Ayuda
Ir al contenido

Dialnet


Energy Absorption as a Predictor of Leg Impedance in Highly Trained Females

  • Autores: Anthony S. Kulas, Randy J. Schmitz, Sandra J. Shultz, Mary Allen Watson, David H. Perrin
  • Localización: Journal of applied biomechanics, ISSN-e 1543-2688, ISSN 1065-8483, Vol. 22, Nº. 3, 2006, págs. 177-185
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Although leg spring stiffness represents active muscular recruitment of the lower extremity during dynamic tasks such as hopping and running, the joint-specific characteristics comprising the damping portion of this measure, leg impedance, are uncertain. The purpose of this investigation was to assess the relationship between leg impedance and energy absorption at the ankle, knee, and hip during early (impact) and late (stabilization) phases of landing. Twenty highly trained female dancers (age = 20.3 ± 1.4 years, height = 163.7 ± 6.0 cm, mass = 62.1 ± 8.1 kg) were instrumented for biomechanical analysis. Subjects performed three sets of double-leg landings from under preferred, stiff, and soft landing conditions. A stepwise linear regression analysis revealed that ankle and knee energy absorption at impact, and knee and hip energy absorption during the stabilization phases of landing explained 75.5% of the variance in leg impedance. The primary predictor of leg impedance was knee energy absorption during the stabilization phase, independently accounting for 55% of the variance. Future validation studies applying this regression model to other groups of individuals are warranted.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno