Ayuda
Ir al contenido

Dialnet


Zeros of random polynomials on $\C^m$

  • Autores: Thomas Bloom, Bernard Shiffman
  • Localización: Mathematical research letters, ISSN 1073-2780, Vol. 14, Nº 3, 2007, págs. 469-479
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • For a regular compact set $K$ in $\mathbb{C}^m$ and a measure $\mu$ on $K$ satisfying the Bernstein-Markov inequality, we consider the ensemble $\mathcal{P}_N$ of polynomials of degree $N$, endowed with the Gaussian probability measure induced by $L^2(\mu)$. We show that for large $N$, the simultaneous zeros of $m$ polynomials in $\mathcal{P}_N$ tend to concentrate around the Silov boundary of $K$; more precisely, their expected distribution is asymptotic to $N^m \mu_{eq}$, where $\mu_{eq}$ is the equilibrium measure of $K$. For the case where $K$ is the unit ball, we give scaling asymptotics for the expected distribution of zeros as $N\to\infty$.\end


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno