Ayuda
Ir al contenido

Dialnet


On metric Ramsey-type phenomena

  • Autores: Yair Bartal, Nathan Linial, Manor Mendel, Assaf Naor
  • Localización: Annals of mathematics, ISSN 0003-486X, Vol. 162, Nº 2, 2005, págs. 643-709
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • The main question studied in this article may be viewed as a nonlinear analogue of Dvoretzky¿s theorem in Banach space theory or as part of Ramsey theory in combinatorics. Given a finite metric space on n points, we seek its subspace of largest cardinality which can be embedded with a given distortion in Hilbert space. We provide nearly tight upper and lower bounds on the cardinality of this subspace in terms of n and the desired distortion. Our main theorem states that for any  > 0, every n point metric space contains a subset of size at least n1- which is embeddable in Hilbert space with O log(1/)   distortion. The bound on the distortion is tight up to the log(1/) factor. We further include a comprehensive study of various other aspects of this problem.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno