Ayuda
Ir al contenido

Dialnet


Magnetic rigidity of horocycle flows

  • Autores: Gabriel P. Paternain
  • Localización: Pacific journal of mathematics, ISSN 0030-8730, Vol. 225, Nº 2, 2006, págs. 301-324
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Let M be a closed oriented surface endowed with a Riemannian metric g and let O be a 2-form. We show that the magnetic flow of the pair (g,O) has zero asymptotic Maslov index and zero Liouville action if and only if g has constant Gaussian curvature, O is a constant multiple of the area form of g and the magnetic flow is a horocycle flow.

      This characterization of horocycle flows implies that if the magnetic flow of a pair (g,O) is C1-conjugate to the horocycle flow of a hyperbolic metric ?, there exists a constant a > 0 such that ag and ? are isometric and a-1O is, up to a sign, the area form of g. It also implies that if a magnetic flow is Mañé-critical and uniquely ergodic it must be the horocycle flow.

      As a byproduct we show the existence of closed magnetic geodesics for almost all energy levels in the case of weakly exact magnetic fields on closed manifolds of arbitrary dimension satisfying a certain technical condition


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno