Ben M. Hambly, V. Metz, Alexander Teplyaev
On a large class of post-critically finite (finitely ramified) self-similar fractals with possibly little symmetry, we consider the question of existence and uniqueness of a Laplace operator. By considering positive refinement weights (local scaling factors) which are not necessarily equal, we show that for each such fractal, under a certain condition, there are corresponding refinement weights which support a unique self-similar Dirichlet form. As compared with previous results, our technique allows us to replace symmetry by connectivity arguments.
© 2001-2025 Fundación Dialnet · Todos los derechos reservados