We study the family of ideals defined by mixed size minors of two-sided ladders of indeterminates. We compute their Gröbner bases with respect to a skew-diagonal monomial order, then we use them to compute the height of the ideals. We show that these ideals correspond to a family of irreducible projective varieties, that we call mixed ladder determinantal varieties. We show that these varieties are arithmetically Cohen-Macaulay, and we characterize the arithmetically Gorenstein ones. Our main result consists in proving that mixed ladder determinantal varieties belong to the same G-biliaison class of a linear variety.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados