The main results of this paper interpret mixed volumes of lattice polytopes as mixed multiplicities of ideals and mixed multiplicities of ideals as Samuel's multiplicities. In particular, we can give a purely algebraic proof of Bernstein's theorem which asserts that the number of common zeros of a system of Laurent polynomial equations in the torus is bounded above by the mixed volume of their Newton polytopes.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados