Ayuda
Ir al contenido

Dialnet


Lie algebras of formal power series

  • Autores: Min Ho Lee
  • Localización: Revista matemática complutense, ISSN-e 1988-2807, ISSN 1139-1138, Vol. 20, Nº 2, 2007, págs. 463-481
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Pseudodifferential operators are formal Laurent series in the formal inverse ?-1 of the derivative operator ? whose coefficients are holomorphic functions. Given a pseudodifferential operator, the corresponding formal power series can be obtained by using some constant multiples of its coefficients. The space of pseudodifferential operators is a noncommutative algebra over C and therefore has a natural structure of a Lie algebra. We determine the corresponding Lie algebra structure on the space of formal power series and study some of its properties. We also discuss these results in connection with automorphic pseudodifferential operators, Jacobi-like forms, and modular forms for a discrete subgroup of SL(2, ).


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno