We say that a finite abelian group does not have the Rédei property if it can be expressed as a direct product of two of its subsets such that both subsets contain the identity element and both subsets span the whole group. It will be shown that only a small fraction of the finite abelian groups can have the Rédei property. For groups of odd order an explicit list of the possible exceptions is compiled.
© 2001-2025 Fundación Dialnet · Todos los derechos reservados