Euclidean and Mahalanobis distance is the K nearest 

neighbours (KNN) method. This method is much simpler than the one described above. 

A new sample would be classified by calculating the distance from each sampling 

training set; once a K nearest one is found, the unknown sample ranked in the group 

with the most members amongst these neighbours. This method has the advantage of 

not assuming the groups’ shapes [177]. 

In terms of supervised methods, one of the most widely applied in chemometrics is 

Partial Least Squares (PLS). Similar in concept to PCA, this multivariate linear regression 

method finds the relations between predictors, X, and responses containing diverse 

sources of variation (data X and response Y), by maximising the covariance of their latent 
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variables, helping to understand which variables are more correlated to the response. 

PLS is a simple and flexible approach because it can handle incomplete and noisy data 

with many variables (and observations). Therefore, PLS regression and LDA make it an 

even more robust approach for analysing data for complicated problems such as 

biomarker discovery. Partial least squares discriminant analysis (PLS-DA) is another well-

established chemometric method that projects the high dimensional data into a low 

dimensional space intending to capture the most data variance. Still, in this case, the 

projection direction is only computed on the X data without referring to the 

experimental condition Y [171]. Therefore, it should not be seen as a regression method 

but as a classification tool [178]. One advantage of PLS-DA lies in its ability to handle 

highly collinear data. Moreover, PLS-DA can provide excellent insights into the cause of 

discrimination by checking the behaviour of variables. Thus, while the separation 

between two groups could not be apparent in PCA plots, PLS-DA models are usually built 

to obtain maximum separation between the groups, revealing a significant cluster of 

metabolites as discriminative markers of patient status [8]. Therefore, Q2 is an estimate 

of the model’s predictive ability and is calculated via cross-validation (CV). Therefore, 

good predictions will have a high Q2. However, it is possible to have a negative Q2, 

meaning your model is not predictive or overfitted. There are two critical measures in 

PLS-DA for biomarker identification: variable importance in projection (VIP) and the 

weighted sum of absolute regression coefficients. 

The recent modification of PLS-DA is the Orthogonal partial least squares-

discriminant analysis (OPLS-DA) method, another multivariate linear method of choice 

in blood metabolomics. It provides a better interpretation of relevant variables than PLS 

by decomposing the data into so-called ‘’predictive’’ information related to the response 

Y. Compared to PLS-DA, it explains which variables have the most excellent 

discriminatory power [84]. Therefore, it is often applied to identify metabolic 

biomarkers correlated with a continuous variable. Usually, Z-plots that combine the 

covariance and correlation loading profiles are used to visualise the variable influence 

in the OPLS-DA model.  This corresponds to combining the contribution, or magnitude 

(covariance), with the effect and reliability (correlation) for the model variables 

concerning model component scores. 
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However, although PCA and OPLSDA are the gold standards for binary classification, 

these discriminant analyses are known to generate models that might overfit the data. 

On the other hand, machine learning approaches are more suited for analysing 

metabolomics data. Thus, a random forest (RF) is a machine-learning approach to select 

the best-performing features/compounds per pairwise comparison based on the lowest 

mean values for minimum depths in the trees (no. of trees = 100/1000/2000/5000) and 

the frequencies found in trees [179]. Minimum depth indicates how early in decision 

trees a possible biomarker is involved. Thus lower the minimum depth value, the better 

it is. On the contrary, higher frequencies at lower nodes indicate that some 

features/compounds effectively classify the different sample groups. 

Heatmaps are used to visualise each technique's classification ability to visually 

visualise the data table. Thus, each coloured cell on the map corresponds to a 

concentration value in the data matrix. Usually, samples are displayed in rows and 

features/compounds in columns. This graphical method is often applied in liquid 

chromatography metabolomic studies analysis to identify samples or features that are 

unusually high/low. 

2.4.2.2.3 Validation  

However, one more step is required to ensure the statistical performance of 

chemometric models, namely validation. This procedure is necessary to obtain a 

measure of the error, specifically to evaluate the prediction error and the prediction 

power of the model. The proof of the model indicates the predictive ability of the model 

to classify samples that have not been used in the construction of the model. The most 

frequently used method creates two sample subsets: the training and the evaluation or 

test set. The regression model would be developed with the objects in the training set. 

The prediction error is evaluated on the things of the test set as the standard deviation 

of the prediction error on the test set [150]. Thus, once plasma metabolic patterns with 

potentially favourable characteristics to distinguish patient profiles have been found, 

further statistical validation is highly recommended. Considering that metabolomic 

studies often include a reduced number of samples, when compared with the number 

of variables, testing the classification ability of the model becomes complicated. An 

appropriate validation strategy should be applied to metabolomic data to avoid the 
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introduction of bias, generally based on cross-validation procedures, such as full cross-

validation or leave-one-out cross-validation (LOOCV). In this last case, many models are 

built as samples are analysed; therefore, many interactions will be generated, allowing 

us to obtain models with more extraordinary predictive ability but with higher 

processing time. The level of validation and the validation method could confirm the 

results obtained and enable more in-depth large-scale research at a later stage. 

Furthermore, the proof of the model’s classification ability could help cancel the clinical 

acceptance boundaries.  
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3 CHAPTER 3. METHODOLOGY  

3.1 CHEMICALS AND REAGENTS 

 Ultrapure water, used to prepare all the aqueous solutions, was obtained from a 

Milli-Q system (Milipore, Bedford, MA, USA). LC–MS grade acetonitrile (ACN), isopropyl 

alcohol (IPA), ammonium formate, high-performance liquid chromatography (HPLC) 

grade methanol and methyl tert-butyl ether (MTBE) were supplied by Aldrich Chemie 

(Steinheim, Germany). 

3.2 METHODS OF SAMPLE PREPARATION 

3.2.1 Sample collection and storage 

3.2.1.1 Samples of patients with Parkinson, Alzheimer and Metabolic syndrome 

Plasma samples were provided by la Rioja Blood Bank, after the submission for 

diagnostic testing in the respective Department in the Centre for Biological Research of 

La Rioja (CIBIR) in Spain. Venous blood samples were drawn via antecubital 

venepuncture from each subject in a sitting position. Becton Dickinson (BD) Vacutainer 

plastic blood collection tubes were used, with clot activator and K2EDTA for serum and 

plasma separation, respectively. Blood was processed to obtain serum and plasma by 

centrifugation at 2200 rpm for 15 min at 4·C. As soon as the samples were delivered to 

the laboratory, they were frozen and stored at -80°C until further use. 

3.2.1.2 Samples of patients with Amyotrophic lateral sclerosis 

The blood samples from Niguarda Ca’Granda Hospital in Milan (Italy) were obtained 

after first centrifuging and each Pax tube containing the blood sample for 10 minutes at 

3000-5000 rpm and incubated for 2 hours at room temperature, following the 

recommendations of the commercial kit [1]. The supernatant samples recovered from 

this first centrifugation were used to perform the analysis in this study. In addition, these 

samples were preserved at -80 °C for further use. 
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3.2.2 Lipid extraction of plasma samples 

3.2.2.1 MTBE-US-assisted lipid extraction method 

The samples left to defrost in the fridge for 8 hours by night was submitted to the 

extraction the following day. 

Lipid extraction was performed according to a protocol tested and optimised in our 

research group [2]. According to this MTBE-US-assisted lipid extraction method, 5 μL of 

Milli-Q water was added to a 10 μL aliquot of human blood plasma. Then, 20 μL of 

methanol was added to precipitate proteins by vortex-mixing for 2 min. Then, 250 μl de 

MTBE was added and dispersed by immersing the mixture in an ultrasonic water bath 

supplied by ATU Ultrasonidos (Valencia, Spain). The ultrasound frequency and power 

were 40 kHz and 100 W, respectively. The temperature was set at 15·C, and the time 

was adjusted to 30 min. Once USAE was performed, 25 μL of MilliQ water was added to 

the mixture. The organic phase was separated by centrifugation at 3000 rpm for 10 min 

at 10 ·C in an Eppendorf 5403 Refrigerated Centrifuge (Hettich, Tuttlingen, Germany).  

The lipid extracts in the upper phase were diluted five times with injection solvent 

before being collected and poured into an autosampler vial.  

To check the methodology’s performance and test its precision, quality samples (QC) 

were processed in the same manner as the actual samples and were inserted regularly 

throughout the analytical run.  

3.3 ANALYTICAL METHODS 

3.3.1 Analytical instruments 

3.3.1.1 Analysis of samples by FT-IR  

The ABB FT-IR MB3000 Fourier transform infrared spectrophotometer (Zurich, 

Switzerland) was used to obtain the metabolic profiles of plasma samples of patients 

with Parkinson’s, Alzheimer’s disorders and Metabolic syndrome. 

The instrumental components of the ABB FT-IR MB3000 spectrophotometer are as 

follows in Figure 3-1. 
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The removable cell for liquid samples from PerkinElmerSpecac (Cell Ommi, Specac 

Ltd., United Kingdom) used to obtain the spectra consists of two CaF2 windows 

separated by a 50-micron Mylar spacer, which allows fixing the optical path. 

Image of the equipment and instrumentation used: a) FT-IR spectrophotometer 

MB3000. b) Specacr liquid cell. c) Components of the Specac liquid cell. 

 

Figure 3-1. Principal parts of the infrared spectroscopy used for the analysis: a) FT-IR 

spectrophotometer MB3000. b) Specac liquid cell. c) Components of the Specac liquid 

cell. 

 

The procedure carried out for obtaining the metabolic profiles is as follows: 

1. Open the N2 source. This source must remain open while performing 

spectroscopic measurements to purge the equipment, eliminating atmospheric 

water vapour and CO2. 

2. Turn on the Horizon MBTM program and set the acquisition parameters for the 

method (Table 4.3.1). The following measurements were taken at a temperature 

of 23.0 ± 1.0°C. 

3. Perform a reference by placing the cuvette with a Milli-Q water sample. The 

reference should be performed before each sample measurement to check that 

the measurement conditions are stable and that the data obtained are not 

disturbed by temperature or other factors. 
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4. Disassemble the Specac cuvette and add 20 μL of the plasma sample between 

the CaF2 windows. Each sample should be measured in triplicate to minimise 

possible experimental errors. 

5. Record the IR spectrum of the analysed sample between 400-4000 cm-1 in case 

of analysis of samples relative to Metabolic syndrome and Parkinson’s disease 

and 1000-1500cm-1 in case of ALS samples. To perform a new spectrum, it is 

necessary to disassemble the PerkinElmer cuvette and clean both the CaF2 

windows and the Mylar spacer with distilled water. These components should 

be dried using tissue paper. 

During the analysis, it was necessary to use control samples (QC) to check the 

performance and reproducibility of the methodology, inserting them regularly during 

the analyses. The control samples were processed the same way as the real samples. 

3.3.1.1.1 ATR-FTIR spectrometer 

A compact Spectrum Two FT-IR spectrometer was used for the integrative analysis of 

ALS blood samples. The same procedure of the analytical flow was followed as described 

above for the ABB instrument, except that this instrument does not require an N2 

source, which is the main advantage in everyday analysis and portability (Figure 3-2).  

Moreover, the moving platform allowed the analyses on the diamond crystal for 

spectral acquisition. Thus, 20 μL volume was deposited onto the ATR crystal. Therefore, 

ATR-FTIR spectra were collected between 1500-1000 cm-1 with 16 scans and a spectral 

resolution of 2 nm. The samples were randomised to minimise other influences, such as 

noise and instrumental variability. The spectra for each sample were collected in 

triplicate. The ATR crystal was cleaned with distilled water, and a new background 

spectrum was acquired to take into account ambient changes before the next sampling.  
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Figure 3-2. Spectrum Two™ spectrometer image: a) General representation, b) ATR 
accessorised. 

 

3.3.1.2 LC conditions and experiments 

3.3.1.2.1 Liquid Chromatography-Mass Spectrometry 

To determine plasma lipid profiles, a Waters Acquity UPLC chromatography system 

(Milford, MA, USA), equipped with a Waters Acquity HSS T3 100 × 2.1 (i.d.) mm 1.8 μm 

particle size column and a Waters VanGuard precolumn of the same material, coupled 

to a Microtof-Q (Q-TOF) mass spectrometer (Bruker Daltonik GmbH, Germany) with an 

electrospray interface (ESI) was used (Figure 3-3). To ensure the quality and stability of 

samples, the temperature of the autosampler was maintained at 5°C, and the column at 

55°C. A mass spectrometer was operated in both positive and negative modes. 

Chromatographic and mass spectrometry data were acquired using Data Analysis 

software Version 4.0 (Bruker Daltonik GmbH, Germany). 2 μL samples were injected. 

Elution was performed using the gradient mobile consisting of phase A (acetonitrile–

water mixture (60:40, v/v) with 10 mM ammonium formate ) and phase B (acetonitrile–

isopropanol mixture (10:90, v/v) with 10 mM ammonium formate). UPLC separation was 

performed using a linear gradient that increased from 40% to 100% B within 10 min and 

was held at 100% B for an additional 2 min. Finally, it increased from 0% to 60% A within 

3.5 min. The total run time was 15.5 min. The flow rate was 0.4 mL*min-1, and the 

injection volume was 10 μL. 
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Mass spectrometry data were acquired using a Waters Synapt XS HDMS (Waters 

Corp, Milford, USA) set to collect the data in continuum format using electrospray 

ionisation (ESI) in positive ionisation mode (ESI+) and negative ionisation mode (ESI−), 

over the mass range of m/z 50–2000. The capillary and sampling cone were set to 1.75 

kV and 40 V, respectively, with the source temperature set to 120 °C and the desolvation 

temperature to 500 °C. Gas flow rates were set at 800 L/h for the desolvation gas and 

50 L/h for the cone gas, and the nebuliser gas was fixed at 6 bars. The mass spectrometer 

was set to acquire in resolution mode with a scan time of 0.4 s. Fragment ion information 

was acquired using a collision energy ramp from 20 to 50 V.  

Lockmass correction was achieved by infusing leucine enkephalin at 10 µL/min 

through a lock spray probe and acquired every 30 s; for positive mode, [M + H]+ = 

556.2771, and negative mode, [M − H]− = 554.2615. The data were collected using 

MassLynx V 4.2 (Waters Corp., Milford, USA). 

The diseased samples and controls were alternated concerning run, avoiding batch 

effect. Moreover, QC samples were inserted regularly throughout the analytical run 

(after every 20 real samples) to check the methodology's performance and test its 

precision. 

 

Figure 3-3. UPLC-MS instrument coupled to Q/TOF mass analyser. 
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3.3.1.2.2 LC-MS data analysis 

The acquired raw mass data were imported to Progenesis QI software (Waters 

Corporation, Milford, MA, USA) for peak detection, alignment, retention time correction 

and normalisation. 

Repeatability and intermediate precision were determined using quality-control 

samples (QCs) to check the precision of the method by computing the Relative Standard 

Deviation (RSD) or Coefficient of Variation (CV) of intra-day and inter-day analyses. 

MS-derived lipid identification was based on the mass match of lipids with available 

online databases: the Human Metabolome Data Base (HMDB) (http://hmdb.ca)[3,4], 

LIPID MAPS (http://lipidMAPS.org) [5], METLIN (http://metlin.scripps.edu) and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) (http://www.genome.jp/kegg/). These 

databases are complementary to each other, in such a way that it is strongly 

recommended the combined use of all of them to compile a list of potential hits as 

exhaustive as possible with identifications of a high probability of being correct. Lipid 

metabolites were manually identified based on their exact masses, specific fragment 

and/or neutral losses [6]. The allowable mass error in database searching was adjusted 

to 5 ppm for the attribution of the precursor ion. Thus, an attempted assignment of 

possible features to specific compounds was performed.  

3.4 SOFTWARE AND PROGRAMMES FOR DATA ANALYSIS 

The main informatics software used to perform data analysis is summarised. 

-The Unscrambler v 11.0 AspenTech Ltd (Berkshire, United Kingdom); 

- V-PARVUS 2011: An Extendable Package of Programs for Data Explorative Analysis, 

Classification and Regression Analysis. Dipartimento di Chimica e Tecnologie 

Farmaceutiche ed Alimentari, Genova, Italia; 

- MATLAB, High-performance numeric computation and visualization software, 

Version 6.5 for Windows, The MathWorks, Massachusetts, United States; 

-The R Project for Statistical Computing, with the implementation of CAMERA and  

XCMS. Software Open Access; 

-Galaxy server (http://www.usegalaxy.org ); 

http://lipidmaps.org/
http://www.usegalaxy.org/
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-Progenesis™ QI software undertakes the spectral alignment, consistent peak picking 

across all runs, normalisation of the total compound abundance as well as compound 

quantification; 

-The generated matrices were subsequently analyzed using MetaboAnalyst 5.0 

(http://www.metaboanalyst.ca/), a comprehensive free and publicly accessible 

platform for metabolomics analysis that allows for applying univariate and multivariate 

methods.  
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Abstract 

In this chapter, the potential of Fourier-transform infrared spectroscopy combined with 

chemometric tools to detect spectra markers indicative of metabolic syndrome was 

studied. Considering that MetS is a complex of interrelated risk factors for cardiovascular 

disease and diabetes, new point of-care diagnostics tools are highly requested to 

provide results quickly. Around 105 plasma samples were collected and divided into two 

groups according to the presence of at least three of the five clinical parameters used 

for MetS diagnosis. A dual classification approach was studied based on selecting the 

most important spectral variables and classification methods, linear discriminant 

analysis (LDA) and SIMCA class modelling, respectively. The same classification methods 

were applied to measured clinical parameters at our disposal. Thus, the classification’s 

performance of reduced spectra fingerprints and measured clinical parameters were 

compared. Both approaches achieved excellent discrimination results among groups, 

providing almost 100% accuracy. Nevertheless, SIMCA class modelling showed higher 

classification performance between MetS and no MetS on IR-reduced variables 

compared to clinical ones. Finally, the potential of this method to be used as a 

supportive diagnostic or screening tool in clinical routine. was discussed.  
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Resumen 

En este capítulo se estudió el potencial de la espectroscopía infrarroja por transformada de 

Fourier combinada con herramientas quimiométricas para detectar marcadores espectrales 

indicativos del síndrome metabólico. Teniendo en cuenta que el MetS es un conjunto de factores 

de riesgo interrelacionados para enfermedades cardiovasculares y diabetes, se necesitan nuevas 

herramientas de diagnóstico en el punto de atención para proporcionar resultados 

rápidamente. Se recolectaron alrededor de 105 muestras de plasma y se dividieron en dos 

grupos según la presencia de al menos tres de los cinco parámetros clínicos utilizados para el 

diagnóstico del MetS. Se estudió un enfoque de clasificación dual basado en la selección de las 

variables espectrales más importantes y los métodos de clasificación, análisis discriminante 

lineal (ADL) y modelado de clase SIMCA, respectivamente. Se aplicaron los mismos métodos de 

clasificación a los parámetros clínicos medidos a nuestra disposición. Por lo tanto, se comparó 

el rendimiento de la clasificación de huellas dactilares de espectros reducidos y parámetros 

clínicos medidos. Ambos enfoques lograron excelentes resultados de discriminación entre 

grupos, proporcionando una precisión cercana al 100%. Sin embargo, el modelado de clase 

SIMCA mostró un mayor rendimiento de clasificación entre el MetS y no MetS en variables IR 

reducidas en comparación con las clínicas. Finalmente, se discutió el potencial de este método 

para ser utilizado como una herramienta de diagnóstico o detección de apoyo en la práctica 

clínica habitual. 
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4 CHAPTER 4. METABOLIC SYNDROME 

4.1 DUAL CLASSIFICATION APPROACH FOR THE RAPID DISCRIMINATION OF METABOLIC 

SYNDROME BY FTIR 

4.1.1 Introduction 

The high prevalence of non-communicable diseases (NCD) in adults is reflected in 

increased costs for public health systems worldwide [1]. Among these NCD, metabolic 

syndrome (MetS) plays a significant role. MetS is often associated with an increased risk 

of diabetes and cardiovascular disease, resulting in increased incidence of morbidity and 

mortality and reduced quality of life [2–6]. Thus, the commensurate prevalence of 

metabolic syndrome burdens national health expenditure, representing a significant 

socio-economic problem, particularly in low- and middle-income countries [7–10]. 

However, MetS is a multifactorial disorder accompanied by conflicting opinions on its 

definition [11–13]. In particular, many different definitions have been proposed to 

describe MetS in adults. The main discrepancies were associated with inclusion and 

exclusion criteria adopted according to the World Health Organization (WHO), National 

Cholesterol Education Program (NCEP), Adult Treatment Panel III (ATPIII), and 

International Diabetes Federation (IDF). Finally, in 2009, the definition for metabolic 

syndrome was harmonised [14]: MetS is a disease formed by metabolic and vascular 

abnormalities, namely insulin resistance (IR), visceral adiposity, atherogenic 

dyslipidaemia, and oxidative and endothelial dysfunction. These risk factors easily 

predispose hyperglycaemia and hypertension, atherosclerotic vascular diseases and 

viral infection [15–18]. 

Given the complex and intertwined nature of MetS, it would be utopian to think that 

a single biomarker could define it unambiguously. Thus, parameters concerned around 

central obesity (waist circumference (WC)), hypertension (blood pressure), atherogenic 

dyslipidaemia (small low-density lipoprotein (LDL) and levels of high-density lipoprotein 

(HDL) cholesterol), and insulin resistance (fasting glucose levels) are usually measured 

to evaluate MetS diagnosis [19]. Due to the heterogeneity of these factors, people 

affected by metabolic syndrome are three times more likely to suffer acute myocardial 
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infarction, cerebrovascular events, diabetes, or stroke. In addition, they have higher 

mortality rates [20]. Besides the economic impact, misdiagnosis or tardive diagnosis 

could lead not only to inefficient treatment outcomes but even to significant 

dysfunctions such as cancer [21,22]. Thus, early and proper diagnosis plays a crucial role 

in delaying the pathology’s onset or progression as much as possible and improving a 

patient’s condition. 

Today, MetS diagnosis is based on several steps such as measuring metabolic markers 

of insulin resistance and other indices of metabolic syndrome (triglycerides, HDL 

cholesterol levels, and blood glucose) that are obtainable from routine clinical 

biochemistry laboratories, whereas blood pressure is measured in primary care [23]. The 

collection and analysis of samples also entails a waiting time for laboratory results and 

additional time for a new medical consultation. Although the proposed definition of 

MetS shares some common features, the clinical diagnosis lacks standardisation. On that 

basis, it was proposed that individuals showing a combination of any three out of these 

five simple clinical criteria were likely to be characterised by insulin resistance. 

Prospective analyses have also shown that any combination of these factors was 

predictive of an increased risk of both type 2 diabetes and cardiovascular disease. First, 

it is still challenging to identify a unified criteria for MetS applicable across all ethnicities. 

In addition, the contribution of each parameter seems to have different importance 

based on the evaluation adopted in each clinical environment (e.g., diagnosis focussed 

on glucose tolerance instead of obesity cut-offs). Moreover, there is variation in the cut-

off values of diagnostic inclusion criteria (≥140/90 mmHg according to WHO vs. ≥130/85 

mmHg according to ATP III for blood pressure). The application of MetS diagnosis in 

clinical practice could also be compromised, since most patient registries have missing 

data, limiting a study’s accuracy or leading to false-positive results. In addition, 

measurements such as WC, one of the predominant parameters for defining MetS, are 

not always feasible in patients because the diagnosis can often be limited by the 

patient’s inability to perform a complete physical examination. 

Given these perspectives, the need for standardised clinical diagnostic tools and 

protocols becomes imperative in the prevention and diagnosis of MetS. For this reason, 

analysing global metabolic profiles instead of disparate clinical measurements could be 
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essential in shedding light on MetS disarrangements. A multifactorial and complex 

pathology such as MetS seems to require an approach from a holistic functional 

perspective, so an analysis of metabolic profiles reflecting the global clinical status of a 

patient could represent a suitable alternative. 

By now, metabolomics plays a key role as a powerful analytical tool that has been 

widely applied to investigate plenty of disorders and disarrangements [24–26]. 

Metabolomics analysis has the potential to discover biomarkers and allow for the 

detection of a wide range of metabolites. In recent years, there has been a great interest 

in extracting biomarkers from biofluids and, considering that blood is a biofluid 

containing numerous valuable metabolic information, it seems that it in particular, it 

appropriately reflects metabolic changes and disarrangements during disease initiation 

or progression [27–29]. In this context, techniques based on vibrational spectroscopy 

are particularly suitable as sample preparation is simple, non-invasive, rapid, and low-

cost [30]. Therefore, the Fourier transformed infrared spectroscopy (FTIR) technique has 

been established as a reliable analytical tool in metabolomic-based studies [31–36]. 

Moreover, another significant advantage resides in the fact that FTIR is ideally suitable 

for acquose matrices such as blood [37,38]; the instrument requires the collection of 

only one blood sample, with little or almost null pre-treatment. In this study, we 

proposed an FTIR-based method that investigates many components at a time, which 

are registered as spectral signatures. The development of a chemometric strategy 

capable of extrapolating the most significant infrared (IR) signatures plays a crucial role 

in this study, since each spectrum is unique for every patient and reflects their metabolic 

status. Non-targeted metabolomic studies, such as the one presented here, aim to 

extract the metabolic signatures instead of individual biomarkers with limited potential, 

and this permits the classification of patients according to their molecular patterns, 

reflecting clinical/pathological conditions such as MetS or no MetS. 

This method could greatly support clinicians, capturing the complexity of the MetS 

metabolic profile when the clinical indicators are missing or lacking sufficient 

discriminative power, revealing the globality of physiological disturbances. We do not 

want to underestimate the importance of clinical diagnosis at any time. Still, our main 
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aim is to propose an alternative analytical strategy that could be of great diagnostic 

relevance and support, limiting the time and cost of clinical measurements. 

4.1.2  Methods 

4.1.2.1  Study Population 

A total of 105 plasma samples from anonymous donors were recruited from 

Infectious Disease Area, Center for Biomedical Research of La Rioja (Logroño,Spain). This 

study was approved by the Committee for Ethics in Drug Research in La Rioja (CEImLAR) 

(23 April 2013, reference number 121) and a written informed consent was achieved 

from all participants. The patients were evaluated by the NCEP-ATP-III scale and, if 

eligible, were assigned to a metabolic syndrome category. MetS was defined as the 

concomitant presence of at least three of the following risk factors: elevated TGL (≥150 

mg/dL), low concentrations of the fraction HDL cholesterol (<50 levels mg/dL in women 

or <40 mg/dL levels in men), increased WC (≥88 cm in women or ≥102 cm in men), 

elevated blood pressure (>130/85 mmHg), and elevated fasting glucose (>110 mg/dL or 

diabetes) [39]. Thus, the patients were divided into two groups by the criteria of MetS: 

19 patients tested as MetS positive and 86 as MetS negative. The patients enrolled in 

this study were also characterised by the presence of viral load through serological 

evidence of HIV or co-infection of HIV/HCV. A correct distribution between patients with 

and without infection in both categories has been ensured to not introduce bias in future 

models developed for diagnosing MetS. 

4.1.2.2 Sample Collection 

Once drawn, the venous blood samples were centrifuged at 2200 g for 15 min at 4 °C 

and the obtained plasma were transferred into a clean Eppendorf tube. Aliquots of 200 

μL of each sample were stored at −80 °C until the day of the analysis. Before FTIR 

measurements, plasma samples were defrosted during the night according to the 

optimised ultrasound-based protocol for lipidomic analyses developed in our research 

group [40]. 
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4.1.3 Instrumentation 

FTIR spectroscopy measurements were performed by a Spectrum-One ABB Miracle 

Type MB3000 FT-IR Spectrophotometer as described in Chapter 3.3.1 Analysis of 

samples by FT-IR. 

4.1.4  Data Analysis 

After data acquisition, the processing and computational analysis of raw metabolic 

data was performed using Unscrambler (version X 11.0, Camo ASA, Oslo, Norway), V-

Parvus (version PARVUS2011, Michele Forina, Genoa, Italy), and Matlab (MATLAB 9.4 

R2018a). Two different regions of the mid-IR spectrum were analysed: the first region 

examined was the biochemical “fingerprint region” at 1500–1050 cm−1, and the second 

was a higher region at 2950–2700 cm−1. Remaining wavenumber ranges, as they were 

affected by signal saturation effects caused mainly by strong water absorptions or noise, 

were removed, and not considered for further analysis. Given the high dimensionality 

of biological spectral data, many disturbing factors influence the spectral data 

acquisition, such as random noise, baseline distortions, or light scattering. Thus, the pre-

processing step is imperative in analysis to reduce these factors. To compensate for 

instrumental artefacts and sample to sample variations, different pre-processing 

methods were evaluated individually or in combination to minimise the adulterant-

unrelated variability, namely derivatives (e.g., Savitzky–Golay (S–G) first and second 

derivatives), standard normal variate (SNV), and extended multiplicative scatter 

correction (EMSC). Thus, better resolution of overlapping peaks and decreased scatter 

effects were ensured after applying the combination (S–G) smoothing and SNV. 

The entire data set was split into two independent subsets to develop and validate 

the classifications proposed: a training set with 95 samples (used to optimise and 

develop the classification rules and models) and a test set with ten samples (never used 

in the construction of the classification but to evaluate their actual predictive ability). 

The test set used was the same for all methods applied and classifications developed. 

As a result, the smoothed and normalised output tables were always centred before 

additional multivariate analysis and classification algorithms. 
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4.1.5 Results and Discussion 

After careful pre-processing, FTIR measurements were submitted for further 

multivariate analysis. Thus, five measured clinical variables and a total of 838 spectra 

variables over the wavelength ranges of 1583–1050 cm−1 and 2973–2700 cm−1 collected 

from 105 patients were included. The two main categories of this study were patients 

with and without metabolic syndrome, i.e., MetS and no MetS, respectively. 

4.1.5.1 Descriptive Statistics 

Herein, an analysis was performed based on the distribution of five clinical 

parameters. It should be noted that one of the most critical clinical measurements, waist 

circumference, was not included in this study because most patients had missing data 

in the clinical register. Therefore, only parameters that were available for all patients 

have been used for the further comparative classification step. Thus, the descriptive 

statistics were calculated to analyse the distribution of clinical data in a box and whisker 

plot (Figure 4-1). The plot shows that TGL values seem to have more influence and 

variability between the two categories of patients; indeed, MetS patients have 

significantly higher values ranging from a minimum of 33 to 338 (mg/dL). The general 

distribution trend indicates that MetS patients also have slightly higher diastolic and 

systolic blood pressure values and glucose levels, whereas HDL values are lower, ranging 

from 25 to 95 (mg/dL). Table 4-1 shows the ranges of the collected values with the 

respective medians between the two categories. 
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Figure 4-1. Box and whisker plot showing the distribution of clinical values levels in 
patients with MetS and no MetS. The line located in the middle of the box represents 
the median and is used to better visualise the differences between clinical parameters: 
triglycerides (TGL) levels are displayed in orange (◼); high density lipoprotein (HDL) in 
violet (◼); systolic pressure (SP) in yellow (◼); diastolic pressure (DP) in green (◼); and 
glucose (GLU) in blue (◼). 
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Table 4-1. The distribution of the clinically measured parameters in MetS and no MetS 
patients expressed in mg/dL and in mmHg. 

 MetS No MetS 

Clinical Parameters Max Min Mean Max Min Mean 

Systolic blood pressure 174 
12

0 
136 178 94 126 

Diastolic blood pressure 109 75 87 115 61 79 

Triglycerides 338 88 242 215 33 109 

HDL 58 25 37 95 29 55 

Glucose 164 82 114 123 63 91 

 

4.1.5.2 Exploratory Analysis with PCA 

An unsupervised pattern recognition method based on principal component analysis 

(PCA) was performed for the initial data overview and to investigate any possible 

clustering of samples based on five collected clinical parameters and 838 spectral 

variables, respectively. 

The PCA score plot of clinical parameters, with 50.46% of explained variance by PC1, 

displays evident clustering according to known categories, delimitated by the parallel to 

the bisector of the second quadrant (Figure 4-2). Whereas PCA performed on pre-

treated IR spectra accounted for 83.12% of explained variability on the PC1, evidenced 

by very subtle clustering between known categories (Figure 4-3). 
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Figure 4-2. Scores for the plasma samples on the first two principal components 
explaining the variability in the dataset of five measured clinal parameters. The samples 
are labelled according to their specific pathology: no MetS (◼), MetS (◼), and external 
test samples (◼). 

 

 

Figure 4-3. Scores for the plasma samples on the first two principal components 
explaining the variability in the IR spectral dataset. The samples are labelled according 
to their specific pathology: no MetS (◼), MetS (◼), and external test samples (◼). 



 

96 
 

In both cases, the first PCs explained most of the data’s variability. The distribution 

of samples in principal component space suggests that it only seems possible to address 

subsequent, direct discrimination in the case of analysis of clinical parameters. Thus, 

parameters such as TGL and GLU majorly contributed to the segregation of no MetS 

from MetS and the values of HDL contributed to the separation of MetS from no MetS, 

as was shown in preliminary analysis by descriptive statistics. No evident clustering 

among the two main categories was observed performing PCA on spectral variables; 

only a few outliers were determined and excluded from further analysis. The high 

degree of overlapping features among the two classes was expected, as most blood 

components are common in all individuals. This also indicates the need to perform a 

selection of relevant spectral variables, closely related to clinicopathological parameters 

of prognostic importance in MetS. Therefore, other chemometric strategies were used 

to investigate and highlight metabolomic differences in metabolic syndrome using IR 

spectra. 

4.1.5.3  Supervised Techniques 

The selection of variables in tandem with classification methods to extract reduced 

IR fingerprints that reflect the metabolic profiles of patients for a potential MetS 

diagnosis was studied. Therefore, a dual approach was applied based on a classification 

method on the one hand and a class modelling method on the other. 

For its part, discriminant techniques focus on the differences between samples 

belonging to different categories, dividing the multidimensional space into as many 

subregions as the number of the considered classes. As a result of this work principle, 

every tested sample would always be assigned to one of the predefined categories, even 

in the case where an analysed sample truly belongs to a class not considered in the 

study. Regarding the above, it makes good sense to evaluate the application of a 

discriminant classification strategy in a two-class (binary) classification problem such as 

the one addressed in this paper. In particular, linear discriminant analysis (LDA), the 

most widely used classification algorithm, was used. 

On the other hand, in contrast to class discrimination, class modelling approaches 

exploit similarities among inter-category samples to construct an individual model for 

every class independently from the others. Consequently, the developed class models 
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may not entirely cover the original multivariate space. This fact opens the door to 

different assignment scenarios depending on whether a sample falls clearly into a single 

class region (so that it is assigned to that) or if it falls in overlapping regions (leading to 

a confusing classification in multiple classes), and, finally, when a sample falls outside 

every class model constructed (predicted as member of none of the considered 

categories). Therefore, due to their specific properties, modelling techniques, such as 

soft independent modelling by class analogy (SIMCA), are suitable for classification 

problems in which the emphasis is placed on a particular class of interest, as may be the 

case here with the MetS category. 

4.1.5.3.1  SELECT-LDA 

Considering that IR data presents high dimensionality, eliminating the futile features 

due to noise and identifying the relevant and important variables to be applied in the 

following classification steps was imperative. Thus, the stepwise orthogonalization of 

predictors (SELECT) algorithm [39,40] was prioritised among other variable selection 

techniques since it enabled us to optimise discrimination by simultaneously performing 

feature selection and classification. Moreover, thanks to its stepwise decorrelation 

procedure, SELECT also avoids the presence of redundant information in the subset of 

selected significant predictors. In addition, it has previously demonstrated its accurate 

prediction ability in selecting the most important variable for the discrimination of 

pathological status [41,42]. Thus, SELECT was applied to extract the most significant 

wavenumbers from the IR dataset, providing input features for a further dual-

classification approach. Based on the commonly established rule, the number of training 

objects selected was always at least three times greater than the number of finally 

selected wavenumbers. An in-depth study of the literature is encouraged to understand 

the algorithm’s rules [43]. 
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4.1.5.3.2 LDA on Clinical Parameters 

LDA is a well-known and extensively applied powerful supervised chemometric 

classification technique [44]. Based on LDA classification rules, the objects are always 

classified in one of the predefined classes. 

LDA of five clinical parameters, built by leave one out (LOO) cross-validation, was 

performed to evaluate the feasibility of this classification methodology to differentiate 

between MetS and no MetS patients. Excellent discrimination among categories was 

achieved, providing a 100% level of correctly classified samples for no MetS subjects and 

patients with metabolic syndrome, respectively. Satisfactory external prediction 

performances ranging from 98.73% to 100% were achieved for both categories (within 

one no MetS subject classified as MetS), respectively (Table 4-2). Furthermore, a clear 

interclass separation achieved between these main categories can also be visually 

appreciated in the corresponding discriminative histogram (Figure 4-4). This 

classification performance was almost predictable since the PCA results already showed 

a clear clustering between the two groups. 

Table 4-2. Results of LDA classification performance on clinical parameters 

Clinical Parameters Classification (%) External Prediction (%) Total Rate (%) 

MetS 100 100 100 

No MetS 100 98.73 (1)1 99.36 

Total rate 100 98.94 99.47 
1The one corresponds to one misclassified subject in cross-validation 

. 
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Figure 4-4. Histogram of the first canonical variable for the discrimination of MetS (◼) 
and no MetS (◼) patients within included (◼) test set, after performing LDA in the 
stratification approach based on clinical parameters (y-axis indicates the maximum 
discrimination power between categories).  

The object belonging to the category MetS which was classified as no MetS was 

characterised by the following clinical parameters: 213 mg/mL of TGL, 76 mg/mL of HDL, 

139 mmHg of SP, 83 mmHg of DP, and 102 mg/mL of GLU. As we can see, two out of five 

parameters have increased values, and the DP parameter is very close to the cut-off 

value, which is 85 mmHg based on the NCEP-ATP-III scale. Thus, this patient might 

instead be classified as MetS positive, presenting almost three out of five clinical 

parameters with augmented values. In addition, as we said above, the TGL parameter 

has a major contribution, among other parameters, to MetS classification. Thus, the 

plausible explanation could be that this subject, who has greater values of TGL, is more 

likely to be classified as MetS by LDA rather than no MetS. However, as we highlighted 

before, the eligibility criteria can be very insidious and create confusion and 

misassignment, worsening and delaying the patients’ well-being. 

4.1.5.3.3 SELECT-LDA on IR Wavenumbers 

Likewise, LDA on the IR dataset, containing 838 wavenumbers, was also performed. 

Before LDA analysis, as explained above, SELECT was applied to extract those predictor 

variables correlated with the discrimination between categories here considered. 

Therefore, based on the SELECT rules, 20 selected spectra variables were decorrelated 
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from other signals and used for LDA. The 20 selected features showed an outstanding 

classification performance and the results were higher in performance than LDA results 

on clinical parameters, achieving 100% in classification and external prediction, 

respectively. The results of the SELECT LDA performance are displayed in Table 4-3. The 

suitability of the classification strategy applied to reduced IR plasma signatures can be 

visually appreciated in Figure 4-5. A discriminative histogram shows a clear group 

separation on the first canonical variable. 

Table 4-3. Results of SELECT LDA classification performance on 20 IR selected spectral 
variables. 

Clinical Parameters Classification (%) External Prediction (%) Total Rate (%) 

MetS 100 100 100 

No MetS 100 100 100 

Total rate 100 100 100 

 

 

Figure 4-5. Histogram of the first canonical variable for the discrimination of MetS (◼) 
and no MetS (◼) patients within the included (◼) test set, after performing SELECT-LDA 
in the stratification approach based on 20 IR variables (y-axis indicates the maximum 
discrimination power between categories).  

4.1.5.4 SIMCA 

In an attempt to go one step further in this classification strategy, it was decided to 

build optimised class models based on clinical parameters and the subset of reduced IR 

signatures selected by SELECT. SIMCA often outperforms other classification methods, 
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where a new sample will always be classified in one of the predefined categories. 

Classification methods such as LDA are based on the development of classification rules 

and delimiters between classes, whereas in class models, significance limits are built for 

the specified classes. These limits define the membership parameters for each class; 

thus, an unknown sample can be classified as not belonging to any defined categories 

because it is not included in any of its class spaces. SIMCA class modelling uses the 

number of true/false positives and negatives and statistics, showing the ability of a 

classification model to recognise class members (sensitivity or true positive rate) and 

showing how good the model is for identifying strangers (specificity or true negative 

rate). Moreover, SIMCA class modelling is often used to describe the class structure of 

the data set, requiring little or no prior assumptions to build the model. 

On applying SIMCA, independent PCA modelling is performed for each class; each 

sample is fitted in a PCA model to check the separation between classes [41]. This model 

uses the optimal number of principal components that best describes and groups an 

individual class. This model can then be used to classify new samples whose class is 

unknown. The principal components are obtained usually using the NIPALS (non-

iterative partial least squares) algorithm after separate autoscaling of the data. Finally, 

the models built for the different classes are compared by studying their differences and 

analogies [42]. Each class is modelled independently; thus, it is sensitive to the quality 

of the data used to generate the principal component models for each class in the 

training set (at a 5% significance level). 

4.1.5.4.1 SIMCA on Clinical Parameters 

Herein, SIMCA modelling was performed on five clinical parameters (Table 4-4). A 

class modelling of five clinical parameters of MetS was built using 4PCs for the inner 

space of classes, achieving satisfactory results in both internal prediction (LOO) and 

external prediction 98.95%. SIMCA builds a mathematical model of the category with its 

principal components and a sample is accepted by the specific category if its distance to 

the model is not significantly different from the class residual standard deviation. The 

results of SIMCA modelling can be visually appreciated by a Cooman’s Plot, representing 

the samples’ distances against each of the two models. The Cooman’s plots were built 

considering a 95% confidence level to define the class space and the unweighted 



 

102 
 

augmented distance. This diagram is an effective visual representation that directly 

indicates the quality of the model constructed with the magnitude of the distance 

between categories. Thus, the distances to the principal component models and SIMCA 

approximation in a two-class problem for the class of MetS and no MetS are plotted in 

Figure 4-6. No clear outliers were observed, but several samples that fall into the joint 

space of both categories belong mainly to the MetS category. This relatively large 

number of samples plotted in the class-space common (overlapping) to the two models 

representing MetS and no MetS patients, as well as the considerable amount of no MetS 

samples located near their class boundary, suggest potential specificity problems 

associated with this classification approach based on clinical parameters. Therefore, the 

distribution of some samples from the MetS category in the area of relative indecision 

(small left quadrant) could be due to the unequivocal diagnostic parameters defining 

metabolic syndrome. In fact, these patients have three out of five altered parameters 

not necessarily similar. In addition, some parameters may be much less marked than 

others, confounding the decision about their location inside the model. 
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Table 4-4. The values of discriminant and modelling powers of clinical parameters after 
SIMCA class-modelling. 

Clinical parameters Discriminant power 

Modelling power 

Category 

MetS 

Category No 

MetS 

Systolic blood pressure 1.99 0.70 0.73 

Diastolic blood pressure 2.01 0.70 0.73 

Triglycerides 2.18 0.94 0.96 

HDL 2.34 0.79 0.94 

Glucose 2.36 0.84 0.97 
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Figure 4-6. Cooman’s plot displaying the results obtained by applying SIMCA class-
modelling to clinical parameters: MetS (◼) and no MetS (◼) patients within the included 
(◼) test set. The red solid line indicates a confidence level for class space at 95%. The 
red dashed line indicates equal class distance. 

The data modelling power (MP) and discriminatory power (DP) of the SIMCA class 

modelling of clinical parameters are presented in Table 4-5. The MP describes how well 

a variable helps each principal component to model variation in the data, and 

discriminatory power (DP) describes how well a variable helps each principal component 

model to classify samples in a training set. The first detail that can be noticed is that, 

comparably, the MP in no MetS is consistently higher for all parameter pairs. This was 

expected as the distribution of the values of clinical parameters for each class of patients 

was significantly different. Nevertheless, the values of TGL have the highest modelling 

power in both MetS and no MetS categories, with values of 0.94 and 0.96, respectively. 

This ability of TGL to discriminate between the two groups is justified by previous 

studies, as metabolic syndrome patients should have significantly higher TGL values. This 

difference in modelling power is especially remarkable by the measured glucose (0.97 

vs. 0.84) and HDL (0.94 vs. 0.79). In addition, clinical parameters such as glucose and 

HDL also showed significant discriminant power, with values of 2.63 and 2.58, 

respectively. These two parameters are also perfectly in line with the data collected 
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from our patients. The MetS group is characterised by high glucose and low HDL values. 

These same parameters are often responsible for the presence or future development 

of comorbidities in patients such as diabetes, cardiac disease, and obesity. Other clinical 

parameters seem to contribute less to the principal component models; indeed, no 

significant difference was observed in the values distribution of SP or DP between the 

two categories. 

4.1.5.4.2 SELECT-SIMCA on IR Wavenumbers 

The best recognition ability (percentage of the samples in training set correctly 

classified during the modelling step) afforded by SIMCA was achieved by only ten of 20 

previously selected wavenumbers by SELECT, providing 98.94% in classification and 

95.79% in external prediction, respectively. Interestingly, eight out of ten selected 

wavenumbers belong to the ‘’fingerprint region’’, which reflects the production of 

characteristic perturbations in the metabolome and other such variations. The 

absorption pattern in this area is highly complex; that same inherent complexity makes 

it unique for each sample and reflects its pathophysiological status. Thus, eight of the 

selected IR spectral wavenumbers may reflect the current status of the organism and 

could be directly correlated with the presence or absence of the disease. The results of 

SIMCA performance applied to clinical variables and to reduced number of IR spectral 

variables are summarised in Table 5. 
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Table 4-5. The results of SIMCA class-modelling performance on clinical parameters and 
ten selected IR spectral variables. 

Variables 
Classification 

(%) 
LOO (%) 

CV Efficiency 

(%) 

Efficiency Forced 

Model (%) 

Total Rate 

(%) 

5 clinical 

measurements 
98.59 97.18 87.05 95.68 100 

10 IR selected 

wavenumbers 
97.18 94.37 87.92 97.86 100 

 

A Cooman’s plot is presented to show discrimination between the two MetS 

categories of IR variables (Figure 4-7), where the distance to the PC models for MetS and 

no MetS are displayed. Compared to the Cooman’s plot of clinical parameters, it is 

observed that there is better separation and discrimination between categories. The 

Cooman’s plot showed a high degree of interclass specificity and a patently clear 

separation between class models, with a significant improvement from the models 

constructed from available clinical parameters to those constructed from IR variables. 

The no MetS patients appear evidently segregated and concentrated forming a dense 

cluster at large distances from the model of MetS class. Likewise, the vast majority of 

MetS samples fall clearly and univocally into their class region, far from the class limit 

for the no MetS model. Furthermore, the single MetS sample located in the inconclusive 

classification region is virtually placed above the membership threshold. 
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Figure 4-7. Cooman’s plot displaying the results obtained by applying the SELECT-SIMCA 
class-modelling to ten selected IR signals: MetS (◼) and no MetS (◼) patients within 
included (◼) test set. The red solid line indicates a confidence level for class space at 
95%. The red dashed line indicates equal class distance. 

From ten selected wavenumbers, the highest discriminant power (5.87) was obtained 

by the 1133.09 cm−1 spectra variable from the ‘’fingerprint region’’ (Table 4-6), followed 

by 4.31 for 1557.40 cm−1 and 4.29 for 2948.94 cm−1 from the higher spectral region. The 

average discriminant power for IR variables is higher compared to DP values obtained 

with SIMCA modelling of clinical parameters, indicating the increased suitability of the 

method compared to those using values obtained from clinical measurements. Likewise, 

the contribution of IR variables to the model variation was of major strength compared 

to clinical parameters. Thus, all the selected variables contributed equally to marking 

the difference between MetS and no MetS with an MP equal to 1.00. Furthermore, the 

distance between classes was 5.19, significantly higher than in the case of SIMCA class 

modelling applied to clinical parameters (4.26). These results highlight that the proposed 

method outperformed in accuracy and specificity of the evaluation parameters used in 

clinical practice. Since the clinical diagnosis of metabolic syndrome lacks 

standardisation, the results of the obtained model capacity could greatly support clinical 
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decisions, for example, in terms of exclusion and inclusion evaluation criteria for MetS 

discrimination. 

Table 4-6. Discriminative and modelling powers of ten selected spectra variables after 
SELECT-SIMCA class modelling. 

Wavenumber (cm−1) 
Discriminant 

Power 

Modelling Power 

Category 

MetS 

Category No 

MetS 

2860.22 3.77 

1.00 1.00 

1423.36 4.23 

1562.22 3.66 

1578.61 3.75 

1108.98 3.70 

1316.32 3.64 

2948.94 4.29 

1557.40 4.31 

1133.09 5.86 

1247.85 3.58 

 

Our principal aim was to obtain optimal segregation between patients without 

additional clinical, physical, or ethnic data, and this goal was achieved. 

4.1.6  Biochemical Reasoning of Ten Extracted Signals 

Herein, we presented a simple, non-invasive, low-cost FTIR-based method for rapid 

discrimination between MetS and no MetS patients. The use of FTIR spectroscopy is 

gaining momentum for diagnosis of multiple disorders, from infectious diseases such as 

hepatitis C and B viruses or malaria to cancers [47–-53]. Due to its ease of use and 

portability, the potential for using FTIR techniques in clinical environments is within 

reach. Our strategy extracted the metabolic signatures, instead of individual biomarkers 

with limited potential, that permit the classification of patients according to molecular 

patterns. Thus, the FTIR technique provided an overview of spectral changes associated 

with lipid, protein, or carbohydrate metabolisms. 

Ten out of twenty previously selected wavenumbers showed higher discriminant 

power than clinical parameters. Thus, among these, influential bands at 1578.61, 

1562.22, and 1557.40 cm−1 could be assigned to [δ (N-H) + ν (C-H)] of the amide II region 

of proteins. These discriminative signals may suggest some link with HDL lipoproteins, 
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which showed significant influence among five clinical factors for the classification of 

MetS and no MetS subjects. Likewise, the higher absorbance in peaks at 2860.22 cm−1 

and 2948.94 cm−1 could be attributed to CH3 and CH2 sym. stretching of lipids or 

carbohydrates, which is perfectly congruent with the formulated theories about MetS 

impairments and their possible implication in the disease. Moreover, as discussed 

above, TGL and GLU levels seemed to have more influence and variability between the 

two categories of patients; thus, these attempted assignments properly reflect the 

actual situation of the patient’s metabolism. In addition, the variable at 1133.09 cm−1 

could be associated with stretching C-O/C-O(H) of carbohydrates or proteins, since it 

was already shown that the parameters such as glucose or HDL have remarkable 

modelling and discriminant powers compared to other measured factors. 

In this study, the selected spectral biomarkers perfectly reflect the clinical reality of 

the patient’s metabolic profile. Thus, the explanation of the most significant spectral 

bands confirms the potential of FTIR spectroscopy to deal with such a complex disorder 

as MetS. 

4.1.7  Conclusions 

We firmly believe that this alternative analytical strategy could be of great diagnostic 

relevance and support for clinicians, limiting the time and cost of MetS diagnosis. 

Moreover, the evaluation of the metabolic profile captures the globality of physiological 

disturbances, whereas clinical indicators often lack sufficient discriminative power. The 

results indicate the possibility of rapid application of this strategy to screen for patients 

with metabolic syndrome. The LDA classifications and SIMCA developed models 

demonstrated that the spectral variables could provide the same discriminative results 

as measured clinical parameters. Therefore, why take five measurements when one 

measurement could provide the same classification ability, greatly stratifying categories 

of patients? The proposed FTIR method is quick, simple, and non-invasive, and it could 

be perfectly implemented for large scale-analysis in clinical routines. The principal 

limitation of this study resides in the relatively tiny sample size at our disposal. In 

addition, this is a cross-sectional study; therefore, no data on confounding factors (such 

as gender, age, or diet) were routinely included. The results of a more extensive data set 
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would be required to strengthen the validity of the adopted classification strategy and 

lead to a firmer conclusion. 
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Abstract 

In this chapter, Parkinson’s disease is investigated. The reported results are referred 

principally to two primary studies conducted on PD -using FTIR spectroscopy and UPLC-

MS. Thus, in the first section, the potency of FTIR coupled with a chemometric strategy 

based on a three-step classification approach in the stratification of Parkinson’s patients 

is discussed. Thus, the disease was effectively classified and differentiated from the 

control group and other impairments such as Alzheimer’s dementia. Spectral signatures 

in human plasma have been successfully identified for differentiation between patient 

categories by selecting significant wavenumbers closely related to PD pathogenesis and 

metabolic biomarkers. In addition, the discrimination results in both sub-classification 

problems, succeeding in the stratification of patients with different PD stage progression 

profiles and those with different dementia type profiles are reported. All the 

speculations about the involvement of selected bands in the pathogenesis of PD are 

immensely reasonable. They seem to be confirmed by the second section of the results 

performed by the UPLC-MS untargeted approach. Thus, this chapter’s second section 

focuses on the specific lipid biomarkers identified for PD discrimination from healthy 

controls and AD patients.
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Resumen 

En este capítulo se investiga la enfermedad de Parkinson. Los resultados conseguidos 

se refieren principalmente a dos estudios realizados en PD, utilizando espectroscopía 

FTIR y UPLC-MS, respectivamente. Así, en la primera sección, se discute la potencia de 

FTIR acoplado con una estrategia quimiométrica basada en un enfoque de clasificación 

a tres pasos en la estratificación de pacientes con Parkinson. Por lo tanto, la categoría 

enfermedad de Parkinson se clasificó de manera efectiva y se diferenció del grupo de 

control y otras afecciones como la demencia de Alzheimer. Se identificaron con éxito 

firmas espectrales en plasma humano para la diferenciación entre categorías de 

pacientes mediante la selección de números de onda significativos estrechamente 

relacionados con la patogénesis de PD y biomarcadores metabólicos. Además, se 

muestran los resultados de discriminación en ambos problemas de subclasificación, 

logrando la estratificación de pacientes con diferentes perfiles de progresión de etapas 

de PD y aquellos con diferentes perfiles de tipo de demencia. Todas las especulaciones 

sobre la contribución de bandas seleccionadas en la patogénesis de PD son 

inmensamente razonables y pueden ser confirmadas por la segunda sección de los 

resultados realizados por el enfoque no dirigido de UPLC-MS. Así, la segunda sección de 

este capítulo se centra en los biomarcadores específicos de lípidos identificados para la 

discriminación de PD, de controles sanos y pacientes con AD
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5 CHAPTER 5. PARKINSON’S DISEASE 

5.1 EXTRACTION OF REDUCED INFRARED BIOMARKER SIGNATURES FOR THE STRATIFICATION 

OF PATIENTS AFFECTED BY PARKINSON'S DISEASE: AN UNTARGETED METABOLOMIC 

APPROACH 

5.1.1 Introduction 

A considerable segment of the ageing population worldwide suffers from Parkinson's 

disease, the second most prevalent progressive neurological disorder after Alzheimer’s 

dementia [1–3]. The risk factors for PD are complex and likely interconnected, so the 

onset of PD is thought to be caused by a combination of genetic predisposition and 

environmental influences (exposome). Unfortunately, there is still no standard 

treatment for this disorder. Most of the currently available therapeutic options are 

focused on treating and mitigating the symptoms, i.e., on palliative care, but, curative 

treatment is not yet a medical reality, with its consequent huge impact on morbidity and 

mortality.  

All findings towards detecting the disorder’s pathogenesis suggest various 

metabolites that are modified in PD, from a significant role attributed to α-synuclein [4–

6] and Lewy’s body [7] to exosome factors that are involved [8–10]. Thus, Parkinson’s 

disease is often associated with defects in lipids metabolism particularly in the central 

nervous system [11,12]. It was reported that oxidative stress in the substantia nigra at 

the time of death in advanced Parkinson's disease manifests in increased lipid 

peroxidation [13]. Blood-based biomarkers are also widely studied because they can be 

more accurate than clinical observations regarding dopamine deficiency effects, such as 

bradykinesia, rigidity and tremors. In addition, it was suggested that changes in 

cholesterol levels and cholesterol derivatives might indirectly be related to the onset of 

PD.  

Meanwhile, higher uric acid (UA) levels were associated with a decreased risk of 

disorder, and ratio acid uric/creatinine (UA/Cr) was evaluated as a predictive factor for 

a slower disease progression [14,15]. Elevated blood glucose levels were directly related 
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to a longer duration of PD and a higher score of dysautonomia in moderate to advanced 

PD patients [16]. Interestingly, increased concentration of histamine in the nervous 

system and putamen of PD patients were reported from different research groups [17, 

18]. Despite a large shred of evidence, no specific biomarker was approved for diagnosis 

or prognostic purposes of this progressive multisystem condition [19–24]. Thus, the 

conventional diagnosis of Parkinson's remains essentially clinical based on the subjective 

observations of clinicians. Nowadays, none of the available clinical tests has been proven 

to comply with high sensitivity, accuracy, and objectivity for PD detection. In addition, 

the instruments applied in the clinical environment are expensive and unwieldy.  

Nevertheless, the correct diagnosis identifying PD at the early stage is crucial. This is 

because once the patient appears with clinical symptoms, the damage in the brain is 

already irreversible. For this reason, the diagnosis must be made as soon as possible to 

avoid further extensive neuronal loss [25].  

In this context, the attention to specific biomarkers shifted to explore the production 

of perturbations in the metabolome and such variations in studies of Parkinson’s disease 

[26–29]. Untargeted metabolomic studies, such as that here presented, aim to extract 

the metabolic fingerprints of analysed samples to classify them according to biological 

status or origin based on these unique and individual molecular patterns. 

For more than ten years, the vibrational approach, nuclear magnetic resonance 

(NMR) [30, 31] spectroscopy and a wide range of highly sensitive mass spectrometry 

(MS) [32,33] based methods have been proven to be a valuable ally for the evaluation 

and classification of normal and pathological samples [34–39], especially for Parkinson’s 

detection [40–42]. However, despite the large number of studies found in the literature 

that support the emerging potential of metabolic fingerprinting in clinics, a still 

challenging bottleneck of these types of studies is their actual translation to clinical 

practice. From a technical point of view, breaking down barriers to clinical translation 

depends on advances in measurement technology. Being these instruments rapid, non-

invasive, non-destructive, reliable and easy to use, they are perfect candidates as high-

throughput screening techniques for fingerprinting. In this context, both vibrational and 

NMR spectroscopy remains the prime analytical choice because they perfectly fulfil the 
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required characteristics of analytical instrument, making large-scale or routine studies 

much more feasible than with MS-based applications [43].  

Likewise, exhaustive metabolomic fingerprinting research should not be limited to a 

unique analytical platform but rather should test and combine multi-analytical 

strategies in order to exploit their respective strengths and overcome their weaknesses. 

To this end, Fourier-transform infrared (FT-IR) and NMR spectroscopies can successfully 

complement each other. 

In previous work from our research group [44] we evaluated the potential of using a 

non-targeted lipidomic approach to extract NMR-based signatures for the clinical 

differential diagnosis and stratification of PD. To complete and complement this work, 

we now proposed a metabolomic fingerprint classification strategy also aimed at 

extracting disease/stage-specific panels of infrared markers but expanding the search to 

a broader range of molecular species (not restricted to lipid compounds) thanks to the 

inherent ability of FT-IR to provide biochemical information holistically. 

Moreover, IR is particularly suitable for analysing human biofluids, such as blood, that 

are easily obtainable and reflect several physiological functions of the body [29, 45, 46]. 

The blood is the primary carrier of metabolites throughout the entire organism, and it is 

composed of a variety of biological materials, mainly proteins, lipids, sugars. All these 

are active in the infrared range, and each biomolecule is determined by its unique 

structure. The changes in their chemical structure can be investigated simultaneously 

instead of studying isolated molecules, providing a metabolic signature for PD. Thus, the 

spectrum recorded by FT-IR from a biological sample generates a unique IR spectral 

signature, reflecting its specificity. Furthermore, the IR spectral modes of plasma may 

reflect the current status of the organism and could be directly correlated with the 

presence or absence of the disease. For these reasons, IR is highly exploited to identify 

possible spectra biomarkers associated with Parkinson’s differentiation [47].  

5.1.2 Aim of the study  

Given these perspectives, in this study, the direction of research shifts towards 

investigating the existence of distinct mid-infrared metabolic fingerprints in PD-related 

diseases, which would drive PD patient stratification and would guide an accurate and 
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early differential diagnosis. Thus, an untargeted metabolomics approach (FT-MIR 

application in the fingerprint region coupled with multivariate data analysis) was used 

to reveal spectroscopic biomarker signatures that define patient subgroups for the 

clinical diagnosis and classification of PD at different stages of the disease. PD at the 

initial stage (PDI) should be differentiated and not confused with developed PD-related 

dementia (PDD). Ideally, an accurate analytical tool should be able to differentiate 

Parkinson’s disease from other neurological impairments such as Alzheimer’s disease. 

In most cases, subjects affected with PD share a common profile accumulating 

abnormally aggregated proteins with Alzheimer’s disease. The two main chemometric 

strategies employed in this work are based on the initial selection of discriminant 

variables and the subsequent development of a linear discriminant analysis (LDA) 

classification. One of our primary goals was to achieve accurate discrimination between 

plasma samples of patients affected by PD from subjects affected by AD and from 

healthy control individuals, confirming that infrared signatures can be associated with 

metabolomic changes based on different pathological conditions. The second major 

objective was to obtain accurate discrimination between two PD subgroups, identifying 

reliable wavenumber predictors for disease stage differentiation. However, we also 

decided to deepen the problem and apply the developed classification rules to a new 

problem. The differentiation between patients with Parkinson's developed dementia 

and those affected by Alzheimer’s dementia was also studied. Within this method, we 

aimed to reveal that LDA stepwise wavenumber selection may extract significant bio-

spectroscopic markers, enable objective diagnosis and make possible the differentiation 

of such a multifactorial disease as Parkinson's.  

Considering the potential clinical translation advantages derived from adopting an IR 

fingerprint-based classification, the cost-effectiveness and relative ease of access to IR 

portable devices should be pointed out, which could be ideal for point-of-care testing, 

primary health care or wherever required. 
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5.1.3 Materials and Methods 

5.1.3.1 Study population 

The present study involved 97 patients whose plasma samples were submitted to the 

Molecular Neurobiology Unit in the Centre for Biomedical Research of La Rioja (CIBIR) 

from the Neurology Department of San Pedro Hospital (Logroño, Spain). The patient 

cohort was sub-grouped into different classes depending on the type of 

neurodegenerative pathology. A total of 41 patients were classified as PDI, and nine 

were considered to have PDD. There were 23 patients in the group with AD and 24 

healthy controls (HC), belonging to the family environment and being alike in age to PD 

patients enrolled in the study. Ethical approval was granted by the Research Ethics 

Committee of the Hospital San Pedro of La Rioja, and individual informed consent was 

obtained from all those taking part. 

5.1.3.2 Collection and handling of plasma samples 

Plasma samples were provided by La Rioja Blood Bank. Venous blood samples were 

drawn via antecubital venepuncture from each subject in a sitting position. Becton 

Dickinson (BD) Vacutainer® plastic blood collection tubes with K2EDTA were used for 

plasma separation. Blood was processed to obtain plasma by centrifugation at 2200 g 

for 15 min at 4 °C. Recently delivered plasma samples to the laboratory were 

immediately frozen and then stored in Eppendorf tubes as aliquots of 200 μL each at 

−80 °C until further use. Prior to FTIR analysis, plasma thawing was performed according 

to an optimised ultrasound-based protocol for lipidomic analyses recently developed in 

our research group [48]. 

5.1.3.3 Instrument  

Plasma samples were measured by Spectrum-One ABB Miracle Type MB3000 FT-IR 

Spectrophotometer (Zurich, Switzerland). Each plasma sample (25 μL) was manually 

spotted onto a CaF2 windows liquid cell PerkinElmer (Omni Cell, Specac Ltd., Orpington, 

UK) with a 50 μm Mylar spacer. The sections were recorded in the medium infrared 

range. Data points in the range of 4000-300 cm-1 were collected with a resolution of 2 

cm-1, and 32 scans were accumulated and averaged. All measurements were made in 

triplicate. A mean spectrum was subsequently obtained from the replicates recorded for 
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each plasma sample. The sample temperature was maintained at 23.0 ºC ± 1.0 ºC while 

recording the signals, and a constant nitrogen purge was applied to remove atmospheric 

water vapor and CO2. Data analysis was performed using the Horizon MBTM program. 

During the analysis, it was necessary to use quality control (QC) samples to check the 

methodology's performance and test its reproducibility. Therefore, QC samples were 

processed similarly to the actual samples and were inserted regularly. 

5.1.3.4 Pre-processing of spectra 

FT-MIR dataset was processed and analysed with Parvus [49] and Unscrambler 11 

chemometric software package (version 11.0, Camo Software, Oslo, Norway). Pre-

processing is imperative in analysing high-dimensionality biological spectral data; it 

corrects many problems with spectral data acquisition such as random noise, baseline 

distortions or light scattering. Spectra were then cut to include the biochemical 

‘’fingerprint region’’ between 1490-1155 cm-1; other regions were excluded from further 

analysis as non-informative zones. Often spectral wavenumbers have solid correlations 

and, therefore, highly amenable [50]. Finally, MIR-spectra data was submitted to 

Extended Multiple Scatter Correction (EMSC) pre-treatment. This method was 

preferable as a pre-processing step allowing for resolution of overlapping peaks, and it 

showed better results in decreasing scatter effects. The data were always centered 

before multivariate analysis.  

5.1.4 Data analysis 

5.1.4.1 PCA 

Chemometric methods are increasingly applied to obtain meaningful and reliable 

information from the registered spectra, enabling their characterisation and enhancing 

process understanding. Principal component analysis (PCA) is one of the most useful 

preliminary steps for the exploratory analysis of a large number of correlated features 

such as FT-MIR spectral data. This unsupervised data analysis step was performed to 

reduce the dimensionality of our complex spectral dataset into a few Principal 

Components (PCs), still preserving the majority of information and capturing relevant 

sources of data variability. However, this step alone was not enough to allow a clear 

separation of our data. However, it helped to identify outliers. Furthermore, it 
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highlighted the need to resort to a two-step sequential classification strategy based on 

applying an efficient variable selection technique to find the informative features that 

would allow successful prediction. 

Before setting any classification approach, an important parameter should be 

considered: the study's objective, the number of categories, and the particular 

requirements of a sample assigned to a specific class. The proposed classification 

strategy was seen as a sequence of two consecutive classification problems in this study. 

The approach used for classification first concerns a generic classification of the disease 

and then specific discrimination of PD to distinguish the two different stages of the 

disease. Thus, for a first global classification, three distinct categories have been defined 

(Parkinson's disease, Alzheimer's disease and control subjects) so that patients with PD 

at an early stage and those with PD-related dementia were considered as one class 

(Parkinson's disease). Preliminary investigations have shown that this approach 

considerably improves the performance of the classification method. Then, after 

reaching a clear differentiation between the above three previously designated classes, 

PD has been divided into two classes to further classify these patients according to the 

severity of the disease. Besides, a strategy to differentiate two types of dementia 

affecting patients with separate neurodegenerative disorders was investigated and 

applied. 

5.1.4.2 Classification methods 

Classification methods aim to compute classification rules to assign objects to one of 

the categories of the problem being studied (unlike class modelling techniques, there is 

no possibility of non-classification), the objects are always classified in one of the 

predefined classes [51].  

The linear discriminant analysis (LDA) classification [52, 53], well known and 

extensively applied powerful supervised chemometric classification technique, enabled 

us to discriminate between prespecified subgroups. A stepwise orthogonalization of 

predictors (SELECT) optimised the discrimination performance by selecting the most 

significant wavenumbers for a reliable classification between patients’ classes to use 

later as an input for a stepwise LDA. Therefore, to gain a clear understanding of the 
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procedure carried out by SELECT, a careful reading of the original paper is particularly 

recommended [49]. 

One crucial step in LDA-based variable selection is choosing the number of variables 

to be used in classification development. The optimal complexity of each classification 

developed was assessed by internal cross-validation. To control and avoid possible 

overfitting, the maximum number of variables to be retained by SELECT was limited so 

that the number of training objects would be at least three times greater than the 

number of finally selected wavenumbers. Therefore, essential variables were selected 

and decorrelated with other variables based on the maximum correlation weight. This 

step is essential when dealing with big data dimensionality, eliminating the futile 

features due to noise and identifying the relevant and important variables to be applied 

in the following steps. Cross-validation (CV) was used to optimize classifications, 

whereas external validation to evaluate prediction ability, respectively. The quality of 

the discriminant rules derived was evaluated according to several parameters:  

– Total classification (prediction) rate (TR) 

𝑇𝑅 =
∑ 𝑚𝑐𝑐𝑐

𝑁
 

 

– Category c rate (Rc) 

𝑅𝑐 =
𝑚𝑐𝑐

𝑁𝑐
 

These equations were applied in both classification and (internal/external) 

prediction, where mcc is the number of correct classifications (predictions) for a certain 

category c, ∑ 𝒎𝒄𝒄𝒄  is the total number of correct classifications (predictions), Nc is the 

number of classifications (predictions) for a certain category c, and N is the total number 

of classifications (total predictions). Note that Nc is not always equal to the number of 

samples belonging to class c, just as N does not always represent the total number of 

objects, since, for instance, an object can be classified several times during cross-

validation. Scores plots for the LDA canonical variables, were also used to analyse the 

goodness of the results. 
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5.1.5 Limit of the study  

A primary limitation of the current work relies on the relatively small number of cases 

available for subsequent infrared analysis. Further research, entailing the analysis of a 

larger patients’ database, would be required to confirm the proposed classification 

strategy’s validity and generalisation ability based on reduced IR signatures. However, 

the validation methodology followed in this study, which was based on both internal 

cross-validation (to develop optimal classifications) and external validation (to assess 

the actual predictive performance of the classifications constructed), served to prevent 

overfitting and ensure the reliability of the results obtained despite the limited number 

of samples in our cohort. 

5.1.6 Results and Discussion 

Using plasma-based vibrational spectroscopy, we achieved results with significant 

discrimination relevance at multiple levels. FT-MIR spectroscopy coupled with 

chemometric strategy has been proven to detect differences between pathological 

patients and healthy subjects and between different stages of neurodegenerative 

disease. As contributors to the discrimination between patients, several selected 

wavenumbers appeared to be of particular interest. Thus, we performed a tentative 

biochemical assignment of the selected signatures for each classification step. It should 

be made clear that the tentative band assignment and its speculative nature was 

performed to attribute a possible chemical reasoning to the reduced fingerprint bands 

responsible for each stratification. Therefore, the attempt band assignment was not, at 

any time, the primary objective of this study. However, chemical reasoning could be a 

starting point in future targeted-based studies.   

Thus, numerous selected wavenumbers in the fingerprint region were associated 

with key molecules, from carbohydrates to nucleic acids. Our results are reassuring and 

utterly consistent with the formulated theories about PD pathogenesis and metabolic 

biomarkers. Furthermore, the spectral absorptions implicated in the discrimination 

between disease principal groups and subgroups were quite similar. Sometimes, the 

exact wavenumber was associated with a different absorption-type but always in line 

with the possible contribution found in the literature.  
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5.1.7 FT-MIR spectral profiles 

The fingerprint region (the segment of the IR spectrum below 1500 cm-1) is a complex 

area that comprises many bands arising from the fundamental vibrations of many 

significant biomolecules overlapping each other. Many compounds generate a 

characteristic pattern of absorption that is unique to a sample [47]. Different vibrational 

modes in molecules ‘’functional groups’’ create a very complex pattern of absorptions 

that contain a huge amount of valuable information about the metabolic changes that 

occur during the onset and progression of the disease [54, 55]. Only one spectral zone 

between 1490 cm-1 and 1155 cm-1 was considered for the analysis and was shown in the 

corresponding plots Figure 5-1. Thus, it seems likely that changes in band profiles in this 

region could be related to alteration in the metabolism induced by neurodegenerative 

diseases. 

 

Figure 5-1. FT-IR spectra of plasma samples before (A) and after (B) EMSC pre-treatment, 
and the corresponding plots of scattering effects between signals before (C) and after 
(D) correction. 
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Figure 5-2. Scores for the plasma samples from the 97 patients (full data set) on the 
first 2 principal components explaining the variability in the IR spectral data. The 
samples are labelled according to their specific pathology: healthy control (◼), PD (◼), 
AD (◼) subjects and external test samples (). 

 

5.1.7.1 Global classification: 3-class approach for discriminating patients with PD, AD 

and healthy controls 

Based on the results of the exploratory analyses, considering the classification 

problem studied here as a unique step approach was rejected as it would lead to 

unreliable results Figure 5-2. For this aim, a multivariate classification approach based 

on a multiple-step sequential classification has been studied and applied to a patient 

population. 

Firstly, three separate classes were defined; the group of Parkinson's patients at the 

early stage was combined with patients accompanied by dementia. Thus, the first global 

classification approach concerns healthy subjects, PD (PDI + PDD) and AD. The best 

solution for the global classification problem was obtained when the SELECT-LDA 

method was applied, so the information responsible for the successful discrimination 

between PD, AD and the control group was compressed from 340 to only 30 variables 
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(conforming to a reduced IR signature of disease status) with almost 100% of total 

correct assignment rates in classification and prediction (Table 5-1). Classification rates 

broken down per category revealed excellent discrimination among classes, providing a 

100% level of correctly classified samples for control subjects and patients with 

Alzheimer’s, respectively, and 99.79% correct assignment rates in the case of patients 

with Parkinson’s disorder. Satisfactory internal prediction performances ranging from 

86.36 to 95.24 % were achieved for the various categories, but the real strong point 

consisted in external prediction. The prediction performance of the SELECT-LDA 

classification was developed and optimized using ten cancellation groups for CV and a 

test subset of six samples, distributed randomly in the following way: two for the control 

group, two for PD and two for AD. As a result, all six test samples were correctly 

classified, achieving 100%, therefore confirming the reliability of the developed 

classification strategy based on the reduced IR fingerprint extracted wavenumbers 

(Table 5-2). Furthermore, a clear interclass separation reached between the three 

classes of patients can also be visually appreciated in the corresponding plot of LDA 

score differences (Figure 5-3). 

Table 5-1. Percentages of correctly classified samples/patients in both classification and 
internal/external validation corresponding to the SELECT-LDA performed when 
addressing the global classification approach. 

 

  

3-class approach SELECT-LDA: global classification with 30 variables 
 Classification % Prediction (CV 10) % External Prediction % 

PD (I+D) 100.00 86.36 100.00 

AD 99.79 89.58 100.00 

HC 100.00 95.24 100.00 

Total rate 99.89 90.11 100.00 
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Table 5-2. Discriminant wavenumbers (in order of selection) corresponding to the 
SELECT-LDA classification developed from IR spectra of plasma samples in the global 
approach. 

1st-step differentiation approach: 30 biomarkers 
3 global categories (PD, AD and HC) differentiation 

Selection 

order 

Wavenumber(cm-

1) 

Selection 

order 

Wavenumber(cm-

1) 

1 1489.9008 16 1336.5712 

2 1171.6696 17 1289.3187 

3 1316.3201 18 1335.6069 

4 1377.0734 19 1253.6382 

5 1319.6382 20 1182.2773 

6 1312.4628 21 1203.4927 

7 1284.4970 22 1474.4714 

8 1271.9606 23 1302.8194 

9 1266.1746 24 1455.1847 

10 1215.0647 25 1294.1404 

11 1156.2402 26 1334.6425 

12 1159.1332 27 1438.7909 

13 1443.1286 28 1477.3644 

14 1286.4257 29 1424.3259 

15 1288.3544 30 1403.1105 

 

Figure 5-3: Plot of the differences between discriminant scores for plasma samples after 
performing SELECT-LDA in the global classification approach. The 3 categories 
considered were labelled as: healthy control (◼), PD (◼), AD (◼) subjects. Test samples 
are displayed as unfilled circles (). 
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The patient profile of three main categories seems to be unequivocally distinguished 

by the score difference between the first and third canonical variables. Likewise, the 

maximum difference between healthy subjects and two groups affected by 

neurodegenerative disorders (PD and AD) is evidenced by the score difference between 

the first and third canonical variables, suggesting that the two disease-carrying groups 

do not share a similar profile with the healthy group. In particular, it can be observed 

that there is a double contribution of both differences between scores; thus, two classes 

characterized by pathology are separated by an imaginary axis coinciding with the 

delimiter. 

5.1.7.2 Chemical reasoning about possible contribution of selected wavenumbers in the 

global classification 

In this first classification step, several selected wavenumbers appear to be of 

particular interest; thus, we performed an attempt biochemical assignment of the 

selected variables. Different bands comparing PD, AD and HC were selected between 

1150-1000 cm-1, which is usually associated with oxidative stress [39]. Therefore, it could 

be attributed to different levels of damage caused by free radicals. Many studies have 

shown that UA plays an essential role as an antioxidant reagent, mainly as the urate in 

the human body. Furthermore, increased levels of this endogenous compound are 

linked with reduced brain damage caused by reactive oxygen species (ROS) [14, 15]. The 

topic of oxidative stress joins many other shreds of evidence that will be discussed 

further on.  

Close to this region, bands at 1156 and 1159 cm-1, or 1302 cm-1 could be attributed 

to bending (CH) of Ala. Likewise, selected signatures between 1411-1400 cm-1 could 

correspond to symmetric stretching (ṽ sym) (COO-) and ṽ sym. (C=O) of Ala or Glu. 

Various successful breakthroughs have shown metabolite variations in blood samples of 

PD. Significant variations of glutamate (Glu) and alanine (Ala) in cerebrospinal fluid were 

also observed in PD and have been broadly targeted [27]. 

Discriminant signatures around 1215/1253 cm-1 due to asymmetric stretching (ṽ ass) 

(P=O) of phospholipids; stretching vibration (COO-) of fatty acids at 1403 cm-1 and 

bending vibrations (δ) (CH2) at 1455, 1474, 1477, 1489 cm-1 of lipids, could be attributed 

to controversial theories made about the role of cholesterol, lipids and proteins in 
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Parkinson’s disease [56]. Furthermore, different research findings supported the 

associations with pathological interactions of alpha-synuclein in PD. Thus, the selected 

protein vibrations also seem to play a key role in patients’ stratification [6]. Multiple 

bands, such as 1312, 1403, and 1455 cm-1, were assigned to lipids perfectly congruent 

with previous findings.  

In this classification strategy, one of the bands was assigned to histidine, namely the 

signature at 1215 cm-1, proving some evidence found by Picca et al. [10] where higher 

concentrations of 3-methyl-histidine, citrulline, and serine were determined in control 

participants. At the same time, the band at 1182 cm-1 could correspond to bending (C-

OH) and stretching (C=O) of serine for the differentiation of three main categories of 

patients. The role of serine is of great importance, as it takes part in different metabolic 

pathways, including the generation of phosphatidylserine and phosphoserine, where 

both play an important role in the function of the neurodegenerative system [57]. In 

addition, other studies suggested that histamine could potentially affect neuronal 

survival and participate in neurotrophic processes aimed to re-establish damaged brain 

functions [17,18]. From the analysis of this first-step classification, different 

wavenumbers resulted significantly in the region between 1360-1220 cm-1. Therefore, 

we could speculate that these spectral markers could be attributed to amide III-band 

stretching and bending and corresponding to histamine.  

Many of the selected spectral biomarkers hold the potential to be linked with 

carbohydrates. For this purpose, it seems particularly important that many influential 

bands in Parkinson’s classification were also attributed to ‘’sugars’’. Thus, from 30 

spectral variables, bands at 1156 cm-1 and 1159 cm-1 could be due to stretching (CO-O-

C) of carbohydrates. The region 1330-1220 cm-1 seems to be rich in methylene stretching 

of carbohydrates residues, and therefore, the band at 1424 cm-1 could correspond to 

polysaccharides. Other studies had already evidenced a substantial contribution to the 

separation between metabolite profiles of unmedicated PD patients and controls of 

alternative metabolites, such as myoinositol, sorbitol, citrate, acetate, succinate and 

pyruvate [27]. 



 

136 
 

5.1.7.3 PD stratification: 2-class approach for discriminating between patients with 

early-stage PD and PD-related dementia 

After the differentiation among three classes of patients was obtained, we carried 

out a sub-analysis, comparing the group of patients affected by Parkinson's disease 

depending on the disease’s progress. Therefore, a single undifferentiated group of 

Parkinson’s was split up into two distinct classes: PD at an early stage and PD related 

dementia. The classification strategy followed the same classification rules as described 

ahead [52]. However, in compliance with cited before rules, the number of discriminant 

variables had changed that training objects were at least three times greater than the 

number of final selected wavenumbers. Full CV and a test subset of 3 samples, selected 

randomly as two for the PDI group and one for PDD, were performed to optimise and 

validate classifications, always on autoscaled data. In this case, 100% in classification 

and 100% in prediction (internal and external) were achieved (Table 5-3). Herein, the 

number of features was reduced from 340 to only 15 variables, which makes our 

approach even more remarkable (Table 5-4). A discriminative histogram is reported in 

Figure 5-4, which shows a clear class separation on the first canonical variable. This 

feature proves an outstanding performance of the method and its reliability and good 

performance of the classification strategy based on reduced MIR–plasma signatures. 

Table 5-3. Percentages of samples/patients classified correctly in both classification and 
internal/external validation in the SELECT-LDA performed when addressing the 
classification approach for PD stratification 

 

2-class approach SELECT-LDA: Parkinson’s differentiation with 15 

variables 
 Classification % Prediction (LOO ) % External Prediction % 

PDI 100.00 100.00 100.00 

PDD 100.00 100.00 100.00 

Total rate 100.00 100.00 100.00 
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Figure 5-4. Histogram of canonical variable for the discrimination of PD early stage (◼) 
and PD-related dementia (◼) patients after performing SELECT-LDA in the PD 
stratification approach.  
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Table 5-4. Discriminant wavenumbers (in order of selection) corresponding to the 
SELECT-LDA classification developed from IR spectra of plasma samples for the 
differentiation of PD progression stage. 

2nd-step differentiation approach:  
15 biomarkers 
2 categories ( PDI and PDD) differentiation 
Selection order Wavenumber (cm-1) 
1 1294.1404 
2 1292.2117 
3 1437.8266 
4 1435.8979 
5 1443.6126 
6 1475.4357 
7 1297.0334 
8 1476.4001 
9 1342.3572 
10 1170.7052 
11 1171.6696 
12 1226.6368 
13 1445.5413 
14 1224.7081 
15 1214.1004 

5.1.7.4 Chemical reasoning about possible contribution of selected wavenumbers in the 

second-step classification 

Thus, among 15 relevant wavenumbers, bands discriminating PDI and PDD at 1214, 

1224, and 1226 cm-1 were associated with uric acid ring vibrations, presumably 

explaining the different levels of brain damage during the disease progression stage. 

The selection of different wavenumbers at 1443, 1445, 1475 and 1476 cm-1 due to 

lipid structures could suggest oxidative stress in the substantia nigra at the time of death 

in advanced Parkinson's disease manifests in terms of increased lipid peroxidation, 

superoxide dismutase activity, and zinc levels [13]. In addition, previous studies have 

already performed the analysis with infrared spectroscopy defining bands due to 

methylene deformation of lipids or methyl bending of lipids, able to differentiate PD and 

controls [42]. Thus, our results prove the importance of this region.  

Different studies highlighted the role of phosphoethanolamine, which is the head 

group of different lipids, including phosphatidylethanolamine, lysophosphatidyl-

ethanolamine, and sphingomyelin. Multiple functions of this molecule in the body and 

in PD patients was evidenced [58]. Thus, it makes sense that many of the selected 
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spectral markers were assigned to phosphate groups and lipids. Beyond 

phosphoethanolamine, a circulating amino acid signature encompassing higher amino 

acids levels was found in older people with PD.  

Different research groups reported that impairment in oxidative stress was directly 

linked with an elevation of plasma sorbitol concentrations in drug-naive patients. As 

observed, the critical role of oxidative stress in PD is undeniably evident. Several 

evidence lines have also been found for dysregulation in glucose metabolism in 

moderate to advanced PD patients [16]. The reduced concentrations of alanine, lactic 

acid and glucose were detected and correlated with affected glucose metabolism [24]. 

Similarly, the selected band at 1297 cm-1 due to bending (CH2) of Ala could have a 

double significance. Considering that carnosine is a dipeptide of alanine and histidine, 

which have an antioxidant function in PD, as was already observed before, the 

decreased levels in alanine could also justify the decrease in the levels of carnosine [59]. 

Thus, considering the significance of some bands associated with histidine, it is 

congruent to assume the possible correspondence of these bands to carnosine. 

Therefore, our findings could be related to the role of a biomarker of carnosine in PD. 

5.1.7.5 Dementia type differentiation: 2-class approach for discriminating between 

patients with PD-related dementia and Alzheimer’s dementia. 

The last sub-classification problem was examined in greater depth to directly 

discriminate between dementia associated with both pathologies: Parkinson-related 

dementia and Alzheimer’s dementia. The analytical approach was based on the same 

classification strategy described before, following the rule of extraction of the truly 

discriminant variables by SELECT. Ten cancellation groups for the CV and a subset of 2 

random samples (each for one category) was performed to optimise and validate 

classifications. The achieved results were auspicious, so the success rate for both 

categories was 100% in classification, 87.50% and 100% in internal prediction and 100% 

of success rate in external prediction, respectively (Table 5-5). Given the results obtained 

per category, it is essential to highlight that AD patients were perfectly discriminated 

from patients with PD-related dementia (100% correct assignments in both classification 

and CV). Focusing solely on the numeric value of the obtained percentages made it more 

challenging to accurately classify PDD subjects into their real category. It should be 
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considered that the slight decrease in internal validation performance observed for this 

latter class is related to the wrong assignment of a single sample. However, the limited 

number of available patients for this category indeed contributed to maximising the 

influence of this deviation. The results can be visually appreciated in Figure 5-5. 

Histogram of canonical variable for the discrimination of PD related dementia (◼) and 

Alzheimer’s dementia (◼) patients after performing SELECT-LDA in the PD dementia 

type direct differentiation approach. Only ten selected variables were needed to provide 

a remarkable stratification between two different types of Dementia (Table 5-6). 

 

Figure 5-5. Histogram of canonical variable for the discrimination of PD related 
dementia (◼) and Alzheimer’s dementia (◼) patients after performing SELECT-LDA in 
the PD dementia type direct differentiation approach.  

Table 5-5. Percentages of samples/patients classified correctly in both classification and 
internal/external validation in the SELECT-LDA performed when addressing the 
classification approach for dementia type differentiation. 

 

2-class approach SELECT-LDA: Dementia differentiation with 15 

variables 
 Classification % Prediction (LOO ) % External Prediction % 

PDI 100.00 87.50 100.00 

AD 100.00 100.00 100.00 

Total rate 100.00 96.67 100.00 
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Table 5-6. Percentages of samples/patients classified correctly in both classification and 
internal/external validation in the SELECT-LDA performed when addressing the 
classification approach for dementia type differentiation. 

3rd-step differentiation approach:  

10 biomarkers 

2 categories ( PDD and AD) differentiation 

Selection order Wavenumber (cm-1) 

1 1340.4286 

2 1487.0078 

3 1488.9365 

4 1187.0990 

5 1277.7466 

6 1380.9307 

7 1188.0633 

8 1379.0020 

9 1382.8594 

10 1402.1461 

5.1.7.6 Chemical reasoning about possible contribution of selected wavenumbers in the 

third-step classification 

To distinguish between spectrochemical profile of patients with PDD and AD, the 

discriminant band at 1340 cm-1 due to bending (CH2) was selected as the most 

important. It was assigned to the absorption of collagen [60]. The involvement of 

determined vibrations attributable to collagen is entirely reasonable. Furthermore, it 

was shown that the brain’s neurons are the source of the specific type of collagen 

(collagen VI). Thus, an increased level of this collagen in the brain could have a protective 

function against AD [61]. Overall, other studies hypothesized that the progressive 

degradation of nerve cells coming with Alzheimer’s disease duration could potentially 

undermine their ability to produce collagen [62]. 

Moreover, in spectroscopic sub-signatures that could further differentiate between 

PDD and AD another region at 1402 cm-1 was associated with stretching vibration (ṽ) 

(C=C) of UA, which was discussed and justified above. Multiple signatures attributed to 

stretching vibrations of metile and methylene of lipids and phospholipids at 1379, 1380, 

1382, 1402, 1487 cm-1 and bending (CH2) at 1488 cm-1 have also been selected. Likewise, 

for the role of band at 1377 cm-1 in the global classification, in this classification sub-
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problem, we also speculated that bands at 1379, 1380 and 1382 cm-1 could correspond 

to amino acids and among these, proline [63]. 

Supplementary data (Table S 5-7, Table S 5-8, Table S 5-9) summarize all relevant 

absorption bands for each classification type, including the identification of the bond 

vibrations involved and the respective biochemical assignments.  

The main highlight of this untargeted FTIR-based metabolomics study was focused 

on discovering if spectroscopic signatures can differentiate PD from other 

neurodegenerative conditions with shared symptoms, but not on the analysis of the 

specific contribution of each FTIR reduced fingerprint component. Nevertheless, the 

provided biochemical reasoning about the contribution of specific bands in the 

differentiation of patients seems to be ideally in line with our results, reinforcing the 

suitability of our classification strategy. 

5.1.8 Conclusions 

There is still no standard robust approach for the objective diagnosis of Parkinson's 

disease; this field remains underexplored and poorly understood. The reported results 

highlighted the potency of the adopted chemometric strategy, based on a three-step 

classification approach in the stratification of Parkinson's patients; the disease was 

effectively classified and differentiated from the control group and other impairments 

such as Alzheimer's dementia. Spectral signatures in human plasma have been 

successfully identified for differentiation between patient categories by selecting 

significant wavenumbers closely related to PD pathogenesis and metabolic biomarkers. 

Moreover, the rapid, high-throughput and relatively inexpensive method provided 

optimal discrimination results in both sub-classification problems, succeeding in the 

stratification of patients with different PD stage progression profiles and those with 

different dementia type profiles, respectively. The reported untargeted metabolomic 

approach seems to deal significantly with the necessity of developing an alternative 

screening method to distinguish patient profiles, thus taking vibrational spectroscopy 

one step forward towards clinical implementation. All the speculations made about the 

involvement of selected bands in the pathogenesis of PD are immensely reasonable, and 

their role is perfectly justifiable for patient stratification. A primary limitation of the 

current work relies on the relatively small number of available plasma samples, 
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especially for one subgroup (patients with PD-related dementia), preventing more 

general conclusions. Further investigation is required; a more significant number of 

enrolled patients could strengthen the validity of the proposed classification strategies 

as an objective diagnosis of PD. 
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Supplementary data of Chapter 5.1 

Table S 5-7. Biochemical tentative assignments of the most discriminant wavenumbers selected by SELECT-LDA in the global classification 
approach aimed at differentiating between PD, AD, and healthy patients. 

Spectral Regions 
in Literature 

Peak Position 
(cm−1) ± 𝟏 Tentative Band Assignment Contributions 

~1155 1156, 1159 ṽ sym. (CO-O-C) Carbohydrates 

~1185–1120 1171, 1182 ṽ (C-C) and (O-P-O); 
(C-O) ring vibrations Nucleic acid “sugars” 

~1225 1215 ṽ asym. (O-P-O) Nucleic acids, 
phospholipids 

~1250–1220 1253 ṽ sym. (P = O) of the PO2 groups Nucleic acids, 
phospholipids 

~1360–1220 

1266, 1271, 1284, 1286,  
1288, 1289, 1294, 1302,  
1312, 1316, 1319, 1335,  
1336, 1377 

ṽ (C-C) and (C-O) 
ṽ (C-N) and C-(𝑁𝑂2)) 
ṽ sym. (PO2), predominantly 
ṽ (C-N) with significant contributions 
from ṽ (CH2) of carbohydrate residues, 
δ (CH2) 

Amide III band, 
proteins 

~1370 1377 sym. def. CH3 and sym. def. CH2 

Proteins, 
amino acids (cytosine, 
guanine, proline) 
lipids, phospholipids 

~1400 1403 ṽ (C = O) of (COO) group Fatty acids and 
amino acids 

~1420 1424 ṽ sym. (COO), 
δ asym. (CH2) Polysaccharides 

~1455–1450 1455 δ asym. (CH3) and (CH2) modes Proteins, lipids 
~1490–1470 1474, 1477, 1489 δ (CH2) Lipids 
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Table S 5-8. Biochemical tentative assignments of the most discriminant wavenumbers selected by SELECT-LDA in the classification approach 
aimed at stratifying PD patients. 

Spectral Regions in 

Literature 

Peak Position 

(cm−1) ± 𝟏 
Tentative Band Assignment Contributions 

~1185–1120 1170, 1171 
ṽ (C-C) and (O-P-O); 

(C-O) ring vibrations 
Nucleic acid “sugars” 

~1233 

~1225 
1214, 1224, 1226 ṽ asym. (O-P-O) 

Nucleic acids; phospholipids; 

uric ring vibrations 

~1360–1220 1292, 1294, 1297, 1342 

ṽ (C-N) and C-(𝑁𝑂2)); 

ṽ sym. (PO2) 

predominantly ṽ (C-N) with significant 

contributions from 

ṽ (CH2) of carbohydrate residues; 

δ (CH2) 

Amide III band; 

proteins; 

collagen 

~1420 1435, 1437 
ṽ sym. (COO); 

δ (CH2) 
Polysaccharides 

~1455–1450 1443, 1445 δ asym. (CH3) and (CH2) modes 
Proteins; 

lipids 

~1490–1470 1475, 1476 δ (CH2) Lipids 
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Table S 5-9. Biochemical tentative assignments of the most discriminant wavenumbers selected by SELECT-LDA in the classification approach 
aimed at achieving direct discrimination between dementia associated with both analysed pathologies (PD-related dementia and Alzheimer’s 
dementia). 

.

Spectral Regions 
in Literature 

Peak Position 
(cm−1) ± 𝟏 

Tentative Band Assignment Contributions 

~1185–1120 1187, 1188 
ṽ (C-C) and (O-P-O) 

(C-O) ring vibrations 
Nucleic acid “sugars” 

~1360–1220 
1277 
1340 

ṽ (C-C) and (C-O) 
ṽ (C-N) and (C-(𝑁𝑂2)) 

ṽ sym. (PO2) 
ṽ (C-N) with significant contributions from ṽ 

(CH2) of carbohydrate residues, 
δ (CH2) 

Amide III band; 
proteins; 
collagen 

~1370 1379, 1380, 1382 sym. def. CH3 and sym. def. CH2 

Proteins; 
amino acids (cytosine, 

guanine, proline) 
Lipids; 

phospholipids 

~1405–1400 1402 
ṽ (C = O) of (COO) group 

ṽ (C = C) 

Fatty acids; 
amino acids; (aspartate, 

glutamate) 
Uric acid 

~1490–1470 1487, 1488 δ (CH2) Lipids 
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5.2 IDENTIFICATION OF LIPIDOMIC TRAITS IN PLASMA SAMPLES FOR THE DISCRIMINATION OF 

PARKINSON’S DISEASE: UPLC-MS UNTARGETED APPROACH 

5.2.1 Introduction 

Nowadays, the prevalence of progressive neurodegenerative disease constitutes to be 

a socio-economic burden [1]. Thus, Parkinson’s disease is one of the most complex 

progressive neurodegenerative disorders which manifest with a broad range of motor 

and non-motor symptoms [2]. It is the second most common age-related 

neurodegenerative disorder after Alzheimer’s (AD). Such as this last one, PD is 

characterised by the accumulation of intracellular protein aggregates, Lewy bodies, 

composed primarily of the protein alpha-synuclein [3] For this reason, PD is both, a 

cerebral amyloid disease and the most common synucleinopathy [4]. In recent years, the 

interest of the scientific community in finding specific biomarkers of this 

neurodegenerative disease has grown substantially [5]. Despite insight derived from 

causative genetic mutations, which explain only a small proportion of cases the remaining 

90% are due to non-genetic factors and are apparently sporadic [6]. The exact 

pathogenetic mechanism underlying this disease is still poorly understood.  

Despite all the advances in genetics and neuroimaging, the PD diagnosis remains 

essentially clinical, based on subjective observations of clinicians. The most critical 

challenge in clinical practice stands in the inability to make a definitive diagnosis at the 

early stages predicting the disease progression.  The sign and symptoms appear on a later 

stage of the disease, when the neurodegenerative process has started and is irreversible. 

In addition, even when the new diagnostic criteria are correctly applied, the misdiagnosis 

rate is still high [7], precluding the intervention at the early stage of the disease. The false 

discovery rates regard the more frequent presence in elderly population of conditions 

such as essential tremor, cognitive impairment due to AD or progressive supranuclear 

palsy. In addition, the clinical frame could be ulteriorly complicated by the increasing 

incidence of co-morbidities. Therefore, the molecular mechanism leading to 

neurodegenerations remain elusive.  

Among currently hypotheses, the complex convergence of genetic and environmental 

factors, such as exposure to heavy metals, smoking or dietary habits were proposed to 
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play an important role in PD pathogenesis[8]. Many studies highlighted the role of 

oxidative stress and its elevated implication in protein misfolding, death of neuronal cells, 

lipid peroxidation- all mechanism at the basis of neuron degeneration[9]. Increasing 

evidence has demonstrated that brain and cognitive aging are accompanied by peripheral 

metabolic perturbations [10]. Since the metabolites are the end points of multiple 

interactions and processes that happens in the organism, metabolomics is an increasingly 

recognized tool for investigating altered metabolic profiles of patients. Within the 

metabolome, lipids are involved in the important biological functions, including structure 

of cell membranes, energy storage and signalling.  Thus, many studies reported that 

glycerophospholipids, sphingolipids and ceramides exert important biological roles in the 

central nervous system (CNS), such as signal transduction, apoptosis and structural 

neuronal maintenance [11]. In addition, changes in total ceramide molecular species and 

even changes in ceramide acyl chain length can affect membrane order or membrane 

lipid peroxidation [12]. Recently, it was shown that phospholipids and sphingolipids are 

highly concentrated in membrane lipids rafts (MLRs) . These specialized plasma 

membrane microdomains are integral to regulating intracellular trafficking and signal 

transduction [13]. Therefore, alterations in the composition of MLRs have been reported 

in PD. Likewise, it was shown that Alzheimer’s patients are characterized by the 

decreased levels of sphingomyelins and increased levels of ceramides due to 

sphingomyelin hydrolysis. Given this perspective, it is evident that dysregulated 

metabolism of the lipids in the brain may lead to functional neurological disorders. 

Metabolomics studies have already proven its great potential coupled with high-

throughput techniques to perform metabolic profiling to evaluate significantly 

discriminant biomarkers between healthy and diseased groups [14–20] that may 

contribute to neurodegeneration. In addition, since blood is readily available and easy 

sample, compared to cerebrospinal fluid that could create complications during the 

collection step, many studies predilate to investigate blood biomarkers.  

Thus, herein, we performed an untargeted metabolomic analysis using UPLC-MS/MS 

technique on plasma samples to investigate possible biomarkers responsible for changes 

and disarrangement in PD pathogenesis. Lipid extraction was performed to select only 

possible lipid species involved in PD or AD pathogenetic mechanism. Many studies focus 
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only on comparing metabolic profile and healthy controls. In this study we included AD 

patients, since misdiagnosis between Parkinson’s related dementia and Alzheimer 

dementia still occurs. 

5.2.2 Materials and Methods 

5.2.2.1 Chemicals 

Ultrapure water, used to prepare all the aqueous solutions, was obtained from the 

Milli-Q system (Milipore, Bedford, MA, USA). LC-MS grade acetonitrile (ACN), isopropyl 

alcohol (IpA), ammonium formate, high-performance liquid chromatography (HPLC) 

grade methanol and MTBE were supplied by Aldrich Chemie (Steinheim, Germany). 

5.2.2.2 Study population 

The blood from overnight fasting subjects was collected at The Molecular 

Neurobiology Department at the Biomedical Research Center of La Rioja (CIBIR), and the 

plasma of each participant was obtained. The study was conducted with x patients who, 

following the evolutionary stages established by Hoehn and Yahr: x patients have early 

PD-stage. They have recently been diagnosed with the disease solely based on their 

characteristic symptoms; x patients with AD Alzheimer's disease and x controls (CO), who 

belong to the family environment and are of a similar age to patients with a group of 

Parkinson's Disease enrolled in this study (Table 5-10). The study was conducted 

according to the guidelines of the Helsinki Declaration and was approved by the Ethics 

Committee of San Pedro Hospital. Written informed consent was obtained from each 

participant involved in this study. Any additional information was included in this study. 
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Table 5-10. Distribution of patient population. 
 

Gender N· Age distribution Age 

Controls Male 9 60-80 69±1 

Female 16 43-76 59±1 

PD Male 29 46-82 67±1 

Female 16 59-85 67±1 

AD Male 6 68-81 76±1 

Female 21 60-85 73±1 

 

5.2.2.3 Collection and handling of plasma samples 

Blood samples were collected in Becton Dickinson (BD) Vacutainer plastic tubes with 

K2EDTA for plasma separation. Thus, plasma fraction was obtained by centrifugation at 

2200 g for 15 min at 4·C. All samples as aliquots of 200 μl were frozen and stored in 

Eppendorf tubes at -80·C until further use.  

5.2.2.4 Lipid extraction 

Before lipid extraction, plasma thawing was performed according to the ultrasound-

assisted extraction (USAE) protocol for lipidomic analysis [21]. Thus, the samples left to 

defrost in the fridge for 8 hours by night were submitted to the extraction the following 

day. 

According to the MTBE-US-assisted lipid extraction method, 5 μL of Milli-Q water was 

added to a 10 μL aliquot of human blood plasma. Then, 20 μL of methanol was added to 

precipitate proteins by vortex-mixing for 2 min. Then, 250 μl de MTBE was added and 

dispersed by immersing the mixture in an ultrasonic water bath supplied by ATU 

Ultrasonidos (Valencia, Spain). The ultrasound frequency and power were 40 kHz and 100 

W, respectively. The temperature was set at 15·C, and the time was adjusted to 30 min. 

Once USAE was performed, 25 μL of Milli-Q water was added to the mixture. Finally, the 

organic phase was separated by centrifugation at 3000 rpm for 10 min at 10 ·C in an 

Eppendorf 5403 Refrigerated Centrifuge (Hettich, Tuttlingen, Germany).  

The lipid extracts in the upper phase were diluted five times with injection solvent 

before being collected and poured into an autosampler vial. Quality samples (QC) were 

processed similarly to the real samples. 
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5.2.2.5 Liquid chromatography-Mass Spectrometry 

To determine plasma lipid profiles, a Waters Acquity UPLC chromatography system 

(Milford, MA, USA), equipped with a Waters Acquity HSS T3 100 × 2.1 (i.d.) mm 1.8 μm 

particle size column and a Waters VanGuard precolumn of the same material, coupled to 

a Microtof-Q (Q-TOF) mass spectrometer (Bruker Daltonik GmbH, Germany) with an 

electrospray interface (ESI) was used. To ensure the quality and stability of samples, the 

temperature of the autosampler was maintained at 5°C, and the column at 55°C. A mass 

spectrometer was operated in both positive and negative modes. Chromatographic and 

mass spectrometry data were acquired using Data Analysis software Version 4.0 (Bruker 

Daltonik GmbH, Germany). 2 μL samples were injected. Elution was performed using the 

gradient mobile consisting phase A (acetonitrile–water mixture (60:40, v/v) with 10 mM 

ammonium formate ) and phase B (acetonitrile–isopropanol mixture (10:90, v/v) with 10 

mM ammonium formate). UPLC separation was performed using a linear gradient that 

increased from 40% to 100% B within 10 min, and was held at 100% B for an additional 2 

min. Finally, it increased from 0% to 60% A within 3.5 min. The total run time was 15.5 

min. The flow rate was set at 0.4 mL*min-1, and the injection volume was 10 μL. 

Mass spectrometry data were acquired using a Waters Synapt XS HDMS (Waters Corp, 

Milford, USA) set to collect the data in continuum format using electrospray ionisation 

(ESI) in positive ionisation mode (ESI+) and negative ionisation mode (ESI−), over the mass 

range of m/z 50–2000. Capillary and sampling cone were set to 1.75 kV and 40 V, 

respectively, with the source temperature set to 120 °C and the desolvation temperature 

500 °C. Gas flow rates were set at 800 L/h for the desolvation gas and 50 L/h for the cone 

gas, and the nebuliser gas was fixed at 6 bars. The mass spectrometer was set to acquire 

in resolution mode with a scan time of 0.4 s. Fragment ion information was acquired using 

a collision energy ramp from 20 to 50 V.  

Lockmass correction was achieved by infusing leucine enkephalin at 10 µL/min 

through a lockspray probe and acquired every 30 s; for positive mode, [M + H]+ = 

556.2771, and negative mode, [M − H]− = 554.2615. The data were collected using 

MassLynx V 4.2 (Waters Corp., Milford, USA). 

The diseased samples and controls were alternated concerning run, avoiding batch 

effect. Moreover, QC samples were inserted regularly throughout the analytical run 
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(after every 20 real samples) to check the methodology's performance and test its 

precision. 

5.2.2.6 Lipidomic data processing  

The acquired raw mass data were imported to Progenesis QI software (Waters 

Corporation, Milford, MA, USA) for peak detection, alignment, retention time correction 

and normalisation. Considering a more significant number of variables than the sample 

size, dimensionality reduction was imperative. The unsupervised principal component 

analysis (PCA) was performed on generated pre-processed data to monitor the stability 

of the study and observe the samples’ separation and exclude the presence of outliers. 

Thus, QC samples were used to monitor the analytical performance of the UPLC and the 

system’s stability. The high degree of aggregation of the QC samples in the PCA model 

was an instrumental stability and reproducibility index.  

Lipid metabolites were manually identified based on their exact masses, specific 

fragment and/or neutral losses [22] . A maximum error of 5mDa was defined for the 

attribution of the precursor ion. The statistically significant metabolites were identified 

by the following databases: LIPID MAPS (https://lipidmaps.org) and HMDB 

(https://hmdb.ca ). Thus, an attempted assignment of possible features to specific 

compounds was performed.  

5.2.2.7 Statistical analysis for biomarker analysis 

The generated matrices were subsequently analyzed using MetaboAnalyst 5.0 

(http://www.metaboanalyst.ca/), a comprehensive free and publicly accessible platform 

for metabolomics analysis that allows for applying univariate and multivariate methods.  

One-way parametric ANOVA followed by Tukey’s post-test (p< 0.05) was used to identify 

significantly altered lipid species. The Benjamin-Hochberg-based false discovery rate 

(FDR) was used for multiple testing corrections, with p FDR < 0.05 considered statistically 

significant. In addition, the fold change (log2FC) analysis was also performed by 

comparing the mean intensity. 

Thus, the supervised partial least square-discriminant analysis (PLS-DA) and the 

orthogonal partial least square-discriminant analysis (OPLS-DA) analysis were applied on 

normalized and Pareto-scaled matrix data to perform binary classification: i) CO vs PD, ii) 

https://lipidmaps.org/
https://hmdb.ca/
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PD vs AD and iii) CO vs AD. Differential lipid biomarkers were defined as variable 

importance projection (VIP) > 1. Each model was validated by Q2Y (predictive variation) 

and R2Y (explained variation) parameters based on 10-fold cross-validation (10-FC) and 

leave one out cross-validation (LOOCV).  

The receiver operating curves (ROC) were obtained to validate the discriminating 

power of the compounds responsible for each classification. ROC curve analysis is widely 

considered to be the most objective and statistically valid method for biomarker 

performance evaluation. Thus, the area under the curve (AUC) values (>70, p-value < 

0.05) allowed the evaluation of the sensitivity and specificity of each compound to be 

considered as a relevant biomarker. 

5.2.3 Results 

To investigate how lipids are affected in diseased patients, initial global lipidome 

analysis of controls samples, PD and AD diseased patients was performed. To discover 

specific metabolites, an untargeted lipidome profiling was conducted. After data 

processing and normalization, 555 features/compounds were detected in negative ion 

mode in plasma samples.  

Univariate analysis performed by one-way ANOVA yielded 88 altered lipid molecular 

species resulted altered when comparing all groups. The 15 first most discriminant 

features with tentative identification of lipids are displayed in heatmap plot (Figure 5.6). 

Of note, tiny clustering is observed between the groups; most controls are dispersed 

between two diseased groups, it could be explained by the age of healthy patients, and 

the possible alteration of lipidomic profile similar to those patients affected by PD or AD. 

 In addition, the PLS-DA was performed (R2=0.95 and relatively high Q2=0.49), a score 

plot of the PLS-DA showed a relatively clear group clustering according to component 1 

(9.8%), Figure 5.7. As revealed by the top 20 identified features selected based on the VIP 

score, the previous lipid trend is repeated.  

Thus, the alterations in several molecular species seems to belong to sphingolipids and 

glycerophospholipids, triglycerides and fatty acids metabolism, and the alteration in such 

lipid species are evidenced by both univariate and multivariate analyses. 
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Figure 5.6. Heatmap plot displaying patient clustering (control samples (CO), Parkinson 
and Alzheimer patients (PD and AD), respectively) according to one-way ANOVA followed 
by Tukey’s post-test (p< 0.05; FDR-adjusted). Identified lipid species are shown in rows, 
while samples are displayed in columns, according to cluster analysis (clustering based 
on Euclidean distance and Ward clustering algorithm. Each coloured cell on the heatmap 
plot corresponds to values above(red) or below (blue) the mean normalised peak 
intensity for a given compound. Abbreviations: Cer: ceramides; FA:   fatty acids; PA: 
phosphatidic acids; PC:  phosphatidylcholines; TG: Triglycerides. 

 

 

Figure 5.7. Multivariate analysis of plasma lipidome from healthy controls (CO), 
Parkinson’s (PD) and Alzheimer’s (AD) diseased patients. (A) Score plot of partial least 
square-discriminant analysis (PLS-DA); (B) Top 20 identified lipid compounds according 
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to component 1 values of the PLS-DA model. Abbreviations: Cer: ceramides; DG: 
Diacylglycerols; FA: fatty acids; PA: phosphatidic acids; PC: phosphatidylcholines. 

Unfortunately, some features that contribute to group differentiation remained 

unidentified. But those that we tentatively identified are perfectly in line with previous 

data, revealing the differences between PD and AD lipid profiles. Thus, we decided to 

examine specific differences between the groups, performing a pairwise comparison.  

5.2.3.1 Pairwise comparison 

 To explore the metabolic differences between groups, three binary classifications 

were performed using the supervised OPLS-DA method, which maximises the distance 

between groups and identifies essential variables to the classification based on the VIP 

score. Each separation was validated by a cross-validation algorithm showing relatively 

high R2 and Q2 values, and increased performance from components 1 to 3 was 

observed. As shown in Figure 5.8, all the groups are spatially segregated, one from each 

o. Thus, the control group were separated from diseased groups, CO vs PD (R2Y =0.69 

and Q2=0.32); CO vs AD (R2Y =0.62 and Q2=0.32), respectively. In addition, PD and AD 

patients were also significantly separated (R2Y =0.74, Q2=0.59). 

 

Figure 5.8. Pairwise comparison by orthogonal partial least-squared discriminant analysis 
(OPLS-DA) score plot of the UPLS-MS/MS data in ESI (-) mode. Before statistical analysis 
the data were Pareto-scaled. Score plot of the OPLS-DA revealing a clear segregation of 
groups a) healthy controls and Parkinson’s patients, b) controls and Alzheimer patients, 
and c) Alzheimer’s and Parkinson’s patients. 

According to the score OPLS-DA plots, the control and Alzheimer’s groups were less 

homogeneous than the Parkinson groups.  The diverse co-morbidities of the patients in 

these groups can explain this heterogeneity.  
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A good separation between PD and AD samples can be observed in the dendrogram 

obtained by performing the hierarchical clustering (HC) algorithm (Figure 5.9), with a 

Euclidean distance measure (in the scale distance from 1 to 60) and the Ward clustering 

algorithm. As observed, some overlapping samples are present, indicating the similarities 

in metabolic profile between Parkinson’s patients and Alzheimer patients.  

 

Figure 5.9. Hierarchical clustering dendrogram of samples using the Euclidian distance 
measure and the Ward clustering algorithm. 

Differences in lipidome alterations evidenced by OPLS-DA models need to be 

interpreted cautiously since univariate statistics yielded fewer specimens (Table 5-11). 

Therefore, an attempted assignment was also performed for these compounds based on 

the minimum m/z error and more probable neutral loss.  

These results reinforce the previous one, comparing three groups and confirming the 

involvement of sphingolipid and glycerophospholipid metabolism in PD and AD diseases. 
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Table 5-11. The information on selected biomarker panels. 

 

 

 

 

 

 

M/Z +/M/Z NAME ION CATEGORY T.STAT P.VALUE LOG2(FC) VIP 

PD VS AD 

782.6632 0.0117 HexCer 40:1;O2 [M-H]- Sphingolipids -4.57 0.00003 -1.4582 2.43 

764.5892 0.0081 PC O-32:0 [M+Formate]- Glycerophospholipids -5.46 0.00000 -1.7798 2.21 

312.7256 0.0103 CoA 7:1;O4 [M-3H]3- Fatty Acyls 4.20 0.00011 1.258 2.24 

CO VS AD 

811.6900 0.0202 SM 43:2;O2 [M-CH3]- Phosphosphingolipids -3.65 0.00083 -1.3194 2.00 

764.5892 0.0081 PC O-32:0 [M+Formate]- Glycerophosphocholines -3.54 0.00114 -1.3693 1.91 

CO VS PD 

782.6633 0.0117 HexCer 40:1;O2 [M-H]- Sphingolipids -4.25 0.00009 -1.3118 2.63 

301.7632 0.0494 LPC 24:1 [M-2H]2- Ceramides 3.85 0.00032 1.1784 2.54 
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Thus, ceramide HexCer (40:1;O2)  compared significantly in both pairwise 

comparisons, namely the differentiation of Parkinson patients and controls and 

Parkinson and Alzheimer subjects. Of note, most samples of the Parkinson’s group 

displayed increased levels of HexCer (40:1; O2) when compared to CO or AD. On the 

other hand, the putative biomarker sphingomyelin (SM) 43:2; O2, the ceramide 

biochemical precursor, was under-expressed in the AD group compared to controls. 

Likewise, the phosphatidylcholine (PC) O-32:0 is the most noticeable change (p-value < 

0.05) decreased in AD patients when compared to PD or controls. Interestingly, PD 

groups showed increased levels of PC (O-32:0) compared to the AD group and reduced 

levels of LPC 24:1 when compared to controls.  Of note, the putative compound CoA 

7:1;O4 resulted in discriminative between AD and PD patients, suggesting the underlying 

metabolic mechanism that involve higher expression of this compound in AD but not in 

AD pathogenesis. Therefore, major lipidome changes in the plasma are linked to altered 

sphingolipid and phospholipid metabolism, as were shown previously comparing the 

changes in plasma of these compounds between groups are shown in Figure 5.10. 

 

Figure 5.10. Box and whiskers plot illustrating increased and decreased intensity levels 
of p altered content of lipid biomarkers, identified in plasma by comparing a) healthy 
controls and Parkinson’s patients, b) controls and Alzheimer patients, and c) Alzheimer’s 
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and Parkinson’s patients. Medians, interquartile ranges (boxes), minimal and maximal 
values (whiskers) and missing values (black dots) are displayed. 

5.2.3.2 Predictive performance of lipid biomarkers by AUC 

The AUC of ROC curves of the potential lipid biomarkers were calculated to validate 

the discriminating power of the compounds responsible for separating controls from 

diseased patients and to distinguish groups with neurogenerative disorders. Higher 

values of AUC close to 1 indicate higher prediction. Significant AUC values (above 70) 

were observed in all biomarkers of pair comparisons. Thus, the diagnostic performance 

of potential biomarkers is displayed in Figure 5.11.
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Figure 5.11. The diagnostic performance of identified lipids via AUC curves for comparison between a) healthy controls and Parkinson’s patients, 
b) controls and Alzheimer patients, and c) Alzheimer’s and Parkinson’s patients are indicated. The AUC, 95% CI of each biomarker's sensitivity 
(true positive rate) and specificity (false positive rate) is displayed. 
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The classification performance of the AUC models for each biomarker panel are 

summarized in Table 5-12. 

Table 5-12. Results of diagnostic performance of the putative metabolite panel in 
pairwise comparison: Alzheimer’s and Parkinson’s patients; controls and Alzheimer 
patients; healthy controls and Parkinson’s patients. 

Name AUC Sensitivity Specificity 

PD vs AD 

HexCer 40:1;O2 0.806 80.00% 78.00% 

PC O-32:0 0.874 77.10% 78.90% 

CoA 7:1;O4 0.782 60.00% 94.70% 

CO vs AD 

SM 43:2;O2 0.787 70.00% 76.20% 

PC O-32:0 0.808 70.00% 76.20% 

CO vs PD 

Hex Cer 40:1;O2 0.765 78.40% 76.50% 

LPC 24:1 0.768 62.20% 88.20% 

 

As note, all the AUC models showed relatively high diagnostic performance. 

Nevertheless, the biomarker panel to discriminate between Parkinson’s and Alzheimer’s 

disorder reached the highest AUC values for PC O-32:0 (0.874) among other comparative 

models. Moreover, this metabolite obtained good diagnostic performance in the 

classification of CO and AD groups (70% and 76.20 % in sensitivity and specificity, 

respectively) confirming its importance in AD pathogenesis. In addition, the biomarker 

CoA 7:1; O4 from the panel PD vs AD, showed the highest specificity values (94.70%) 
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among all other discriminative lipid metabolites, suggesting its important contribution 

for PD and AD segregation.  

These results confirm that identified specimens, mainly choline-dependent 

phospholipids and ceramides might have a great promise to be considered as 

biomarkers for. 

5.2.4 Discussion 

The role of lipids in CNS and their implementation in multiple cellular mechanisms, 

membrane fluidity control, synapse stabilisation and transmission of electrical signals is 

widely known. Thus, the alteration of lipid metabolism in the CNS is addressed to 

neurodegenerative diseases and disorders, such as Parkinson’s disease, Alzheimer’s 

disease and many other injuries of CNS [11]. 

We evaluated and compared the lipidome profile of patients affected by 

neurodegenerative diseases such as Parkinson’s and Alzheimer’s. To the best of our 

knowledge, this is the first study focusing on both neuro disorders. Usually, very little 

importance is addressed because PD and AD present overlapping symptoms and could 

share similar metabolic profiles, which lead to misdiagnosis. Most previous studies 

focused only on the difference between one neurodegenerative disorder and normal 

samples and in lucky cases, on the progression of the same disease. Herein, the power 

of advanced untargeted metabolomic analyses based on UPLC-QTOF-MS was applied to 

gain insight into PD and AD mechanisms and specific plasma lipid biomarkers. Blood-

based biomarkers are still not routinely implemented in clinical practice but may be 

helpful since there is less risk of complication in older patients than with CSF sampling.  

By performing binary classification, the metabolites with high missingness or known 

drug metabolites were excluded as non-informative. Therefore, only a few statistically 

relevant metabolites were identified and considered prognostic. In addition, we 

performed a tentative assignment of the compounds. Thus, significant differences in 

patients’ profiles were found in the sphingolipid and glycerophospholipid categories. 

Interestingly, two of the identified compounds (HexCer 40:1; O2 and PC O-32:0) were 
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repeated in different classifications, reinforcing their significance as a discriminative 

biomarker of PD and AD. 

Herein, it was observed that choline-based metabolites could be involved in the 

pathogenesis of Parkinson’s and Alzheimer’s diseases.  Thus, lower phosphatidylcholine 

(PC) levels in AD patients were observed by performing both binary classifications: AD 

vs CO and AD vs PD, respectively. The decreased plasma PC levels in AD patients have 

been described previously. The targeted study by Mapstone et al.[23] showed that the 

pre-clinical group of AD patients would have a depletion of PC metabolites in the future. 

Likewise, Kim et al. [24] identified a panel of three PCs that were decreased in plasma of 

(younger and older) AD participants compared to normal controls. This evidence, joined 

with our findings, reinforces the theory that peripheral lipids are implicated in AD 

pathology.  

On the other hand, PC's spontaneous hydrolysis or enzymatic degradation is known 

to be responsible for lysophosphatidylcholine (LPC) generation [25]. It was shown that 

PC and LPC mechanism alterations are implicated in many diseases [26–28], including 

neurological disorders such as PD and AD. Recently, the study of Miletić Vukajlović et al. 

[29] investigated the association of PC/LPC ratio and the stages or disease progression 

of Parkinson, confirming that PD patients had elevated PC/LPC ratios regardless of the 

stage or duration of the disease. Thus, they assumed that oxidative stress might induce 

modifications in enzymes responsible for the conversion of the investigated species.  In 

addition, López de Frutos et al. [30] have found elevated serum PC levels with 

simultaneously decreased LPC levels, rendering an increased PC/LPC ratio. These 

findings are perfectly congruent with the obtained results in our study. Thus, PC levels 

were increased in the PD group when comparing PD and AD patients. Meanwhile, the 

LPC levels were decreased, comparing PD to normal controls. Globally, it could confirm 

the theory about elevated plasma PC/LPC ratio in Parkinson’s disorder.  

Similarly, to the controversial presence of phosphocholines in PD and AD patients, 

we also found the different levels of ceramide derivates between neurodegenerative 

disorders. Several lines of evidence implicate various sphingolipids in neuronal signalling 

and toxicity [31,32]. Thus, SM is involved in signal transduction and regulating 

inflammatory processes, such as response to oxidative stress [33]. Hydrolysis of SM 
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produces ceramides (Cer), which are known to mediate the relationship between Aβ 

pathology and neurodegeneration. Therefore, the perturbation in SM/Cer homeostasis 

might contribute to neurodegeneration and the relationship between SM and aspects 

of neurodegeneration is widely explored in AD [34]. The lipidomic plasma analysis of 

Baloni et al. identified the SM ratio as a strong intermediate trait for sphingolipid 

dysregulation in AD. In addition, the study of Huo et al. [14] demonstrated a decreased 

level of SM in the AD cohort. Therefore, the AD group has shown a reduced 

sphingomyelin level herein compared to healthy controls. Our findings are perfectly 

consistent with the literature evidence confirming the relationship between 

sphingomyelins and AD cognitive impairment. 

Meanwhile, decreased sphingolipids contribute to AD disorders; on the contrary, 

increased levels of ceramide species (e.g. mohesylceramides or lactosylceramides) 

contribute to PD pathophysiology [35]. Changes in sphingolipids metabolism and those 

associated with PD are usually linked to genetic conformation involved in PD 

impairment. For example, mutations in the GBA gene, encoding for the lysosomal 

enzyme glucocerebrosidase, catalyse the synthesis of ceramide from glucosylceramides 

(GlcCer), leading to the accumulation of GlcCer in brain and blood [36]. Thus, Cer: GlcCer 

ratio alterations could contribute to alpha-synuclein accumulation in glial cells [37]. 

Possibly, the identified ceramide HexCer (40:1;O2) showed higher PD levels than 

controls or AD patients. The accumulation of ceramides leads to neurotoxicity; thus, it 

is expected to find the same levels of ceramides in both neuro disorders. Nevertheless, 

it was shown that an increase in ceramide levels is detected during the initial stage of 

dementia and decreases afterwards during the course of AD [38].  

Interestingly, among three discriminant compounds identified to discriminate AD 

from PD patients, CoA 7:1;O4 biomarker was evaluated. Acetyl-CoA plays a key role in 

the proper functioning of the cell, such as glycolysis, fatty acid synthesis or TCA cycle in 

mitochondria. Thus, dysregulation and deficit in mitochondrial metabolism are often 

linked to cognitive dysfunction in AD patients, meanwhile, increased acetyl-CoA levels 

provide neuroprotection [39]. Therefore, further studies should be done to completely 

understand and justify the contribution of this metabolite to neurodegenerative 
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pathologies. Nevertheless, these preliminary results provided meaningful lipidomic 

information about PD and AD plasma profiles. 

Although only some specific PD and AD biomarkers were identified using the 

untargeted lipidomic approach, the current findings are perfectly congruent with 

previously reported studies. Therefore, they could be the standpoint for hypothesis-

driven targeted analysis. Nevertheless, certain limitations should be taken into 

consideration. Firstly, a larger sample size and a more homogenous cohort of 

participants must confirm the results. Furthermore, the effects of genetic background, 

nutrition, and other factors that might impact blood lipid composition should have been 

taken into account. In addition, many evaluated features remained unidentified, 

indicating that the endogenous metabolites remain poorly understood. 

5.2.5 Conclusions 

An UPLC-MS/MS approach was performed to study the plasma lipidomic profile of 

patients with neuro disorders, PD and AD respectively. Similar investigations confirmed 

the lipid alterations presented in this study. Furthermore, they showed statistically 

significant difference, thus could be a prominent biomarker to the differentiation 

between AD or PD and healthy controls, and between two neuro disorders that often 

share similar symptoms, leading to clinical misdiagnosis. Thus, significant changes in 

sphingolipids and glycerophospholipids in blood composition were observed 

responsible for patient differentiation, which could be useful for diagnostics and may 

lead to promising new therapeutic targets. Further, targeted and longitudinal studies 

are required. 
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Abstract 

This chapter summarises all the studies performed on Amyotrophic lateral sclerosis 

disease. ALS is characterised by progressive muscle weakness, with rapid progression 

and fatal outcomes only a few years after diagnosis. In addition, the tardive appearance 

of ALS clinical symptoms delays the diagnosis and appropriate treatment. Moreover, 

misdiagnosis often happens with other motor neuro disorders. Here, we investigated 

the potential of both FTIR and ATR-FTIR spectroscopy as rapid tools for discriminating 

ALS patients from controls and ALS progression. Within this method, we aimed to reveal 

that the adopted analytical strategy may extract significant bio-spectroscopic markers, 

providing excellent group separation and achieving high classification accuracy.  It is 

well-known that lipids exert various functions in the central nervous system, including 

roles in cell structure, synaptic transmission, and multiple metabolic processes. Thus, a 

non-targeted lipidomic approach using UPLC-MS/MS was performed to unravel 

alterations in one or more lipid specimens and metabolic pathways where they are 

possibly involved in ALS disease.
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Resumen 

Este capítulo resumen todos los estudios realizados sobre la enfermedad de 

Esclerosis Lateral Amiotrófica (ELA). La ELA se caracteriza por una debilidad muscular 

progresiva, con una rápida progresión y resultados fatales solo unos pocos años después 

del diagnóstico. Además, la aparición tardía de los síntomas clínicos de la ELA retrasa el 

diagnóstico y el tratamiento apropiado. Par no decir que a menudo ocurre un 

diagnóstico erróneo con otros trastornos neurológicos motores. En este trabajo, 

investigamos el potencial de la espectroscopía FTIR y ATR-FTIR como herramientas 

rápidas para discriminar pacientes con ELA de los controles y para evaluar la progresión 

de la ELA. Con este método, pretendíamos demostrar que la estrategia analítica 

adoptada puede extraer marcadores bio-espectroscópicos significativos, 

proporcionando una excelente separación de grupos y logrando una alta precisión de 

clasificación. Es bien sabido que los lípidos ejercen diversas funciones en el sistema 

nervioso central, incluyendo roles en la estructura celular, la transmisión sináptica y 

múltiples procesos metabólicos. Por lo tanto, se realizó un enfoque lipidómico no 

dirigido utilizando UPLC-MS/MS para descubrir alteraciones en una o más especies de 

lípidos y en las vías metabólicas en las que posiblemente están involucrados en la 

enfermedad de la ELA. 
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6 CHAPTER 6. AMYOTROPHIC LATERAL SCLEROSIS 

6.1 EMERGING FTIR-CHEMOMETRIC APPROACH FOR ALS PATIENTS’ DISCRIMINATION 

BASED ON SELECTED SPECTRA BIOMARKERS 

6.1.1 Introduction 

Amyotrophic lateral sclerosis (ALS) is a rare progressive neurodegenerative disease 

that affects upper and/or lower motor neurons [1]. Progressive muscle weakness and 

atrophy are typical ALS hallmarks with fatal outcomes (3-5 years after the symptoms' 

onset) due to respiratory muscle paralysis [2]. Different pathogenic mechanisms showed 

to account for the deleterious effect of ALS, such as genetic mutations, e.g., the gene 

encoding the protein superoxide dismutase 1 (SOD1)[3] that are present in a significant 

percentage of familial cases or mutations in the fused in sarcoma (FUS) gene [4], the 

presence of mutant proteins such as TDP-43, aberrant RNA metabolism and protein 

aggregation, and environmental influences. In addition, there is increasing evidence 

indicating that dysregulation of lipid homeostasis is involved in the neurodegenerative 

and neuroinflammatory disorders such as ALS [5]. Lipids play a crucial role in the central 

nervous system (CNS), especially in astrocytes, where they are involved in energy 

generation, membrane fluidity and cell to cell signalling. Thus, alteration in lipid 

metabolism, e.g., dysregulation in sphingolipids and glycosphingolipid’s structure and 

metabolism in astrocytes, contribute to pathogenic mechanism in neurodegenerative 

disorders[6–8]. 

Moreover, among different lipids present in neuro-motor cells, cholesterol is of 

particulate interest, regulating cell membrane flexibility. Many emerging evidences 

showed that higher serum cholesterol levels may prolong the survival in ALS patients 

[9]. Nevertheless, no specific biomarkers exist for ALS diagnosis. 

Currently, ALS diagnosis is still challenging; the process relies essentially on clinical 

assessment of symptoms, physical examination, and confirmatory electromyography 

tests [10]. In addition, the arrangement of symptoms displayed by patients during the 

course of the disease reflects the progressive loss of motor neurons. Thus, patients with 

ALS share some overlapping features with other commonly known neurodegenerative 
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disorders such as Parkinson's, Alzheimer or other neuro-disorders (ON), namely, 

muscular dystrophies such as Myotonic Dystrophy or Becker's Muscular Dystrophy [11–

16]. This issue makes their differentiation a challenging and time-consuming task. In 

addition, the misdiagnosis could occur not only because of the resemblance between 

the symptoms with other neuro disorders but either because of clinical and 

pathophysiological heterogeneity between ALS phenotypes [17].  

Symptoms may appear only late in the disease course; therefore, there could be a 

significant gap between the first clinical visit and the acclaimed diagnosis. For this 

reason, tardive diagnosis and misdiagnosis may compromise a patient's survival rates 

because once the onset of the symptoms happens (functional involvement by weakness, 

wasting or spasticity), the neuron degeneration that has occurred is already irreversible. 

In addition, the delay period in ALS diagnosis prevents opportune treatment and patient 

prognostication in this way. Therefore, the universal and objective measure of disease 

progression is crucial and would benefit patient well-being.  

In this context, metabolomic approaches investigating changes in the whole 

metabolome are gaining momentum. Investigating the metabolomic profile may reveal 

novel dysfunctional pathways suitable for therapeutic targeting. Since metabolites are 

the final product of the cellular process, they are thought of as a reflection of possible 

cellular anomalies and dysregulations [18]. In addition, metabolomics is particularly 

suitable for studying easily accessible matrices such as saliva, urine or blood to provide 

early diagnosis and to define clinical subgroups at the metabolomics level [19]. 

Metabolomics studies usually are coupled with computational methods such as 

machine learning techniques, which are becoming highly helpful for the illness 

monitoring process [20,21]. The need for early and reliable differential diagnosis of 

subgroups of ALS patients or ON disorders that share some common features is 

imperative for starting advanced specific therapies as soon as possible.  

For this reason, herein, we performed an FTIR-based approach coupled with 

chemometric techniques on a small volume of blood supernatant to effectively explore 

disease processes and find early signs indicative of ALS onset. FTIR presents multiple 
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advantages for this type of analysis since it is rapid, non-invasive, reagent-free and cost-

affordable [22].  

Thus, besides being an established tool in analytical chemistry, FTIR spectroscopy is 

an emerging tool in the differential diagnosis between diseased and healthy patients 

and is always one step forward to incorporating it into clinical reality [23–35].  

Changes and disarrangements in the organism are reflected in metabolite 

composition in such a complex fluid as blood, thus, providing a unique FTIR signature 

that can be used as a “barcode” of the disease. Herein, we sought to identify the spectral 

differences, readily detectable through FTIR, associated with healthy and diseased 

patients or specific points of the ALS pathological course. This study focuses on the 

detection of certain spectra biomarkers related to amyotrophic lateral sclerosis 

progression stage, which can be used to discriminate between affected patients from 

the controls and from patients affected by ON.  

6.1.2 Experimental section 

6.1.2.1 Study approval 

The study protocol has been approved by the local ethics committee (Comité de Etica 

de la Investigación de la Comunidad de Aragón or CEICA) (CP-CI PI18/078). Blood 

samples from patients were obtained with written informed consent prior to inclusion 

in the study to publication of their case details, which has been conducted according to 

Declaration of Helsinki principles, and according to the Directive 2004/23/EC of the 

European Parliament and of the Council and to the institutional ethical committees of 

Niguarda Ca’Granda Hospital (approval N· 636-122015;23-12-2015). Participants were 

identified by number, not by name. 

6.1.2.2 Experimental design  

This study included a total of 76 blood samples of a cohort of participants from 

Niguarda Ca’Granda Hospital in Milan (Italy) matched for age and gender, whenever 

possible. The samples analysed in this study were obtained after first centrifuging each 

Pax tube containing the blood sample for 10 minutes at 3000-5000 rpm and incubated 

for 2 hours at room temperature, following the recommendations of the commercial kit 

[36]. The supernatant samples recovered from this first centrifugation were used to 
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perform the analysis in this study. In addition, these samples were preserved at -80 °C 

for further use. A total of 35 ALS patients, 34 healthy controls and 7 patients with other 

neuropathies (ON) were included. The ALS group was divided in two subgroups, 19 

patients that were collected at first diagnosis ALS (T0) of which 16 were obtained as 

samples after 6 months of diagnosis/treatment ALS (T6). The ALS group included familial 

ALS (fALS) cases due to quadruple mutation in the ALS susceptibility genes 

SOD1/TDP43/FUS/c9orf72. Similarly, considering the availability of the samples at T6 in 

the same participants, the healthy control group was divided into 19 participants at T0 

of which 15 were obtained as samples at T6. Regarding the ON group, only samples of 7 

participants collected at T6 were at our disposal. The ON participants were affected by: 

Becker’s Muscular Dystrophy, Extrapyramidal syndrome, Facioscapulohumeral 

Muscular Dystrophy and Myotonic Dystrophy.  

6.1.2.3 FTIR spectroscopy 

Spectra were obtained using Spectrum Two FT-IR spectrometers (PerkinElmer) and 

recorded in the region 1500-1000 cm-1 spectral range with a resolution of 2 cm-1 as 

described in Chapter 3.3.1.1 Analysis of samples by FT-IR . 

6.1.2.4 Data analysis 

The averaged spectra were processed with Unscrambler 11 chemometric software 

package (version 11.0, Camo Software, Oslo, Norway) and a Parvus software[37], a free 

and open-source machine learning source developed at the University of Genova, Italy. 

In order to correct problems that can arise during the spectral data acquisition such as 

random noise, baseline distortions or light scattering, extended multiple scatter 

correction (EMSC) was applied. Afterwards the Savitzky-Golay normalization, 

performing second derivates with nine points was applied. The application of efficient 

variable selection technique, such as SELECT, to find the informative features that would 

allow successful prediction was studied. SELECT is an important variable selection 

method that select essential variables and decorrelate them from other variables based 

on the maximum correlation weight. Therefore, only really relevant and important 

variables are extracted and used in the subsequent classification steps. Thus, after 

performed the data dimensionality reduction, eliminating futile spectra variable, linear 

discriminant analysis (LDA) approach was performed [38,39]. This two-step strategy has 
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been widely applied in differential diagnosis of other disorders performed by our group 

[40–42] ; thus, a careful reading of the theory is encouraged for its comprehension. A 

leave-one-out (LOO) cross validation (CV) was used in every classification step to 

optimise classifications, and external validation to evaluate prediction ability.  

A small test set, due to the small number of samples in some categories were used 

to calculate model prediction ability. The evaluation of the model is conducted based on 

accuracy, sensitivity and selectivity of the model towards each group of patients. 

6.1.3 Results 

This study focuses on the detection of certain spectra biomarkers related to ALS 

progression stage, which can be used as input features to discriminate affected patients 

from the controls and from patients affected by other neuropathies. With this aim, a 

dataset of healthy control and diseased blood samples were collected and the IR spectra 

obtained by SELECT algorithm was used as predictor variables to create the following 

LDA classification models: i) ALS versus controls versus ON, ii) ALS (T0) versus ALS (T6) 

versus ON iii) ALS (T0 and T6) versus controls, iv) ALS T0 versus HC (T0), v) only ALS 

progression stage (T0 versus T6). 

All the spectra were registered in the fingerprint region, the so-called ‘’barcode’’ of 

the metabolic changes. However, our previous studies and experience showed that 

other regions are usually non-informative. Thus, to reduce the analysis time, all the 

spectra were registered in the 1500-1000 cm-1 region where the absorption of proteins, 

carbohydrates, lipids and nucleic bases occurs; it is even more suitable for clinical reality. 

Therefore, all the analysis was performed in this region.  

6.1.3.1 ALS(T6) versus HC(T6) versus ON 

For this first classification, 33 subjects divided into three main groups, ALS (T6), 

healthy subjects (T6) and ON, were included. In order to obtain as much as possible 

congruent and reliable classificatory results, only patients collected after six months of 

the disease progression were selected for this classification. The SELECT strategy was 

performed to investigate the most important variables that contribute to patient group 

differentiation. Herein, 11 spectra biomarkers were needed for optimal LDA separation 

between the three groups of blood. 



 

186 
 

The full cross-validation was applied on the second derivate of the training set's 

spectra, and the resulting prediction matrices are displayed in Table 6-1. Among 29 test 

samples, none were misclassified, leading to a performance of 100% in sensitivity, 

specificity and precision. Therefore, healthy patients could not be confused with having 

one of two pathologies: ALS or other neuropathies. Furthermore, the excellent 

specificity of the model towards three groups reflects the high ability of FTIR spectra in 

detecting ALS samples and discriminating them from other motor-related pathologies. 

Thus, the two medical conditions are perfectly separated.  

The prediction performance with four spectra in the test set was performed using the 

model built here on the training test. The overall performance obtained in external 

prediction gave as good results as in classification found for the training set, 100%, 

respectively. The classification ability to discriminate between tree groups could be 

visually appreciated in Figure 6.1. The patient profile of these patients’ groups seems to 

be unequivocally separated by the score difference of canonical variables. Likewise, the 

score differences between the first and second canonical variable (x-axis) and the score 

difference between the first and third canonical variables (y-axis) seems to have the 

same contribution in separating clearly healthy subjects and pathologic subject between 

them.  

Table 6-1. Prediction matrices and percentages of correctly classified samples in both 
classification and internal/external validation corresponding to the SELECT-LDA 
performed to discriminate between HC, ALS and ON patients. 

 Category  

 Pathology ALS HC ON Sensitivity% Specificity % Precision % 

Training set 

ALS 10 0 0 

100 100 100 

HC 0 13 0 

ON 0 0 6 

Test set 

ALS 2 0 0 

HC 0 1 0 

ON 0 0 1 

 



 

187 
 

 

Figure 6.1. Plot of the differences between discriminant scores for supernatant blood 
samples after performing SELECT-LDA in the first FTIR-based classification approach. The 
three groups of samples considered are labelled as: healthy control (◼), ALS (◼), and ON 
(◼) subjects. Test samples are displayed as unfilled circles (). 
 

6.1.3.2 ALS (T0) versus ALS (T6) versus ON 

Herein, the classification of 40 recorded spectra of recently diagnosed ALS patients 

(T0), patients after six months (T6) of diagnosis and patients with other 

neurodegenerative motor pathologies was performed. For this discrimination, 16 

variables previously selected by the SELECT algorithm were used. The training and test 

sets yielded the prediction matrices shown in Table 6-2. 
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Table 6-2. Prediction matrices and percentages of correctly classified samples in both 
classification and internal/external validation corresponding to the SELECT-LDA 
performed to discriminate between ALS T0, ALS T6 and ON. 

 Category  

 Pathology 
ALS 

T0 

ALS 

T6 
ON Sensitivity% Specificity % Precision % 

Training set 

ALS T0 16 0 0 

100 94.44 100 ALS T6 2 12 0 

ON 0 0 6 

Test set 

ALS T0 2 0 0 

100 100 100 ALS T6 0 1 0 

ON 0 0 1 

 

The total LDA classification ability yielded 100%, meanwhile, the overall predictive 

ability of the model showed 94.44 %. Compared to previous optimal separation 

performed to distinguish patients based on the advancement of the disease, herein, 

among 14 ALS (T6) patients, two subjects were misclassified as patients with recently 

diagnosed ALS (T0). These results could reflect some issues due to the heterogeneity of 

ALS phenotype, and confirmed that the progression of the disease could have been 

more manifest in terms of metabolic evolution, as it has been previously reported [17]. 

Nevertheless, a test set of 4 spectra not included in the training set showed perfect 

prediction ability, and all patients were ideally classified. A good group separation can 

be appreciated in Figure 6-2. The three groups of patients affected by similar 

neurodegenerative disturbs are perfectly separated by the score difference between the 

first and third canonical variables (y-axis). Interestingly, it can be observed that the two 

ALS disease-carrying groups are almost not separated on the x-axis, but both ALS groups 

are greatly distinguished from patients carrying other neuro disorders, suggesting that 

ALS groups are characterised by changes in the metabolic profile that do not describe 

patients with ON.  
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Figure 6-2. Plot of the differences between discriminant scores for supernatant blood 
samples after performing SELECT-LDA to discriminate between three groups of samples: 
ALS T0 (◼), ALS T6 (◼), and ON (◼) subjects. Test samples are displayed as unfilled circles 
(). 

6.1.3.3 ALS (T0) versus ALS (T6) versus HC (T6) 

Based on excellent discrimination ability of developed classification rules, we decided 

to test the performance of LDA in discriminate between patients affected by ALS but in 

different stage of the disease and healthy controls. Thus, 47 of second-derivate spectra, 

five of which was used as a test set was included. As in previous classification, 16 spectra 

variables were selected as important and decorrelated for this classification step. The 

resulting prediction matrix after a full cross-validation is showed below (Table 6-3). 
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Table 6-3. Prediction matrices and percentages of correctly classified samples in both 
classification and internal/external validation corresponding to the SELECT-LDA 
performed to discriminate between ALS T0, ALS T6 and HC. 

 Category  

 Pathology 
ALS 

T0 

ALS 

T6 
HC Sensitivity% Specificity % Precision % 

Training set 

ALS T0 15 0 0 

100 97.67 100 ALS T6 0 14 0 

HC 1 0 1 

Test set 

ALS T0 2 0 3 

100 100 100 ALS T6 0 2 0 

HC 0 0 1 

 

Among 29 samples belonging to ALS group none were misclassified, leading an 

outstanding performance in sensitivity, specificity and precision. Only one of healthy 

subjects was confused as having initial stage of ALS, leading to 97.67% of specificity. 

Nevertheless, the overall performance obtained in external prediction provided 

excellent results, 100%, respectively. In addition, excellent specificity of the model 

towards three groups and the discrimination ability of selected FTIR variables to 

discriminate between affected patients and healthy one could be appreciated in Table 

6-3. Thus, all of conditions are perfectly separated. Herein, the discrimination between 

states of ALS could be observed on both, x-and y-axes. Likewise, HC patients seem 

isolated from ALS patients on the score difference between the first and second 

canonical variables, and between the first and third, respectively.  
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Figure 6-3. Plot of the differences between discriminant scores of blood samples after 
performing SELECT-LDA to discriminate between three groups of samples: ALS T0 (◼), 
ALS T6 (◼), and HC (◼) subjects. Test samples are displayed as circles (). 

6.1.3.4 ALS T0 versus HC (T0)  

Once the differentiation among three classes of patients was performed, we performed 

sub-classifications to discriminate directly between healthy controls and patients at the 

initial stage of ALS (T0) and between the ALS progression stage. These types of 

classification are the most exciting and helpful in the clinical setting to obtain quick 

screening and diagnosis without recurring laborious and time-consuming clinical tests. 

Therefore, patients at the initial ALS stage and controls whose blood was collected at 

the same time as those of ALS (T0) were included in this first sub-classification. In 

compliance with the rules followed before, the number of discriminant variables 

changed so that training objects were at least three times greater than the number of 

final selected wavenumbers. LOO CV was performed on autoscaled data. A test subset 

of five samples selected randomly, four for the HC group and one for ALS (T0), was used 

to optimise and validate classifications. Herein, 100% in classification and 100% in 

prediction (internal and external) were achieved (Table 4). Herein, the number of 

features was reduced from 500 to only ten variables, proving this classification strategy's 

outstanding performance. A discriminative histogram is displayed in Table 6-4, showing 
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a clear class separation on the first canonical variable, which represents the direction 

with the maximum discrimination power, namely the maximum Fisher ratio (the ratio 

between the interclass and the intraclass variance).  

Table 6-4. Prediction matrices and percentages of samples classified correctly in both 
classification and internal/external validation in the SELECT-LDA performed when 
addressing the classification approach to discriminate between ALS at initial stage 
and healthy controls. 

 Category 

 Pathology 
ALS 

T0 
HC Sensitivity% Specificity % Precision % 

Training set 

ALS T0 13 0 

100 100 100 

HC 0 17 

Test set 
ALS T0 4 0 

100 100 100 

HC 0 1 

 

 

Figure 6-4. Histogram of the first canonical variable for the discrimination of ALS patients 
at the initial stage (T0) (◼) and healthy controls at the same time of blood collection (T0) 
(◼) after performing SELECT-LDA (y-axis indicates the maximum discrimination power 
between categories). Test samples are displayed as circles (). 

6.1.3.5 ALS T0 versus ALS T6  

Based on excellent classification results and perfect group separation obtained utilising 

three groups of patients, we wanted to test FTIR's ability to distinguish only between 
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ALS patients in different disease stages. The classification strategy followed the same 

classification rules as described ahead. Thus, only nine wavenumbers were retained to 

create this additional classification step, based on applying SELECT as a variable selection 

method in tandem with LDA. LOO CV and a test subset of five samples selected 

randomly, three for the ALS (T0) group and two for ALS (T6), were performed to optimise 

and validate classifications, always on autoscaled data. In this case, optimal accuracy, 

specificity and sensitivity were achieved, using only nine discriminative spectra bands to 

remarkably separate between ALS patients in different stage of the disease. The 

prediction matrix is displayed in Table 6-5. In this sub-classification, a clear group 

separation between ALS patients before and after six months of disease progression is 

visually appreciated by the histogram in Figure 5, where the direction with the maximum 

discrimination power, namely the first canonical variable, displays good within-class 

separation. This feature proves an outstanding performance of the method and its 

reliability and good performance of the classification strategy based on reduced spectra 

signatures. 

Table 6-5. Prediction matrices and percentages of samples classified correctly in both 
classification and internal/external validation in the SELECT-LDA performed when 
addressing the classification approach for ALS progress disease stratification. 

 Category 

 Pathology 
ALS 

T0 

ALS 

T6 
Sensitivity% Specificity % Precision % 

Training set 

ALS T0 15 0 

100 100 100 

ALS T6 0 20 

Test set 
ALS T0 3 0 

100 100 100 

ALS T6 0 2 
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Figure 6.5. Histogram of the first canonical variable for the discrimination of ALS patients 
at diagnosis time (T0) (◼) and after six month of disease progression (T6) (◼) after 
performing SELECT-LDA (y-axis indicates the maximum discrimination power between 
categories). Test samples are displayed as circles (). 

6.1.3.6 Discriminative spectra and biochemical reasoning 

The discriminative spectra biomarkers selected in each classification problem are 

summarized in Table 6-6. As shown, some overlapping peaks resulted significantly in 

different types of classification. Therefore, we performed a comparative analysis of the 

selected peaks that coincided among different classifications. Interestingly, some bands 

coincided in distinguishing ALS from other pathological conditions, independently of its 

progression stage, namely spectra signatures at 1355,1356.5 cm-1. Therefore, the 

selected peaks at 1006, 1007.5, 1011, 1012.5, and 1200.5 cm-1 contribute to the 

discrimination of ALS patients at the initial disease stage (T0). Likewise, spectroscopic 

signatures at 1054, 1054.5, 1057.5, 1060, 1060.5, 1073.5, 1076 cm-1 discriminate 

specifically subjects in the advanced ALS (T6) stage. In addition, many of the selected 

peak positions have the same significance and contribution to patients' separation. All 

relevant bands and their respective biochemical assignments, including the possible 

identification of bond vibration are reported in Table 6-7
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Table 6-6. Discriminant wavenumbers (in order of selection) corresponding to the SELECT-LDA classification developed from FTIR 
spectra of supernatant blood samples in every classification step. 

ALS vs HC vs ON 
11 variables 

ALS T0 vs ALS T6 VS HC 
16 variables 

ALS T0 vs ALS T6 vs ON 
16 variables 

ALS T0 vs ALS T6 
9 variables 

ALS T0 vs HC T0 
10 variables 

1321.5 1321.5 1308 1110 1099 
1302.5 1060.5 1043 1425.5 1273.5 
1060 1355 1011 1308 1465.5 
1443 1425.5 1231.5 1049 1011 
1182 1345.5 1060 1241 1171.5 

1420.5 1159.5 1411 1200.5 1037.5 
1073.5 1097 1473.5 1376.5 1007.5 
1171 1354.5 1364 1068.5 1200.5 
1090 1088 1432 1076 1116.5 

1154.5 1032 1049.5  1455 
1051.5 1054 1062   

 1259.5 1471   
 1273 1356.5   
 1006 1012.5   
 1057.5 1349   
 1405.5 1170.5   
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Table 6-7. Biochemical tentative assignments of the most discriminant wavenumbers 
selected by SELECT-LDA in each classification step. 

Spectral 
regions in 
literature 

Selected discriminant bands 
Attempt band 
assignment 

Biochemical reasoning 

~1010-
1080 

1006, 1007.5, 1011, 1012.5, 
1032,1037.5, 1043, 1049, 
1049.5, 1054, 1054.5, 1057.5, 
1060, 1062, 1065.5, 1068.5, 
1076, 1073.5, 

ṽ sym. (PO2) 
Phospholipids 
Nucleic acids 

 
1090, 1097, 1088, 1110, 1099, 
1116.5 

  

~1185-
1120 

1154.5,1159.5, 1170.5, 1171.5, 
1182, 1200.5 

ṽ (C-C) and (O-P-O) 
(C-O) ring 

vibrations 

v˜ sym. (CO-O-C) 

Nucleic acid ‘’sugars’’ 
Carbohydrates 

~1350-
1220 

1231.5, 1241, 1259.5, 1273, 
1273.5, 1302, 1302.5, 1308, 
1321.5, 1345.5, 1349 

ṽ (C-C) and (C-O) 
ṽ (C-N) and (C-

(𝑁𝑂2)) 
ṽ sym. (PO2) 
ṽ (C-N) with 

significant 
contributions from ṽ 

(CH2) of carbohydrate 
residues, 

δ (CH2) 

Amide III-band; 
Proteins; 

~1360-
1380 

1354.5, 1355, 1356.5, 1364, 
1376.5 

sym. def. CH3 and 
sym. def. CH2 

Proteins; 
amino acids 

Lipids; 
Phospholipids 

~1405-
1400 

1405.5 
ṽ (C=O) of (COO)-

group 
ṽ (C=C) 

Fatty acids; 
Amino acids; 

(aspartate, glutamate) 

 
1411, 1420.5, 1425.5, 1432, 
1443, 1455, 1465.5 

  

~1490-
1470 

1473.5, 1471 δ (CH2) Lipids 



 

197 
 

 

6.1.4 Discussion 

FTIR spectroscopy is a promising diagnostic tool that is highly applied to distinguish 

diseased samples from normal ones, showing high sensitivity, accuracy and specificity 

results. The main advantage of this technique is that minimum or any sample pre-

treatment is required. Thus, it can provide the response rapidly. In addition, it is user-

friendly and is suited for analysing different biological samples, such as blood, which are 

easily collected in clinical settings. Moreover, it should be outlined that sampling blood 

from patients is less invasive than sampling cerebrospinal fluid (CSF), which is usually 

collected to perform tests in ALS. Considering the molecular complexities of blood 

composition, applying the chemometric technique is imperative. Thus, statistical and 

mathematical algorithms are usually applied to extract chemo-physical information 

from the generated spectral data. Previous studies performed in vitro in mutant-derived 

S. cerevisiae suggested aggregation propensities related to G93A and G85R mutations 

using FTIR spectroscopy [43]. These mutations are linked to familial cases of ALS, 

indicating that they could form oligomeric aggregates, probably with molecular 

intermediates, to finally coalesce into large insoluble aggregates, which could enhance 

toxicity. However, few studies have shed light on molecular disturbances using FTIR 

spectroscopy in vitro or in vivo ALS models [44]. Therefore, this study analysed non-

invasive biological samples to characterising better ALS patients concerning healthy 

controls and neuro-disorders participants. The designed chemometric strategy in this 

study exhibited optimal classification accuracy ( 1̴00%), identifying the most important 

spectral biomarkers that majorly contribute to patients’ variability. Our method based 

on different classification steps showed excellent discriminative results and optimal 

prediction accuracy, 100%, for each classification. We can speculate that the two 

patients in the ALS category (T6) were misclassified as those with recently diagnosed 

ALS, because their metabolic profile has not yet undergone the changes typically 

characterizing advanced stage of ALS. Moreover, it should be considered that since 

these patients received the diagnosis it is more likely, that they started a treatment, 

thus, in these specific patients, the treatment response could contribute in decelerating 

the progression of ALS. This possible explanation to justify misclassified ALS patients 
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actually confirms everything that has been said so far, that the sooner the disease is 

diagnosed, the sooner the treatment begins, improving the patient's well-being. In 

addition, another plausible reasoning regards the different ALS genotypes, it could just 

be that these two subjects belong to distinct disease phenotype, and therefore, based 

on their genotype they can manifest slower progression of ALS. This speculation could 

be the basis for further fascinating investigation to discriminate between patients with 

different genetic background or patient on treatment versus patients without 

treatment.  

On the other hand, the healthy person who has been misclassified as taking part of 

patients with recently diagnosed ALS, perhaps should already undergo some 

monitoring. Maybe this misclassification is due to some similarities in patients’ 

metabolic profile, characterising neurodegeneration in the central nervous system. 

Thus, these findings are also useful to deep in the problem and the collection of 

exhaustive information completing patient’s dataset would confirm FTIR ability to 

predict possible disease initiation. In fact, the most useful ability among all, to prevent 

neurodegeneration and start as soon as possible the treatment.  

The main aim of this work was to determine the most discriminant wavenumbers 

based on the SELECT-LDA classification approach in order to: differentiate between 

different categories of patients, investigate if it is possible to segregate ALS directly at 

initial stage from healthy controls, and if this method is sensitive to discriminate 

between ALS progression stage. As we could have noticed, the same wavenumbers 

appeared significant in different classification steps. Therefore, a comparative analysis 

of the most significant band extracted in each classification step allowed us to identify 

those that majorly contribute to ALS discrimination. The last sub-classification 

performance was highly relevant to compare the discriminative signatures because of 

the involvement of only two categories; the decision was even more remarkable. We 

attempted to assign numerous selected wavenumbers in the fingerprint region that 

were associated with different compounds emerging as biomarkers of ALS. In line with 

our results, we want to discuss some evidence already found in the literature that 

reinforces these theories.  
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Thus, the wavenumbers at 1007.5 cm-1 selected to discriminate between ALS T0 and 

HC T0 seems to have the same contribution and significance as 1006 cm-1 chosen in the 

second classification step for the differentiation of ALS (T0) vs ALS (T6) vs HC (T6). 

Considering the coexistence of only one group in these two classifications, it is clear that 

this band contributes to the discrimination of only patients with ALS (T0). Based on the 

same reasoning and comparing other classification steps, discriminant bands at 1011, 

and 1076,1200.5 cm-1 indicate patients affected by ALS at the early stage of the disease. 

The discriminant signatures that belong to the infrared region of ~1080-1010 cm-1 can 

be attributed to symmetric stretching (v˜ ass) (P = O) of phospholipids and nucleic acids. 

The role of phospholipids is of great importance in the CNS. Thus, levels of 

sphingomyelin and long-chain triglycerides in the CSF of ALS patients have been shown 

to be correlated with the progression of ALS in the function of the neurodegenerative 

system[7].  

Likewise, spectroscopic signatures at 1054, 1054.5, 1057.5, 1060, 1060.5, 

1073.5,1076 and 1425.5 cm-1 discriminate specifically subjects in the advanced ALS (T6) 

stage. For example, among these wavenumbers, the signatures at 1060 cm-1 were 

selected in three classifications, namely to distinguish ALS (T6) vs HC (T6) vs ON, ALS (T0) 

vs ALS (T6) vs HC (T6) and ALS (T0) vs ALS (T6) vs ON. These bands also belong to the 

same infrared region and have the same biochemical significance. They are also 

associated with symmetric stretching (v˜ ass) (P = O) of phospholipids and nucleic acids. 

Likewise, the band at 1425.5 cm-1 used to discriminate between ALS (T0) vs ALS (T6) and 

between ALS (T0) vs ALS (T6) vs HC (T6), seems to have the same biochemical 

significance as band at 1420.5 cm-1 selected only for the discrimination of ALS (T6) vs HC 

(T6) vs ON. Thus, they seem to contribute exclusively to discriminate patients after six 

months of ALS progression.  

Interestingly, several selected bands contributed to the discrimination of ALS as a 

global category, independently of its progression stage. Thus, the variable at 1355 cm-1 

that contributes to segregation between ALS (T0) vs ALS (T6) vs HC (T6) was also found 

significant to differentiate between the categories of ALS progression and ON. Since 

these bands resulted significant in classifications where patients with different ALS 

advancement were involved, it is deductible that this band is specific for nothing else 
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but ALS condition. Likewise, discriminant spectral biomarker at 1170.5,1171.5 cm-1 was 

selected as relevant in three classification steps, namely to discriminate three global 

categories of patients at T6, to separate ALS (T6) from ALS (T0) from healthy controls 

and to discriminate ALS (T0) from HC (T0). These bands could be attributed to the 

stretching (CO-O-C) of carbohydrates. Therefore, evidence is emerging that impairment 

of the glycosphingolipid’s metabolism may promote multiple pathological mechanisms, 

such as dysregulation of the signalling pathway, inflammation, and oxidative stress, 

correlated with ALS initiation and progression. Moreover, we speculated that bands at 

1355 and 1356.5 cm-1 due to stretching vibrations of metile and methylene of lipids and 

phospholipids might have the same chemical and physical significance and contribute as 

spectral biomarkers in distinguishing ALS disorder. These wavenumbers have the 

potential to be linked to lipids, such as cholesterol. Thus, it was shown that cholesterol 

is fundamental for lipid raft formation, glucose transport, and inflammatory signalling, 

and it regulates cell membrane flexibility through interactions with nearby 

phospholipids. In addition, from the increasing evidence emerged that cholesterol levels 

are lower in ALS patients. 

Different research groups reported that impairment in lipid homeostasis and 

oxidative stress impact progression and resolution of neurodegenerative disorders such 

as ALS [5]. The astrocyte storage of lipids has a protective role in CNS; thus, alterations 

might lead to inflammation, signalling, oxidative stress and mitochondrial energy 

generation in neurons. Moreover, in recent findings was shown that high glucose 

exposure in astrocytes can lead to increased glycogen storage but at the expense of 

decreased mitochondrial and glycolytic capacity when subsequently metabolically 

stressed [6]. Thus, it makes sense that many of the remanent spectral signatures were 

assigned to lipids, carbohydrates and phosphate groups of phospholipids.  

The emphasis in this non-targeted metabolomic study was based on searching for 

disease and stage-specific spectroscopic signatures capable of differentiating ALS from 

other neuro-disorders conditions with shared symptoms. A tentative band assignment 

was performed, speculating the individual contribution of each significant infrared 

variable. Nevertheless, further dedicated and targeted studies could have an additional 

contribution and significance, elucidating the potential role of each spectra biomarker.  
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6.1.5 Conclusions 

In this study, the power of FTIR spectroscopy coupled with classification techniques 

in discriminating the spectra of healthy controls and patients with ALS or other neuro-

disorders were demonstrated. Different combinations of patient’s groups were studied 

to confirm the discrimination ability of infrared technique, yielding very high precision 

and specificity towards groups. All the healthy patients were greatly separated, ensuring 

the power of the built model in preventing the misdiagnosis of non-diseased patients as 

ones having neuromuscular disorders. In addition, no ALS were confused with patients 

affected by other neuro-disorders leading the specificity values of 100% for both 

pathologies. Test set for all of performed classifications showed excellent prediction 

ability with any misclassification. We also obtained optimal discrimination results 

between patients of ALS during different progression stage of the disease, that could be 

due to started treatment as well as the ulterior changes occurred in patients’ 

metabolome. We compared the discriminative feature that overlapped in all 

classifications. We are convinced that these results may take FTIR one step forward to 

its application in clinical setting, for preventing misdiagnosis of ALS and help patient 

well-being. Its utilization is fast, cost-effective and non-invasive, since it is perfectly 

suitable for biological biofluids. The overall quality of the classification’s rules could be 

improved by the collection of mayor samples and information about patients’ 

phenotypes, treatment and possible comorbidities
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6.2 SPECTROCHEMICAL DIFFERENTIATION OF ALS ONSET AND PROGRESSION BASED ON 

ATR-FTIR SPECTROSCOPY: PRELIMINARY STUDY 

In this section, preliminary studies based on ATR-FTIR using the same ALS patient 

cohort as described above is reported. Considering the simple, fast and cost-effective 

advantages of ATR-FTIR instrumentation. Herein, ATR-FTIR’s capability to extract 

relevant spectral features associated with ALS onset and progression and classify them 

in a predictive fashion was investigated.  

6.2.1 Data Analysis 

After data acquisition, the processing and computational analysis of raw metabolic 

data was performed using Unscrambler (version X 11.0, Camo ASA, Oslo, Norway), V-

Parvus (version PARVUS2011, Michele Forina, Genoa, Italy). Based on previous 

knowledge and experience about higher spectral regions where noise, water absorption 

and saturation are usually verified. only the mid-IR spectrum was analysed: the 

biochemical “fingerprint region” at 1500–1050 cm−1. In this way, the analytical time was 

ulteriorly reduced. Given the high dimensionality of biological spectral data, many 

disturbing factors, such as random noise, baseline distortions, or light scattering, 

influence spectral data acquisition. Thus, the pre-processing step is imperative in 

analysis to reduce these factors. To compensate for instrumental artefacts and sample 

sample-to-completions, different pre-processing methods were evaluated individually 

or in combination to minimise the adulterant-unrelated variability. Thus, the 

normalisation, moving average and Savitzky–Golay (S–G) second derivatives were 

applied to ATR spectra. Therefore, better resolution of overlapping peaks and decreased 

scatter effects were ensured. 

The entire data set was split into two independent subsets to develop and validate 

the classifications proposed: a training set and a test set. The test set was different for 

all methods applied, and classifications were developed, considering that different 

subsets of patients were studied. As a result, the smoothed and normalised output 

tables were always centred before additional multivariate analysis and classification 

algorithms. 
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6.2.2 Results and Discussion 

6.2.2.1 LDA to discriminate between ALS patients at disease onset and healthy controls 

After careful pre-processing, ATR-FTIR measurements were submitted for further 

multivariate analysis. In this preliminary analysis, two pairwise comparisons were 

studied, namely, the ALS disease progression, including ALS (T0) and ALS (T6) (a total of 

43 objects) and a prognostic comparison, including ALS (T0) and healthy controls (a total 

of 35 objects), respectively. 

As good data analysis practice, unsupervised PCA was performed to search for 

possible clusters and outliers. Once all the outliers were removed, a stepwise 

decorrelation procedure, SELECT, was performed, avoiding redundant information in 

the subset of selected significant predictors (spectral variables). In addition, it has 

previously demonstrated its accurate prediction ability in selecting the most important 

variable for the discrimination of pathological status. Thus, SELECT was applied to 

extract the most significant wavenumbers from the IR dataset, providing input features 

for further classification and class modelling. 

LDA on ten spectra variables that were decorrelated from other variables by SELECT, 

built by leave one out (LOO) cross-validation, was performed to evaluate the feasibility 

of this classification methodology to differentiate between the onset of ALS and healthy 

controls. Excellent discrimination among categories was achieved, providing a 100% 

level of correctly classified samples for diseased subjects and controls. In addition, 

excellent external prediction performances of 100% were achieved using a total of five 

patients in the test set distributed randomly for both categories (within no misclassified 

patients), respectively ( Table 6-8 Table 6-8. Results of LDA classification performance 

on 10 selected variablesTable 4-2). Furthermore, a clear interclass separation achieved 

between these main categories can also be visually appreciated in the corresponding 

discriminative histogram (Figure 6.6). Nevertheless, the excellent separation on the first 

canonical variable, displaying the control group, also indicates it slight heterogeneity. 
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 Table 6-8. Results of LDA classification performance on 10 selected variables to 

distinguish between ALS at disease onset and controls. 

Group Classification (%) Prediction (%) External Prediction (%) Total Rate (%) 

ALS (T0) 100 100 100 100 

Controls 100 100 100 100 

Total rate 100 100 100 100 

 

 

Figure 6.6. Histogram of the first canonical variable for the discrimination of ALS (T0) (◼) 
and healthy controls (◼) patients (y-axis indicates the maximum discrimination power 
between categories). 

6.2.2.2 LDA to discriminate between ALS disease progression 

Likewise, LDA on the IR dataset to distinguish the ALS progression stage, built by 10 

cancellation groups for CV was also performed. Before LDA analysis, as explained above, 

SELECT was applied to extract those predictor variables correlated with the 

discrimination between categories here considered. Therefore, based on the SELECT 

rules, 12 selected spectra variables were decorrelated from other wavenumbers and 

used for LDA classification. The 12 selected spectra biomarkers showed an outstanding 

classification performance of 100%, and the results were slightly lower in prediction 

ability, 97.37%, respectively, compared to 100% obtained in the previous classification. 

Thus, one object from the ALS (T6) category was classified as ALS (T0). The results of the 

SELEC-LDA performance are displayed in Table 6-9. The classification strategy's 
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suitability for reduced IR plasma signatures can be visually appreciated in Figure 6.7. A 

discriminative histogram shows a clear group separation on the first canonical variable. 

Table 6-9. Results of LDA classification performance on 12 selected variables 

Group Classification (%) Prediction (%) External Prediction (%) Total Rate (%) 

ALS (T0) 100 100 100 100 

ALS (T6) 100 95.45 100 100 

Total rate 100 97.37 100 99.1 

 

 

Figure 6.7. Histogram of the first canonical variable for the discrimination of ALS (T0) (◼) 
and ALS at 6 months follow-up patients (◼) (y-axis indicates the maximum 
discrimination power between categories). 

6.2.2.3 SIMCA class modelling to discriminate patients’ groups 

In an attempt to go one step further in this classification strategy, it was decided to 

build optimised class models based on clinical parameters and the subset of reduced IR 

signatures selected by SELECT. SIMCA often outperforms other classification methods, 

where a new sample will always be classified in one of the predefined categories. 

Classification methods such as LDA are based on the development of classification rules 

and delimiters between classes, whereas in class models, significance limits are built for 

the specified classes (SIMCA class modelling was previously described in Chapter 

2.4.2.2.2 Supervised techniques). 
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Herein, SIMCA modelling was performed on previously selected spectral variables, 10 

for the classification problem ALS (T0) vs HC, and 12 to discriminate ALS (T0) from ALS 

(T6) Table 6-10. A class modelling of 10 variables achieved satisfactory results in both 

internal prediction (LOO) and external prediction 80.00%. Considering this is a 

preliminary study, the external prediction showed lower accuracy due to fewer external 

predictors. Thus, only two objects for ALS (T0) and 3 for the control group were used to 

test the prediction ability, whereas one of the control groups was misclassified as having 

the disease. These results should be cautiously retested utilising a more significant 

number of samples, but still, yet, the results are auspicious. 

 Likewise, to model ALS (T0) vs ALS (T6) the same number of external predictors were 

used and the equally low external prediction was achieved, due to a low number of 

objects used as a test set. SIMCA builds a mathematical model of the category with its 

principal components. The specific category accepts a sample if its distance to the model 

is not significantly different from the class residual standard deviation. The results of 

SIMCA modelling for ALS (T0) and healthy controls can be visually appreciated by a 

Cooman’s Plot Figure 6.8, representing the samples’ distances against each of the two 

models. The Cooman’s plots were built considering a 95% confidence level to define the 

class space and the unweighted augmented distance. This diagram is an effective visual 

representation that directly indicates the quality of the model constructed with the 

magnitude of the distance between categories. Thus, the distances to the principal 

component models and SIMCA approximation in a two-class problem for the class of 

diseased ALS (T0) at onset and ALS (T6) at 6-month follow-up are plotted in Figure 6.9. 
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Figure 6.8. Cooman’s plot displaying the results obtained by applying SIMCA class-
modelling to 10 IR spectral variables: ALS (T0) (◼) and HC (◼) patients within the 
included () external test set. The red solid line indicates a confidence level for class 
space at 95%. The red dashed line indicates equal class distance. 

As can be observed in the plot, some objects of the external set are outside the 

model. Nevertheless, Cooman’s plot shows high interclass specificity and a patently 

clear separation between class models. The healthy controls appear evidently 

segregated and concentrated, forming a dense cluster at large distances from the model 

of the diseased ALS patient’s class. Likewise, it is observable that ALS (T0) patients are 

forming an apparent clustering. Still, most samples fall clearly and univocally into their 

class region, far from the class limit for the HC model. Furthermore, as said above, the 

single ALS (T0) sample located in the inconclusive classification region is virtually placed 

above the membership threshold, pertinent to the other class. 
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Figure 6.9. Cooman’s plot displaying the results obtained by applying SIMCA class-
modelling to 10 IR spectral variables: ALS (T0) (◼) and ALS T6 (◼) patients within the 
included () external test set. The red solid line indicates a confidence level for class 
space at 95%. The red dashed line indicates equal class distance. 

In a two-class problem for the class of ALS (T0) and ALS (T6), one sample that falls 

into the joint space of both categories belonging mainly to the ALS (T6) category, was 

observed. Compared to the o previous problem class model, the distribution of some 

samples from the ALS (T6) class outside the model could indicate that their metabolic 

profile may be much less marked than others, confounding the decision about their 

location inside the model. Nevertheless, their location is still very close to the confidence 

interval of 95%. Moreover, this class modelling showed much higher discriminant power 

performance but lower modelling power than the previous one. (Table 6-10) As can be 

seen in the plot, the ALS (T0) class ALS (T0) are perfectly segregated in the upper left 

corner, very far from the ALS (T6) class. 
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Table 6-10. The results of SIMCA class-modelling performance of two differentiation 
problems 

Differentiation 
problem  

Classification 
(%) 

External 
prediction 

(%) 

Efficiency 
(%) 

Efficiency forced 
model (%) 

Total Rate 
(%) 

ALS (T0) vs HC  
10 variables 

100 80 100 100 95.00 

ALS(T0) vs ALS(T6) 
12 variables 

100 80 97.33 100 94.33 

The values of modelling and discrimination power of each IR-selected variable for 

specific class modelling problem were calculated Table 6-11 and Table 6-12. Thus, the 

MP describes how well a variable helps each principal component model variation in the 

data, and discriminatory power (DP) describes how well a variable helps each principal 

component model classify samples in a training set. Thus, the selected variable of both 

class modelling showed very high values of discriminant power, indicating the 

contribution of each one in class separation.  

Of note, both classification problems showed the apparent clustering of patient 

categories. Meanwhile, it was observed that some samples fell into the opposite class 

region and slightly outside their class model. Nevertheless, it should be outlined that 

any sample category was located in the area of relative indecision (small left quadrant), 

indicating explicit separation of categories based on the diseased status and disease 

progression.  
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Table 6-11. Discriminative and modelling powers of ten selected spectra variables 
obtained in SIMCA class modelling of healthy controls and patients at ALS onset 

Spectra variable Discriminant power 
Modelling power 

Category  
HC 

Category ALS(T0)  

1185 5.46 

1.00 1.00 

1335.5 5.38 
1180 5.36 
1355 5.35 

1310.5 5.34 
1234 5.34 

1400.5 5.32 
1475 5.32 

1033.5 5.31 
1449.5 5.27 

 

Table 6-12. Discriminative and modelling powers of twelve selected spectra variables 
obtained in SIMCA class modelling to compare ALS disease progression (ALS (T0) vs 
ALS(T6)) 

Spectra variable Discriminant power 
Modelling power 

Category  
ALS (T0) 

Category ALS(T6)  

1478 13.74 0.74 0.95 
1372 53.60 0.32 0.82 

1308.5 54.37 0.85 0.91 
1492 58.44 0.77 0.74 

1344.5 63.87 0.65 0.51 
1361 45.25 0.90 0.60 
1380 50.41 0.92 0.91 

1105.5 59.86 0.87 0.58 
1381.5 44.15 0.76 0.56 
1104 38.24 0.92 0.95 
1304 45.87 0.85 0.65 

1193.5 18.41 0.90 0.91 

 

6.2.3 Conclusion 

Our principal goal was to test the ATR-FTIR coupled with already known and widely 

used chemometrics strategy’s ability to obtain optimal segregation between patients 

without additional clinical, physical, or ethnic data, and this goal was achieved. The 

perfect discrimination between diseased ALS and healthy patients was obtained based 

only on metabolic fingerprinting using a few spectral variables. In addition, it showed 

high sensitivity and specificity in distinguishing patients at different stages of the 



 

216 
 

disease. These preliminary results showed that ATR-FTIR measurement shares the same 

benefits as the standard FTIR, leading to reliable sample segregation with high internal 

and external prediction accuracy. Nevertheless, this method outperforms the FTIR 

cuvette measurements since it does not require cuvette handling, increasing its 

suitability for determining routine parameters in clinical reality. The ‘’shotgun’’ analysis 

on small blood drops that provide an answer in real-time about your disease status, is 

the type of instrument that should be implemented in a clinical environment. Further 

studies utilising a larger sample size will take ATR-FTIR one step forward as a diagnostic 

/screening tool for ALS elucidation.
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6.3 UPLC-QTOF-MS BASED LIPIDOMIC BLOOD PROFILING REVEALS BIOMARKER OF 

AMYOTROPHIC DISEASE PROGRESSION AND ITS DIFFERENTIATION FROM ANOTHER 

RELATED MOTOR NEURO DISEASE 

6.3.1 Introduction 

As was introduced in the previous section when performing studies on FTIR, the 

clinical profile and the pathogenetic mechanism of ALS patients have been the subject 

of considerable research and investigation; however, reliable and readily accessible 

molecular biomarkers, such as those obtained from patients’ biofluids, are still lacking 

to provide accurate ALS diagnosis. In addition, ALS is often confounded with other neuro 

diseases (ON) with a similar clinical profile. For example, in patients with Parkinson’s or 

Alzheimer’s, Myotonic and Becker (BMD) muscular dystrophies are also evaluated by 

progressive muscular weakness and cognitive impairments [1]. 

Numerous scientific findings claim that only a small per cent of ALS cases are caused 

by genetic factors (familial or sporadic gene mutations); thus, the remanent cases have 

unknown causes and could be characterised by heterogeneous factors such as 

gene/environment interactions or dysregulated metabolic conditions (e.g., aberrant 

protein aggregation, oxidative stress, altered lipid and RNA metabolism). Given this 

perspective, novel ALS biomarkers may arise from studying the different metabolic 

pathways.  

Lipids exert multiple functions, such as membrane fluidity and structure, molecular 

signalling, and mediation of inflammatory responses, and also contribute to nervous 

system maintenance[2,3]. Therefore, alteration in any of these processes directly affects 

the lipidome of the cell, tissue and biofluids surrounding them [4–6]. The central nervous 

system (CNS) is characterised by the presence of a wide variety of lipids, and lipidomic 

alterations, especially to molecular ageing or in response to increased reactive oxygen 

species (ROS), could contribute to the onset of neurodegeneration [7]. Thus, lipid 

dysregulation in CNS and circulation in ALS patients may be clinically associated with 

disease severity[8,9]. A great deal of evidence has shown that ALS patients report 

dysfunctional lipid pathways, reinforcing lipid role in ALS pathogenesis[10]. Therefore, 

patients with elevated blood levels of triacylglycerides (TAGs) and low/high-density 
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lipoprotein (LDL/HDL) have a better prognosis by nearly a year [11]. Likewise, elevated 

arachidonic acid and polyunsaturated fatty acids (PUFA) could contribute to motor 

neuron dysfunction and death in patients. Increased fatty acids (FA) oxidation and 

decreased subcutaneous fat stores are other metabolic features correlated with ALS 

even prior to motor degeneration. Recently, the causal mutation in SPTLC1, a gene 

responsible for sphingolipid biosynthesis, has also been associated with ALS 

pathogenesis. This gene encodes for the activity of serine palmitoyltransferase (SPT), 

the multisubunit enzyme that catalyses the initial and rate-limiting step in sphingolipid 

biosynthesis requires close homeostatic regulation to prevent cell toxicity due to the 

excess sphingolipids. Thus, SPT alterations are linked to neurodegeneration [12]. 

Moreover, the beneficial effect of a high-fat diet was severally confirmed by various 

research groups delaying disease onset and extending life expectancy in ALS patients 

[13]. In addition, the accumulation of ceramides, arachidonic acid, and 

lysophosphatidylcholine (lysoPC) seems very important to motor neurons [14–16].  

All these findings suggest that many efforts have been made to understand the 

disease mechanism and discover biomarkers for ALS diagnosis. Furthermore, these 

findings evidence that alteration in lipid metabolism may drive ALS pathogenesis and 

thus could serve as a biomarker target. Lipidomics is a sub-discipline of metabolomics, 

and in the last few years, it has been widely used to detect lipid alteration in biological 

systems [17–23].  

Herein, we performed UPLC untargeted lipidomic approach to evaluate potential lipid 

biomarkers for diagnosing ALS. Given the non-invasive nature, blood samples were used 

to reveal circulating lipid biomarkers. Differential lipid metabolites were identified 

comparing healthy controls and ALS patients, ALS and other motor-related neuro 

disorders and ALS progression stage. Univariate and multivariate analyses were 

performed to validate the identified biomarkers to assess their diagnostic performance 

of ALS disease. 



 

219 
 

6.3.2 Material and method  

6.3.2.1 Study population and sample collection 

The sample cohort described previously (Chapter 6.1.2, Experimental design) was 

included to perform UPLC-MS analysis. Thus, 76 blood samples were included from 

Niguarda Ca’Granda Hospital in Milan (Italy). The participants were matched for age and 

gender whenever possible. 

A total of 35 ALS patients, 34 healthy controls and seven patients with other 

neuropathies (ON) were included. The ALS group was divided into two subgroups; 19 

patients were collected at first diagnosis of ALS (T0), of which 16 were obtained as 

samples after six months of diagnosis/treatment ALS (T6). The ALS group included 

familial (fALS) cases due to quadruple mutation in the ALS susceptibility genes 

SOD1/TDP43/FUS/c9orf72. Similarly, considering the availability of the samples at T6 in 

the same participants, the healthy control group was divided into 19 participants at T0, 

of which 15 were obtained as samples at T6. Regarding the ON group, only samples of 7 

participants were at our disposal. The ON participants were affected by: Becker’s 

Muscular Dystrophy, Extrapyramidal syndrome, Facioscapulohumeral Muscular 

Dystrophy and Myotonic Dystrophy.  

6.3.2.2 Lipidomic analysis 

The chemicals used to perform this study are the same described in (Chapter 3.1, 

Chemicals and reagents). Thus, the lipidomic analysis is based on a previously described 

methodology, performing the MTBE-US-assisted lipid extraction method (Chapter 3.2.2, 

MTBE-US-assisted lipid extraction method).  

6.3.2.3 UPLC-Q/TOF Analysis 

LC analysis was performed on a Waters ACQUITY I-Class UPLC system (Waters Corp, 

Milford, USA) equipped with a Waters Acquity HSS T3 100 × 2.1 (i.d.) mm 1.8 μm particle 

size column and a Waters VanGuard precolumn of the same material, using the same 

condition as described in (Chapter 3.3.1.2.2 Liquid Chromatography-Mass 

Spectrometry). 
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6.3.2.4 Data processing and statistical analysis 

Progenesis QI software (Waters Corporation, Milford, MA, USA) processed the 

acquired mass data for peak detection, alignment and normalisation. The generated 

data with the information of retention time, accurate molecular mass, and MSE data 

were transferred into EZinfo 2.0 software (Waters Corporation, Milford, MA, USA). 

Considering a bigger number of variables than the sample size, dimensionality reduction 

was imperative. The unsupervised principal component analysis (PCA) was performed 

for the initial data overview. QC samples were used to monitor the analytical 

performance of the UPLC and the system’s stability.  Thus, the high degree of 

aggregation of the QC samples in the PCA model was an instrumental stability and 

reproducibility index. Different samples were detected as outliers and excluded from 

further analysis.   

6.3.2.5 Feature annotation 

To select the most reliable identity of the lipid when more than one option was 

available, the following criteria were followed: the most probable ionisation adduct 

based on the composition of the mobile phase, the minor m/z error of the exact mass 

(5 ppm maximum tolerance), highest fragmentation score and most probable isotopic 

distribution. 

6.3.2.6 Data analysis 

The generated matrices were subsequently analysed using MetaboAnalyst 5.0 (a 

comprehensive platform for metabolomics analysis that allows the application of 

univariate and multivariate methods, enrichment analysis and pathway analysis.  

Then, supervised PLS-DA and OPLS-DA analyses, the most used methods for binary 

classification, were performed on the data set to achieve the maximum separation 

between the following groups considered in this study: ALS T0 vs ALS T6, ALS vs CO, ALS 

vs ON, HC vs ON Considering that the sample size was relatively small; thus the results 

could be due to overfitting, the models were validated by Q2Y (predictive variation) and 

R2Y (explained variation) parameters based on 10-fold cross-validation and leave one 

out cross validation (LOOCV). The variable importance projection (VIP ≥ 1.0) from the 

peaks intensity, fold change (FC) analysis by comparing the mean intensity of lipid 

metabolites, and false discovery rate (FDR) corrected p-value was applied to screen the 
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discriminant biomarkers. However, to reject the hypothesis that the results obtained by 

PLS-DA and OPLS-DA were obtained by chance or by overfitting, a random forest (RF) 

machine learning approach (Number of trees =5000) was performed in an attempt to 

find non-linear patterns in lipid specimens that can explain variation between groups. 

6.3.3 Results 

To investigate the involvement of lipids in amyotrophic lateral sclerosis, a global 

lipidome analysis of ALS at the onset and ALS at six months follow-up, other motor neuro 

disorder cases and their respective age and gender-matched control group were 

performed. Therefore, the lipidome analyses of blood supernatant samples revealed 

different lipid species when performing pairwise comparisons. Many of identified 

discriminant features belonging to known metabolites of commonly used drug 

treatments, or diets were not considered significant biomarkers. By comparing different 

models in pairwise classifications, many features still need to be identified. 

Nevertheless, all the classification performed by PLS-DA and OPLS-SA were validated 

and provided significant separation between groups in positive and negative ionisation 

mode analyses. 

. The lipidome enrichment analysis revealed the majority of identified lipids belonging 

mainly to fatty acyls, glycolipid and glycerophospholipid families (Figure 6.10)  
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Figure 6.10. Main differential classes of lipids that contribute to patient differentiation 
in various pairwise comparisons. 

Different groups combination was studied and tested by PLS-DA, OPLS-DA and RF 

models in positive and negative ionization modes. Thus, a total of 12 pairwise 

comparisons were performed. Therefore, in Figure 6.11 we selected a subset of lipid 

metabolites that contributed the most to the classification between groups. 
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Figure 6.11. The lipid features were selected and prioritized by different statistical 
models. Each line of the table represents a lipid species colored by its selection in specific 
models, thus: yellow for selection by PLS-DA, green by OPLS-DA and blue by RF. A) 
results relative to molecular findings detected in negative ionisation mode B) in positive 
ionisation mode.  

 

There can be several reasons for incongruences in compound selection using PLS-DA, 

OPLS-DA, and RF algorithms. One possible reason is that the three models use different 

criteria for selecting important variables, and this can lead to differences in the selected 

variables. For example, PLS-DA and OPLS-DA are linear regression-based models 

considering the covariance between the variables and the response. Still, OPLS-DA has 

an additional step of orthogonalisation that removes any variation in the X matrix that 

is not correlated with the response. On the other hand, random forest is a tree-based 

model that uses a different criterion to evaluate variable importance, such as the mean 

decrease in a mean decrease accuracy. 

Moreover, the sample size and variability within the samples can also affect the 

selection of variables by the models. Small sample sizes at our disposal led to instability 

in the model selection and resulted in different variables being selected by different 

models.  

To address incongruences in the compound selection, it is essential to thoroughly 

examine and compare the results from all three models and identify the variables 
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consistently selected by multiple models. As we can observe, PS (40:5) is the unique 

biomarker selected by all three models to discriminate between ALS at six months of 

follow-up and ON cases. Interestingly, another phosphoserine derivate PS (39:1), was 

confirmed by two models (PLS-DA and RF) to discriminate between ALS(T6) and ON in 

negative ionisation mode. Of note, the contribution of PS (34:5) was evaluated for the 

same group separation but in a positive mode. It seems evident the importance of PS 

metabolism to discriminate between ALS cases and other related motor disorders.  

Multivariate analysis evidenced the contribution of several individual molecules 

belonging to the class of glycerophospholipids in patients’ differentiation: PE (20:5/0:0), 

PC (34:2) and LPI (17:1) seem to contribute to distinguishing ALS progression; likewise, 

PE(P-18:0/20:4), GPIns(18:0/20:4) and GPA(20:1/3:0) contribute for the segregation 

between ON and ALS (T6). Of note, the untargeted analyses revealed PA(O-16:0/16:1) 

and PC (40:7) as prognostic lipid specimens of ALS onset. 

As shown in Figure 6.11, the discrimination between groups is also linked to 

alterations in the levels of different fatty acyls and their conjugates, such as 

sphingolipids and diglycerols (DGs). 

6.3.3.1 Diagnostic model 

Additionally, we performed a validation study by ROC (AUC) curves to confirm the 

validity of the selected variables by RF and, at least by another model, to exclude the 

impact of overfitting. It is also essential to consider the biological relevance of the 

selected variables and their potential involvement in the disease or condition being 

studied. Therefore, AUC curves for each discriminant lipid species from each set of 

pairwise classifications in positive and negative ionisation modes were performed., As 

summarised in Table 6-13 and Table 6-14, there were four metabolic biomarkers for 

distinguishing ALS disease severity, three prognostic lipid species for ALS onset, six 

putative biomarkers for discriminating between ALS at six months follow-up and other 

motor neuro disorders and one putative prognostic biomarker of ON. 

As can be observed, all four putative lipid species to discriminate between ALS (T0) 

and ALS (T6) showed AUC ≥ 0.9, and equally high sensitivity and specificity, near 100%, 

respectively. Thus, ALS (T6) patients showed higher levels of palmitic and 10-oxo-

decanoic-acids. Meanwhile, lower levels of 5,8,11-eicosatrienoic acid and PE (20:5/0:0). 
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The AUC values of lipid metabolites for distinguishing ALS (T6) and ON displayed results 

higher than 0.743. In addition, PS (40:5) showed the best AUC=0.876 to predict the 

status of motor neuro disease (ALS versus ON). Besides PS (40:5), the most prominent 

changes in PS (36:1) and GPIns(18:0/20:4) were all increased in ON patients when 

compared to ALS (T6). Interestingly, the lipids belonging to fatty esters class 4,6-

Dimethyl-2,4,6-nonatriene and 5-Ethyl-3-methyl-2,4,6-nonatriene were found 

decreased in ON patients compared to ALS cases.  

The phosphatidic acid PA(O-16:0/16:1), which are decreased in ALS patients at early 

stage compared to controls, showed the best prediction performance (AUC=0.771) 

among three putative metabolites. The 9,12,15-octadecatrienoic acid, which are 

significantly decreased in ON patients compared to controls showed not only the most 

prominent changes (log2FC=2.7863, p=1.5928E-15), but also the best AUC=1 

performance. 
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Table 6-13. The information on the selected biomarker panels by two statistical models 
in negative ionization mode. 

Lipid specimen AUC T-test Log2 FC   

ALS (T0) vs ALS (T6) 

10-oxo-decanoic-acid 0.977 3.7801E-16 -1.219   

5,8,11-eicosatrienoic acid 0.991 4.0801E-10 1.235   

ALS (T6) vs ON 

GPIns(18:0/20:4) 0.8 1.5967E-4 -0.540   

PS(36:1) 0.743 5.8594E-4 -0.267   

GPA(14:1/9:0) 0.848 4.2943E-5 0.433   

PS(40:5) 0.876 2.5815E-6 -0.432   

ALS (T0) vs HC 

PA(O-16:0/16:1) 0.771 5.3499E-6 -1.138   

ALS (T6) vs HC 

N-stearoyl glutamine 0.722 0.015152 0.138   

 

Table 6-14. The information on the selected biomarker panels by two statistical models 
in positive ionization mode. 

Lipid specimen AUC T-test Log2 FC 

ALS (T0) vs ALS (T6) 

Palmitic acid 0.915 7.4305E-10 -0.319 

PE (20:5/0:0) 0.936 5.0447E-9 1.634 

ALS (T6) vs ON 

4,6-Dimethyl-2,4,6-nonatriene 0.8 0.0032111 0.310 

5-Ethyl-3-methyl-2,4,6-nonatriene 0.847 9.2229E-4 0.536 

ALS (T0) vs HC 

PC (40:7) 0.711 2.1023E-4 -0.429 

HC vs ON 

9,12,15-octadecatrienoic acid 1.0 1.5928E-15 2.786 

.
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Figure 6.12. Diagnostic performance and prediction of the most discriminant identified biomarkers. The AUC curves and respective box plots for comparison 
between A) ALS at the onset and ALS after a 6-month follow-up; B) ALS after a 6-month follow-up, and other motor neuro disorders. C) ALS at onset and 
healthy controls; D) advanced ALS and healthy controls 
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Figure 6.13. Diagnostic performance and prediction of the most discriminant identified biomarkers. The AUC curves and respective box plots for 
comparison between A) ALS at the onset and ALS after a 6-month follow-up; B) ALS after a 6-month follow-up, and other motor neuro disorders. 
C) ALS at onset and healthy controls; D) advanced ALS and healthy control. 
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6.3.4 Discussion  

In this study, we broadly searched lipid blood biomarkers in ALS and other neuro 

disorders, performing a comprehensive lipidomic approach. Lipids are the most 

abundant metabolites in peripheral blood and are usually reported to be easily 

accessible indicators of metabolic dysfunction. 

To our knowledge, this is the first lipidomic study of the supernatant blood of patients 

with ALS, which aimed to identify lipid profiles for diagnosing and predicting disease 

evolution. In addition, ALS lipid profiles were compared to other neuro disorders, and 

we tried to evaluate predictive biomarkers that can explain its underlying pathologic 

mechanisms. Several statistical models were used to evaluate the most discriminant 

biomarkers of ALS patients and controls and patients affected by other confounding 

neurodegenerative diseases. Multiple pairwise comparisons between patient groups 

have led to optimal discrimination results. Furthermore, all the models led to optimal 

group separation. However, many metabolites possibly contributing to patients’ 

segregation were unidentified, strengthening that ALS metabolic alterations are broad 

and poorly defined.  

The present work’s findings revealed that the principal lipid specimens (fatty acyls 

glycerolipids and glycerophospholipids) contribute to the greatest extent of ALS 

differentiation. Therefore, almost all of them are congruent with most of the findings of 

the previous ALS metabolomics studies.  

It is widely proposed that hypermetabolism, defined as an abnormally elevated level 

of resting energy expenditure, negatively impacts the course of ALS disease and persists 

over time [24–26]. This situation often leads to reduced fat depots, and this alteration 

may be associated with increased TGs in plasma. Therefore, abnormalities in skeletal 

muscle energy metabolism are accompanied by a defect in energy homeostasis 

exhibited as decreased glycolysis, increased fatty acid beta-oxidation in skeletal muscles, 

and decreased subcutaneous fat stores [27–29]. Since hypermetabolism is a prognostic 

factor for ALS, it is perfectly plausible to find altered fatty acyls, fatty esters and fatty 

acids lipid specimens involved in fatty acid biosynthesis, fatty acid 

degradation/elongation or fat metabolism, which could be due to augmented energy 

expenditure in ALS progression. Therefore, the tentatively assigned discriminant lipids 

distinguishing ALS progression (ALS (T0) vs ALS (T6)), such as 7-Heptadecene, Palmitic 



 

230 
 

acid, C18:3n-3,6,9, 10-oxo-decanoic acid showed higher levels in cases of 6 months 

follow up ALS. Altogether, adjustments in lipid metabolism probably respond to the high 

energy demands of the disease and modulate ALS phenotypes [30]. In addition, 

Henriques et al.[31] discussed how the energetic metabolism influences the degree of 

unsaturation and length of fatty acids in lipids. ALS disease has been associated with 

changes in lipid metabolism, including unsaturated fatty acids (UFAs). Studies have 

shown that ALS patients have altered levels of UFAs, including increased arachidonic 

acid (AA) and decreased docosahexaenoic acid (DHA) [32].  

Moreover, polyunsaturated fatty acids (PUFAs) are essential in inflammation and 

oxidative stress. Thus, it was shown that AA levels are increased in the spinal cord and 

brain tissues of patients with ALS [33,34]. This increase in AA levels may contribute to 

the development and progression of ALS, as AA can produce inflammatory mediators 

such as prostaglandins and leukotrienes, which can lead to oxidative stress and 

neuroinflammation. Thus, one of the most consistent changes achieved through 

different statistical models is the PUFA (5,8,11-eicosatrienoic acid) metabolite which 

arose as a suitable biomarker candidate (AUC=0.994) to discriminate the ALS 

progression stage. Our findings confirm the hypothesis that the changes in the 

proportions of fatty acids in blood lipids are a source of novel, reliable markers to help 

monitor disease severity in ALS patients. PLS-DA model, in ALS(T6) versus control 

comparison, highlighted that blood triglyceride (TG 12:0/12:0/13:0) showed diminished 

values in samples from ALS (T6), suggesting possible increased consumption of this lipid 

or its decreased production. Nevertheless, our results disagree with increased levels of 

specific TG species in plasma found by Sol et al. Further studies are needed to elucidate 

the role of TG in ALS diagnosis fully. 

Many glycerophospholipids, major membrane constituents, and ceramides 

specimens are differential between ALS and non-ALS cases. Concerning ALS 

differentiation from healthy controls, PC (40:7) was selected by two statistical models 

to distinguish ALS (T0) and CO groups. The decreased PC (40:7) is not in accordance with 

previously reported results, where the levels of PC specimens were found to be 

increased in CSF or plasma samples of ALS patients. Nevertheless, other lipid specimens 

concerning ALS progression, PE (25:0/0:0), as well as previously cited 5,8,11-

eicosatrienoic acid, also showed decreased levels after six months of disease 
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progression [35]. Considering that synaptic activity is compromised in ALS patients, PC 

synthesis via CDP-choline, which requires choline, a pyrimidine and PUFAs as the 

precursors for optimal stimulation pathway, could justify the decreased levels of these 

lipid species. In addition, data from many sources indicate that low PE can occur with 

age and is often linked as a factor to other neurodegenerative diseases such as 

Parkinson’s disease [36]. 

Interestingly, increased levels of ceramide derivates were found to characterise ALS 

patients and ON. Several lines of evidence implicate various sphingolipids in neuronal 

signalling and toxicity[2,37]. Since SM is involved in signal transduction and regulating 

inflammatory processes, such as response to oxidative stress [38], the derivates of SM 

hydrolysis-ceramides (Cer) are known to be involved in neurodegenerative processes 

[34] [14]. Therefore, the perturbation in SM/Cer homeostasis might contribute to 

neurodegeneration. Our findings are consistent with the literature evidence confirming 

the relationship between sphingomyelins and cognitive impairment. Our data revealed 

that some sphingolipids, particularly galactosyl ceramides GalCer (d18:2/22:0), 

significantly increased during the ALS progression. In addition, the same ceramide 

species were selected to discriminate between ALS(T0) and CO, whereas expected 

showed increased levels in the diseased group. Thus, strengthening the fact that 

ceramide accumulation characterises the ALS onset and its progression. Interestingly, 

the same ceramide species resulted in an increase in ON cases compared to the control 

group. These results confirm previous findings indicating the involvement of ceramides 

and neuro disease development and highlight the potential use of SM and ceramide as 

biomarkers in ALS [39–41]. Nevertheless, only one model confirmed these results and 

should be interpreted cautiously. 

One of our principal goals was to discriminate between ALS patients and other 

confounding neuro disorders. Since clinical evaluation lack of sensitivity leads to 

misdiagnosis and tardive treatment, herein, we performed different pairwise 

comparisons to evaluate biomarkers for the group of patients carrying other 

neurodegenerative phenotypes. Interestingly, among identified compounds, 

phosphoserine (PS (40:5)) was discriminant by comparing ALS (T6) group and ON 

patients and was validated by all three statistical models. Moreover, other PS (39:1) 

metabolite was also identified by comparing ALS after six months of disease progression 
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and ON and validated by two statistical models. In addition, by comparing the same 

groups in positive ionisation mode, another PS specimen (PS (34:5) was statistically 

significant. Thus, patients belonging to ON phenotypes in all three classifications 

displayed increased PS biomarkers levels compared to the ALS (T6) group. It is well 

known that PS, like other phospholipids, have different important functions, such as 

contributing to membrane fluidity and signalling in cell membranes (cit Agrawal). Clinical 

trials suggest that PS may have applications for the prevention and therapy of cognitive 

disorders [43]s.[44]. PS decarboxylation leads to phosphatidylethanolamine and 

subsequently to phosphatidylcholine. In the case of pathological conditions, PS 

signalling may be dysregulated. Since PS is a precursor for PC and PE, it seems reasonable 

that altered PS metabolism leads to decreased PC and PE in ALS patients, which were 

obtained in our results.  

 

We acknowledge that our study presents different limitations. Thus, most of the lipid 

specimens that resulted significantly in these comparisons were unidentified, suggesting 

that many poorly explored metabolites still could explain ALS mechanisms. These results 

should be interpreted cautiously; even so, all the statistical models were validated. Only 

one of the identified lipids was discriminant in all three models, namely PS (40:5), which 

distinguished between ALS at six months of disease progression and patients with other 

neuro disorders. Nevertheless, biologically meaningful lipid species were identified, and 

their contribution to patients’ differentiation is justifiable and confirmed by previous 

studies. Additionally, our study is longitudinal, thus, we were able to access temporal 

changes in a metabolic profile highlighting earlier versus later alterations in disease 

developments. Moreover, our study includes samples from patients with other 

neurological disorders, which allowed additional comparisons and identification of the 

discriminant metabolites that could help avoid future misdiagnosis. 

6.3.5 Conclusions 

To objectively track ALS disease progression and its onset, reliable and readily 

accessible biomarkers, such as those from patient blood, are highly needed. This 

untargeted metabolomic approach found evidence of previously established and 

identified lipid species and novel emerging metabolites. Due to small cohorts of patients, 
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no conclusions could be formally drawn about the potential prognostic effects of the 

identified biomarkers. Nevertheless, our findings suggest the contribution of alterations 

in UFAs, PUFAs, FAs and glycerolipid metabolism to the pathogenesis of ALS and other 

neuro disorders. Here we found that the changes in the proportions of fatty acids from 

blood lipids are a source of novel, reliable markers to help monitor ALS disease severity. 

We hypothesised that PS metabolites could be a trait of other neuro disorders.  

These results could be a promising stand point for new targeted studies. The reported 

blood lipid profiles of ALS need to be completed, since no associations with clinical 

variables have been controlled; therefore, the further investigation is needed.  
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7 CHAPTER 7: CONCLUSIONS 

This final chapter gathers the general and specific conclusions of this thesis. At the same 

time, each previous chapters collect more detailed conclusions of each study. 

Considering the need for standardised clinical diagnostic tools and protocols for the 

prevention and diagnosis of many diseases, analysing global metabolic profiles instead 

of disparate clinical measurements could be essential to shed light on the 

disarrangements of various diseases. Therefore, the diseases such as MetS, PD, AD and 

ALS were greatly approached from a holistic functional perspective performing analysis 

of metabolic profiles that could reflect the global clinical patient status. 

Non-targeted metabolomic studies based on FTIR spectroscopy aimed to extract the 

metabolic signatures instead of individual biomarkers, permitting the classification of 

patients according to their molecular patterns. Thus, developing a chemometric strategy 

capable of extrapolating the most significant infrared signatures was crucial in this 

doctoral thesis. Each spectrum is unique for every patient, reflecting 

clinical/pathological conditions. Summarising: 

▪  The LDA classifications and SIMCA-developed models demonstrated that the 

spectral variables obtained by FTIR could provide the same discriminative results 

as measured clinical parameters for MetS discrimination. 

▪ A three-step classification approach revealed spectroscopic biomarker signatures 

that define patient subgroups for the clinical diagnosis and classification of PD at 

different stages of the disease. PD at the initial stage (PDI) was significantly 

differentiated and not confused with developed PD-related dementia (PDD), 

providing optimal classification results in both sub-classification problems. In 

addition, this approach successfully stratified patients with different PD stage 

progression profiles and those with different dementia-type profiles. All the 

speculations about the involvement of selected bands in the pathogenesis of PD 

are immensely reasonable, and their role is perfectly justifiable for patient 

stratification. 
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▪ Different combinations of patient groups were studied to confirm the 

discrimination ability of the infrared technique in ALS classification, yielding very 

high precision and specificity towards groups. All the healthy patients were 

significantly separated, confirming the power of the built model in preventing the 

misdiagnosis of non-diseased patients as ones having neuromuscular disorders. 

In addition, no ALS were confused with other neuro-disorder cases leading 

highest specificity values for both pathologies. 

▪ The potential of ATR-FTIR spectroscopy was investigated as a rapid tool for 

discriminating ALS patients from controls and ALS disease progression. This 

preliminary study's analysis based on LDA classification and SIMCA class 

modelling provided excellent group separation.  Therefore, both ALS at onset and 

after six months of follow-up and ALS at the disease onset from controls were 

discriminated with almost 100% accuracy by LDA and SIMCA, highlighting the 

great potential of the instrument to be implemented for fast screening purposes. 

It is well-known that lipids exert various functions in the central nervous system, 

including roles in cell structure, synaptic transmission, and multiple metabolic 

processes. Thus, herein, a non-targeted lipidomic approach using UPLC-MS/MS was 

performed to unravel alterations in one or more lipid specimens and metabolic 

pathways where they are possibly involved. 

▪ Statistically significant lipid compounds belonging to glycerophospholipids and 

were identified in UHPLC-MS untargeted approach, which could be a prominent 

biomarker to the differentiation between AD or PD and healthy controls. 

▪ UPLC-MS metabolomic approach found evidence of previously established lipid 

compounds and identified novel emerging metabolites for ALS discrimination., 

Our results revealed discriminant traits of ALS prognosis and ALS progression 

suggesting the contribution of alterations in UFAs, PUFAs, FAs and glycerolipid 

metabolism to the pathogenesis of ALS and other neuro disorders. 

  

The principal limitation of these studies resides in the relatively reduced sample size at 

our disposal for some patient. Nevertheless, it should be highlighted that it is extremely 



 

241 
 

challenging to collect samples for some diseases such as Amyotrophic lateral sclerosis. 

As note, we conducted a longitudinal study on ALS cohort, and compared group of 

patients at different stage of disease progression. In our knowledge, very limited studies 

have performed longitudinal studies on ALS. Therefore, the adopted analytical strategy 

could be converted in universal diagnostic methodology, by increasing the patient 

dataset. In addition, the routinely included confounding factors, such as dietary habits, 

medications, comorbidities and race, would suggest possible solutions in future studies 

and strengthen the validity of the discussed classification strategies.  

Thus, cost-effectiveness and relative ease of access and IR devices’ portability take 

vibrational spectroscopy one step towards clinical implementation, which could be ideal 

for point-of-care testing, primary health care, or wherever required. 

Exhaustive metabolomic fingerprinting research should not be limited to a unique 

analytical platform but rather should test and combine multiple analytical strategies in 

order to exploit their respective strengths and overcome their weaknesses. In this 

doctoral thesis, FTIR spectroscopy and UPLC-MS successfully complemented each other, 

providing excellent patient discrimination based on spectral and on specific blood 

biomarkers. 

 




