Horacio Félix Attorresi, Gabriela Susana Lozzia, María Ester Aguerri, María Silvia Galibert
En este articulo se explicitan los supuestas sobre los que se basan los métodos para inferir los puntajes verdaderos de la teoría clásica de tests. El objetivo del presente trabajo fue fundamentar la deducción de los dos tipos de intervalos de confianza que se mencionan corrientemente en la bibliografía precisando los modelos en los cuales se deducen. Uno de ellos se basa en el error de medición (Caso 1) y el otro en el error de estimación cometido cuando los puntajes verdaderos se predicen con la ecuación de regresión sobre los observados (Caso 2). La construcción de ambos tipos de intervalos descansa en dos modelos, cada uno con sus propios supuestos, que es preciso diferenciar. El Caso 1 corresponde a la estimación de un valor fijo del puntaje verdadero y el Caso 2 a la de un valor aleatorio del mismo. Se señalan diferencias entre el modelo de regresión de la teoría estadística general y el uso de la regresión en el contexto de la teoría clásica. Se presentan las consideraciones que, por tanto, deben tenerse en cuenta al aplicarlo en el cálculo de los intervalos de confianza para fundamentar correctamente su deducción y para comprender su significado y limitaciones. Se concluye que el supuesto de homoscedasticidad es sólo necesario para el Caso 1 y que la construcción de ambos intervalos supone que la población se restringe al grupo normativo pues no considera el error de muestreo de los estimadores de la confiabilidad del test y de la variancia de los pontajes observados.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados