Ayuda
Ir al contenido

Dialnet


Uniform approximation of eigenvalues in Laguerre and Hermite $\beta$-ensembles by roots of orthogonal polynomials

  • Autores: Holger Dette, Lorens A. Imhof
  • Localización: Transactions of the American Mathematical Society, ISSN 0002-9947, Vol. 359, Nº 10, 2007, págs. 4999-5018
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We derive strong uniform approximations for the eigenvalues in general Laguerre and Hermite -ensembles by showing that the maximal discrepancy between the suitably scaled eigenvalues and roots of orthogonal polynomials converges almost surely to zero when the dimension converges to infinity. We also provide estimates of the rate of convergence. In the special case of a normalized real Wishart matrix , where denotes the dimension and the degrees of freedom, the rate is , if with , and the rate is , if with . In the latter case we also show the a.s. convergence of the largest eigenvalue of to the corresponding quantile of the Marcenko-Pastur law.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno