Ayuda
Ir al contenido

Dialnet


Calderón's Problem for Lipschitz Classes and the Dimension of Quasicircles.

  • Autores: Kari Astala
  • Localización: Revista matemática iberoamericana, ISSN 0213-2230, Vol. 4, Nº 3-4, 1988, págs. 469-486
  • Idioma: inglés
  • Títulos paralelos:
    • Problema de Calderón para clases de Lipschitz y la dimensión de cuasicírculos.
  • Enlaces
  • Resumen
    • In the last years the mapping properties of the Cauchy integral CGf(z) = 1/(2pi) ?G [f(?) / ? - z] d? have been widely studied. The most important question in this area was Calderón's problem, to determine those rectifiable Jordan curves G for which CG defines a bounded operator on L2(G). The question was solved by Guy David [Da] who proved that CG is bounded on L2(G) (or on Lp(G), 1 < p < 8) if and only if G is regular, i.e., H1(G n B(z0,R) = CR for every z0 Î C, R > 0 and for some constant C (...).


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno