Ayuda
Ir al contenido

Dialnet


The Pointed Version of Lipscomb's Embedding Theorem

  • Autores: Ivan Ivansic, Uros Milutinovic
  • Localización: Houston journal of mathematics, ISSN 0362-1588, Vol. 31, Nº 1, 2005, págs. 173-192
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Let S(t) be the generalized Sierpinski curve, which is naturally identified with Lipscomb's space J(t).

      Then for any n-dimensional metric space X of weight t there is an embedding of X into Ln(t), where Ln(t) is the subset of S(t)n+1 of all points having at least one so called irrational coordinate. Here we prove that this embedding may be chosen in such a way that its value at a certain point (the base point) is given in advance. In fact, we prove a stronger result that the values of the embedding may be given in advance at any finite set of points of X.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno